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Abstract 
 

The Alzheimer’s Disease Sequencing Project (ADSP) is a national initiative to understand the 

genetic architecture of Alzheimer’s Disease and Related Dementias (AD/ADRD) by sequencing 

whole genomes of affected participants and age-matched cognitive controls from diverse 

populations. The Genome Center for Alzheimer’s Disease (GCAD) processed whole-genome 

sequencing data from 36,361 ADSP participants, including 35,014 genetically unique 

participants of which 45% are from non-European ancestry, across 17 cohorts in 14 countries in 

this fourth release (R4). This sequencing effort identified 387 million bi-allelic variants, 42 

million short insertions/deletions, and 2.2 million structural variants. Annotations and quality 

control data are available for all variants and samples. Additionally, detailed phenotypes from 

15,927 participants across 10 domains are also provided. A linