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Abstract: Today, the demand for continuous monitoring of valuable or safety critical equipment is
increasing in many industrial applications due to safety and economical requirements. Therefore,
reliable in-situ measurement techniques are required for instance in Structural Health Monitoring
(SHM) as well as process monitoring and control. Here, current challenges are related to the processing
of sensor data with a high data rate and low latency. In particular, measurement and analyses of
Acoustic Emission (AE) are widely used for passive, in-situ inspection. Advantages of AE are
related to its sensitivity to different micro-mechanical mechanisms on the material level. However,
online processing of AE waveforms is computationally demanding. The related equipment is typically
bulky, expensive, and not well suited for permanent installation. The contribution of this paper is
the development of a Field Programmable Gate Array (FPGA)-based measurement system using
ZedBoard devlopment kit with Zynq-7000 system on chip for embedded implementation of suitable
online processing algorithms. This platform comprises a dual-core Advanced Reduced Instruction
Set Computer Machine (ARM) architecture running a Linux operating system and FPGA fabric.
A FPGA-based hardware implementation of the discrete wavelet transform is realized to accelerate
processing the AE measurements. Key features of the system are low cost, small form factor, and low
energy consumption, which makes it suitable to serve as field-deployed measurement and control
device. For verification of the functionality, a novel automatically realized adjustment of the working
distance during pulsed laser ablation in liquids is established as an example. A sample rate of 5 MHz
is achieved at 16 bit resolution.

Keywords: acoustic emission; structural health monitoring; real-time signal processing; FPGA;
embedded linux; wavelet transform; pulsed laser ablation in liquids; nanoparticles

1. Introduction

In many industries, the need for optimal use of equipment and resources is driving the
development of new technologies. For example, Pulsed Laser Ablation in Liquids (PLAL) is a process
for synthesis of nanoparticles from different materials. However, placement of the target material
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at a suitable Working Distance (WD) close to the focal point of the laser is crucial to achieve high
productivity of PLAL. Zhu et al. [1] established a correlation between material ablation rate and audible
acoustic waves (sound) using wideband microphone. This idea is used in this paper to implement an
automatic positioning algorithm to improve productivity of PLAL. Different to [1], a surface mounted
piezoelectric sensor is used to record Acoustic Emission (AE). Furthermore, a newly developed Field
Programmable Gate Array (FPGA)-based measurement system is introduced, which is suitable for
online processing of AE signals using Discrete Wavelet Transform (DWT) for noise reduction or
feature extraction.

In general, AE refers to the phenomenon of transient elastic stress waves, which emerge from
local sources [2]. Using highly sensitive measurement equipment and suitable signal processing,
these waveforms can be detected and used to distinguish different source mechanisms. Key advantage
is the sensitivity to damage on a material level including different micro-mechanical mechanisms
e.g., crack nucleation and propagation [3], material removal [4], and wear [5]. In the field of SHM,
applications of AE for in-situ measurements are manifold. Typically, SHM is understood as “the process
of implementing a damage identification strategy” [6]. In this context, damage denotes an arbitrary
change causing deviations from an initial state that have adverse effect on the performance of a
system [6]. However, sensors can not measure damages directly and therefore suitable feature
extraction and interpretation are required to provide statements regarding the current state of a
system [7]. Mba [8] provided a review regarding AE for monitoring of rotating machinery such as gears
and bearings. It was pointed out that AE is most mature in the field of bearing monitoring. However,
it was also mentioned that effects of different operating conditions have to be further investigated
to fully take advantage of the potential for SHM. Van Hecke et al. [9] developed a methodology to
process AE signals tailored to improve diagnostic performance for low-speed bearings, which are
typical for e.g., wind turbines. Baccar and Söffker [5] identified characteristic frequencies related to
different wear mechanisms of wear resistant plates in friction contact and proposed a methodology for
monitoring of tribological systems.

Besides SHM, the related technologies offer new opportunities for process monitoring and control.
Here, reliable in-situ measurements are required to determine the current state of a process [10].
For example, Lee et al. [11] investigated AE for in-situ monitoring of precision manufacturing processes.
Maia et al. [12] applied AE to monitor the condition of tools in turning operations. Here, adhesive and
abrasive wear could be distinguished according to the frequency content of AE signals [12]. Moreover,
Svecko et al. [13] used AE on an injection molding machine to detect damages of engraving tools
during the manufacturing process. Furthermore, a review of AE related to chemical processes is
provided by Boyd and Varley [10]. In particular, bubble formation in gas-liquid dispersions, transport
processes, and chemical reactions are considered. It was pointed out that besides its applications to
process monitoring, AE is ideally suited for the use in control systems [10].

During PLAL, high energy laser pulses with a duration on the order of several nano seconds
are used to ignite a plasma on the surface of the target material. Furthermore, the high energy laser
pulses cause formation of a cavitation bubble at the interface between the target material and the
liquid. Nanoparticles are formed due to condensation in the gas phase of the cavitation bubble and
are dispersed in the liquid after collapse [14]. Compared to chemical synthesis of nanoparticles,
this process leads to a particularly clean product due to confinement in liquid environment e.g., water.
The productivity (ablated mass per unit time) of PLAL depends strongly on the position of the target
with respect to the focal point of the laser [15]. Thus, a suitable WD between the target and the
laser is crucial. However, adjusting the WD manually is difficult and time consuming because direct
measurement of the ablated mass requires disassembly of the test rig. Therefore, automatic adjustment
of the WD based on in-situ measurements of the productivity is desirable. A typical method to measure
the productivity in-situ is Ultraviolet/Visible (UV/VIS) spectroscopy. However, the use of this method
for process monitoring and control is limited to a small concentration range. Furthermore, there is a
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dependence on the material, the particle size, and the particle shape. Therefore, AE measurements are
used in this paper for automatic adjustment of the WD.

Ultrasonic sensing techniques including AE [2], Guided Waves [16], or Electromechanical
Impedance (EMI) method [17] as well as sensing techniques based on optoelectronic principles [18–21]
generate raw data which require complex signal processing at high data rates. By leveraging data
parallelism of FPGA-based hardware architectures, the related signal processing algorithms can be
implemented efficiently. In particular, AE is challenging due to several reasons. The wide frequency
range of AE of up to 1 MHz necessitates high sampling rates. Furthermore, Kaphle et al. [22] identified
the discrimination between damage related signals and spurious noises as a major challenge in AE
monitoring. Traditionally, heuristically defined rules to extract parameters from AE waveforms are
used to characterize the underlying source mechanism. In practice, this approach is widely used due
to its simplicity and reduction of acquired data [22]. However, information regarding the underlying
source mechanisms is limited using this approach. Therefore, in research the focus has moved
towards advanced signal processing methods such as joint time-frequency domain transformations.
Different methods including Short Time Fourier Transform (STFT), Hilbert Huang Transform (HHT),
and Wavelet Transform (WT) are compared by Hamdi et al. [23]. It was concluded that suitability
of STFT for decomposition of AE signals is limited due to fixed time-frequency resolution for a
given window size. Also, it was pointed out that HHT is most suitable to decompose transient
AE signals, whereas WT provides more flexibility in the analysis e.g., by choosing a suitable basis
function. Furthermore, it is important to note that in contrast to HHT the Discrete Wavelet Transform
(DWT) can be implemented for real-time use. Therefore, DWT is excessively used in context of AE
for different purposes including feature extraction, denoising, and onset detection. For example,
Marec et al. [24] used WT and C-means clustering to distinguish between different micro-mechanical
fracture mechanisms in composite material. Moreover, Pomponi et al. [25] used thresholding of DWT
coefficients for onset detection of AE transients in noisy measurements.

Especially when AE-based monitoring is based on information within higher frequency
regimes [5], current challenges for measuring AE are related to signal processing under time constraints,
storage, and accessibility of the data. Therefore, in this paper the development of an AE measurement
system using low-cost FPGA-based platform, which is suitable for embedded implementation,
is addressed. A FPGA-based implementation of the DWT, which is suitable for real-time use, is realized
to accelerate processing of AE measurements. Furthermore, a wide range of I/O-interfaces such as
Ethernet and USB are readily available to ensure data accessibility. Key features of the system are low
cost, small form factor, and low energy consumption, which makes it suitable for field-deployed devices.
For verification of the functionality, automatic adjustment of the WD during PLAL is established as
an example.

The remainder of this paper is structured as follows. In Section 2, the experimental test rig
for the PLAL is described. Furthermore, the developed AE measurement system is presented in
detail. In particular, FPGA-based implementation of DWT, which is used to remove noise from the
measurements, is addressed. In Section 3, experimental results are presented. Final remarks are given
in Section 4.

2. Materials and Methods

Subsequently, the PLAL test rig used during the experimental study and the newly developed
FPGA-based measurement system are described. Furthermore, particular emphasis is placed on the
real-time implementation of the DWT, which can be used for denoising and feature extraction.

2.1. Laser Ablation Test Rig

The experimental setup in which the FPGA system is implemented is illustrated in Figure 1.
The ablation chamber is constructed so that the target can be placed in a fixed position on a translatory
precision stage, which is driven by a stepper motor to adjust the WD. As target material, gold and
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copper sheet metal (purity: 99.99 %) of 0.5 mm and 1 mm thickness are used, respectively. Furthermore,
Milli-Q ultra pure water is used as liquid. Continuous water flow through the ablation chamber at a
fixed flow rate of 50 mL/min is realized using plunger pump Ismatec RHP 100994.

ZedBoard Preamplifier

Laser

Ablation chamberSpindleStepper motor
A

B

AE sensor

Target

© SRS, 2018

Working distance

*

*Output flow

Lamp

Detector

Cuvette

C

Figure 1. Illustration of the experimental setup: (A) Process plant; (B) Signal processing and control;
(C) UV/VIS measurement.

The AE related to the PLAL is recorded by a piezoelectric element, which is permanently mounted
on the back side of the ablation chamber. A preamplifier is used for signal conditioning before the
AE signal is digitized and processed on the ZedBoard (Figure 1). Here, control input of the stepper
motor is calculated based on the AE measurements. Additionally, as a reference UV/VIS spectroscopy
is used to monitor the nanoparticle concentration in the liquid by conducting the output flow of the
ablation chamber through a cuvette (1 cm path length). According to Rehbock et al. [26], extinction in
the UV/VIS spectrum at a wavelength of 380 nm is proportional to the nanoparticle concentration.
A detailed summary of the equipment used during the experiments is provided in Table 1.

Table 1. Equipment of PLAL test rig.

Equipment Specification

Laser: Rofin Sinar RS-Marker 100D

Wavelength: 1064 nm
Power: 32.5 W
Repetition rate: 5 kHz
Pulse duration: 40 ns
Scan speed: 600 mm/s

Plunger pump: Ismatec RHP 100994 Flow rate: 50 mL/min

UV/VIS
Lamp: Ocean Optics DH-Mini
Detector: Red-Tide USB 650

2.2. System Overview

Subsequently, the newly developed FPGA-based AE measurement and control system is
described. As a computational platform the ZedBoard (xc7z020clg484-1) is chosen. This is an
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evaluation and development kit for Xilinx Zynq-7000 System on Chip (SoC), which provides periphery
for interfacing with additional hardware and storage including USB, Ethernet, and a SD card slot.
The dimensions of the board layout are 160 mm × 160 mm. The maximum power consumption is
60 W. The SoC comprises two subsystems namely Processing System (PS) with Advanced Reduced
Instruction Set Computer Machine (ARM) Cortex-A9 dual-core processor and Programmable Logic
(PL) fabric running at clocks of 666 MHz and 100 MHz, respectively. Thus, this device allows efficient
implementation of monitoring and control algorithms by leveraging both advantages of FPGAs for
fast signal processing and flexibility of software programmable devices to implement higher level
sequence control and communication interfaces. For data acquisition, Analog Devices AD7961 is
used enabling AD conversion at a sampling rate of 5 MHz with a resolution of 16 bit. The chip is
mounted on an evaluation daughterboard and is connected to the device with the FPGA Mezzanine
Card (FMC) connector.

The overall system is illustrated in Figure 2. The PL is used to implement the DWT module,
which is used for real-time processing of the raw measurement data. The raw data and DWT coefficients
are stored temporarily in a FIFO queue and are transferred afterwards to the PS via Direct Memory
Access (DMA) using AXI4-Stream interface. Additionally, maximum, minimum, mean, and energy of
the DWT coefficients in each level are stored in the register bank, which is accessed via General Purpose
(GP) port. The PS runs a Linux operating system, which is used to implement general functionality
of the device. This includes loading drivers and enabling Ethernet at boot time, configuration of
the register bank, and control of the data acquisition (start/stop) and storage media. The data path
between the PL and PS is made by using High Performance Port (HPF) to achieve low latency and
an interrupt line is initialized from the DMA to the PS. After DMA transfer, the raw data and DWT
coefficients are read directly from RAM by the PS and stored either on the SD Card or in external
memory (e.g., USB drive) in binary format.
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Figure 2. Illustration of the measurement system architecture.

2.3. Implementation of DWT Module

The wavelet transform is a method for decomposition of non-stationary signals into joint
time-frequency domain using an orthogonal basis function, which is referred to as wavelet. In case
of the DWT, decomposition of a signal can be achieved by using multirate filter banks, which are
constructed from Finite Impulse Response (FIR) filters. Due to decimation of the input signal by
passing through each filter bank, the DWT provides a sparse representation of the input signal.
Nevertheless, DWT coefficients can yield a perfect reconstruction of the original input signal [27].
Furthermore, time complexity of the algorithm is O(n). Therefore, DWT is well suited for denoising,
data compression, and feature extraction in real-time applications.
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Different architectures for hardware implementation of the DWT algorithm are proposed
including pyramid and polyphase architectures [27]. Regarding sample-wise calculation of DWT
coefficients it has to be noted that to ensure suitable reconstruction of the original signal, equalization
of delays along all filter paths is required [28].

In Equation (1) the well known implementation of DWT is given as

yh[n] = ∑
k

x[n]h0[k] and

yg[n] = ∑
k

x[n]g0[k],
(1)

where yh[n] and yg[n] are the outputs of the high- and low-pass filter, respectively. The related filter
coefficients are denoted by h0[k] and g0[k]. To obtain the DWT coefficients yh[2n] and yg[2n], the outputs
are decimated by 2. For hardware efficient implementation of DWT, transformations including Noble
entities are required to minimize the arithmetic workload and redundancies. Subsequently, polyphase
realization using Quadrature Mirror Filter (QMF) pair as described in detail by Cunha et al. [29] is
adopted. The main advantage of this approach compared to the classic implementation is the reduction
of hardware resources required for synthesis of the algorithm (i.e., adders, multipliers, and number of
clock cycles) by a factor of two.

Implementation of 1-level DWT is illustrated in Figure 3. Here, x[n] denotes a discrete-time input
signal. By using QMF filter bank, the spectrum of x[n] is divided into two sub-bands. Here, H1[z2] and
H[z2] denote the high- and low-pass FIR filters, which are defined by a finite set of coefficients referred
to as taps. The number of taps is related to the filter order and the values are determined depending
on the related wavelet basis and scaling function. The DWT coefficients are computed sample-wise as
the corresponding output of the high- and low-pass filter as

yh[2n] = ∑
k/2

x[2n]h0[2k]− ∑
k/2

x[2n + 1]h0[2k + 1] and

yg[2n] = ∑
k/2

x[2n]h0[2k] + ∑
k/2

x[2n + 1]h0[2k + 1].
(2)

Here, yh[2n] and yg[2n] denote the details and approximation coefficients, respectively.
Furthermore, H(z2) and H1(z2) in frequency domain correspond to the time domain response h0[2k]
and h0[2k + 1] related to even and odd samples of x[n]. Multilevel DWT can be realized by cascading
multiple QMF filter banks. In this case, approximate coefficients are used as input to the subsequent
filter bank. The DWT module is implemented using FIR filter with 12 taps and 12-bit quantization
using DSP blocks available on the PL. The overall hardware utilization of single level DWT is shown
in Table 2. It is worth mentioning that using QMF, only 12 taps are required as compared to 24 taps
using the classic implementation.

x[n]

z−1

H1(z2)

H(z2)

yh

yg

−

Figure 3. Block diagram of quadrature mirror filter.
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Table 2. Hardware utilization of 1-level DWT module.

BRAM DSP48E1 LUT FF

116.5 (83.21 %) 12 (5.45 %) 7536 (14.17 %) 9274 (8.72 %)

3. Results

To demonstrate the capabilities of the newly developed system for AE measurements and signal
processing, experimental results of the application to PLAL are presented in this section. First,
correlation between the WD and productivity of PLAL is established. Finally, results of automatic WD
adjustment are presented.

3.1. Preliminary Investigation of AE Energy

During PLAL, ablation productivity strongly depends on the WD. To realize an automatic
adjustment of the WD, a correlation between the AE energy and the productivity of the ablation
is established in the sequel. To this end, in-situ UV/VIS spectroscopy and AE measurements were
conducted simultaneously at different WD in proximity of the optimal WD using gold targets.
Results of the AE measurements are compared to the nanoparticle concentration in the liquid as
a reference. During each AE measurement, data are acquired for a duration of 7 s with a sample rate of
4 MHz. Averaged results using a total of 16 individual measurements are reported.

In Figure 4a the frequency spectrum of the AE signal is shown for different WD. At frequencies
of 5 kHz and 10 kHz, AE energy peaks are evident. Furthermore, considering peak values of the
frequency spectra, dependence of AE intensity on the WD is clear. Maximum energy is obtained
for the working distance of 74 mm. In Figure 4b, comparison to in-situ UV/VIS measurements is
presented. The maximum concentration of nanoparticles in the liquid is also obtained at a WD of
74 mm. As already reported in [1], a correlation between AE energy and productivity of PLAL can be
observed. In difference to the work of Zhu et al. [1], a piezoelectric, mechanically coupled sensor is
used, which has higher frequency bandwidth compared to a microphone. However, strong scatter of
the AE energy values is evident as it can be seen in Figure 4. Thus, approximate coefficients of DWT
are used to reduce noise.

0

733.6
73.54.19

73.755.02
Frequency [kHz]

74

W
orking distance [m

m]6.25
74.258.29

74.512.31
74.7523.9

75

0.5

406.25

N
o
rm

a
liz

e
d
 e

n
e
rg

y
 [
a
.u

.]

1

(a)

73 73.5 74 74.5 75

Working distance [mm]

0.2

0.4

0.6

0.8

1

1.2

N
o
rm

a
liz

e
d
 A

E
 e

n
e
rg

y
 [
a
.u

.]

0.2

0.4

0.6

0.8

1

1.2

N
o
rm

a
liz

e
d
 p

e
a
k
 a

re
a
 [
a
.u

.]

AE energy

UV/VIS peak area

(b)

Figure 4. Results for PLAL at different working distances. (a) Frequency spectra of AE during ablation
(average of 16 measurements); (b) Comparison of AE and UV/VIS.

3.2. Automatic Adjustment of Working Distance

During PLAL, maximum productivity is achieved if the WD is adjusted so that the target surface
is placed close to the focal point of the laser. However, the exact position leading to the best possible
productivity is not known [15]. Furthermore, the corresponding spindle position is subject to variability,
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which is related to the mounting of the ablation chamber on the translatory stage and the placement
of the target in the ablation chamber. Therefore, tuning of the optimal WD is difficult and time
consuming so that due to the physical nature of the process, PLAL is frequently performed at possibly
suboptimal WD.

To find and maintain a suitable WD, an iterative search algorithm for automatic positioning of
the ablation chamber, which uses AE energy as objective, is realized. Here, a gradient-based search
heuristic, which does not require a mathematical model, is used. The raw measurement data is
processed by the DWT module in real-time using the PL core. The search algorithm is implemented on
the PS running within the Linux OS. To reduce noise, AE energy is obtained from the approximate
coefficients of the DWT. As it is shown in the previous section, the AE energy is a convex function of
the position so the optimal WD is expected at the maximum AE energy. Within each step, the position
is changed in search direction with a fixed step size and measurement of the related AE is conducted.
However, due to scatter of the AE energy, direct calculation of the gradient from two consecutive
measurements is not feasible. Therefore, AE energy obtained at each step is stored in a buffer of fixed
size holding the past N values. The gradient is estimated by an averaging procedure. Additionally,
after each change of the search direction, a minimum number of measurements must be acquired.
Moving towards the desired position, a positive gradient of the AE energy is obtained. If the estimated
gradient is negative, the search direction is reversed. Parameters of the search algorithm such as step
size and the buffer size can be determined empirically.

Subsequently, experimental results of the automatic positioning algorithm on the PLAL test rig are
presented. Each experiment was run for approximately 30 min. Different parameters for step size and
buffer size were tested. During each iteration, full AE waveform data are acquired for 1.5 s at a sample
rate of 5 MHz. The real-time DWT module is used to filter the AE signal. After 30 min, the automatic
positioning was stopped to verify the determined position by manual tuning. Because the WD is
dependent on the mounting of the ablation chamber on the translational stage and the placement of
the target, WD can not be determined accurately and hence spindle position is reported, which is
directly related to the WD.

Results of two independent runs are presented in Figures 5 and 6. Here, AE energy and UV/VIS
measurements are in good agreement. Furthermore, the related spindle position is shown. The initial
position was 10.5 mm in both cases. In the beginning of the experiment, the spindle position is adjusted
towards the optimal WD by the algorithm. At the same time, the rise in AE energy and UV/VIS
measurements indicates increased productivity. After 10 min, the spindle position settles in a range
between 8.5 mm and 9 mm. After a period of constant productivity, decay of the AE energy is observed
while the optimal WD does not change.
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4. Summary and Conclusions

Regarding SHM, AE analysis is frequently used for highly sensitive in-situ inspection. Promising
results have been reported in different applications such as process monitoring and control, where AE
is suggested as highly sensitive in-situ measurement technique. However, most of the analyses are
carried out offline due to the complexity of signal processing algorithms (e.g., feature extraction and
classification). To provide timely statements regarding the current system state or to realize related
control actions, online processing of AE is required. In this work, a suitable low-cost solution is
suggested. Therefore, a hardware architecture is proposed, which is particularly suited for embedded
implementations due to its small form factor and low power consumption. At the example of PLAL
nanoparticle production, it is shown that full waveform data from the AE sensor can be acquired
and processed at a sample rate of 5 MHz. Also, joint time-frequency domain representation of the
measurement signal is available in real-time using FPGA-based implementation of DWT, which is used
to reduce noise. Alternatively, DWT coefficients can also be used as features in a classification scheme
to be implemented for AE measurements. A sample rate of 5 MHz is achieved at 16 bit resolution.
Finally, an application to process control is demonstrated. Results of the AE measurements are used
to calculate the control input for guidance of the PLAL process in a timely manner. This implies an
important contribution towards implementation of AE-based SHM systems.

As a proof-of-concept, automatic adjustment of the Working Distance (WD) during PLAL for
nanoparticle production is used. In the field of PLAL, the adjustment of a suitable WD is important
but difficult and time consuming. Therefore, in-situ measurement techniques are necessary to assess
the productivity and to implement automatic adjustment of the WD. Typically, UV/VIS spectroscopy
is used to determine the concentration of nanoparticles in liquids. However, this technique can not be
applied in general due to the dependence of the signal on the material, the particle size, and the particle
shape. In addition, online UV/VIS spectroscopy is limited to a small concentration range. The use
of AE measurements is a new approach to in-situ characterization of PLAL productivity. Generally,
a good correlation between UV/VIS and AE energy is observed using copper and gold targets. It can
be concluded that AE measurements provide a suitable means to assess the productivity of PLAL.

However, compared to UV/VIS measurements, large scatter of the AE energy is observed,
which makes automatic positioning difficult. This is possibly related to the nonstationary character
of the process, which until now is not perfectly understood. Possible explanations are absorption
and scattering of the laser energy by cavitation bubbles and evaporated liquid inside of the ablation
chamber as well as effects related to pulsating liquid flow (plunger pump) and the scan pattern. Also,
at a given WD the productivity of PLAL in a flow setup is expected to be constant due to the continuous
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removal of the nanoparticles from the ablation zone. The decay of UV/VIS and AE energy (and thus
productivity), which is observed during the experiments, could be attributed to changed process
dynamics due to thermal effects i.e., heating of the target and the ablation chamber. The experimental
results show that using AE measurements, close to optimal WD with an accuracy between 0.25 mm
and 0.75 mm can be achieved by applying a typical search algorithm.
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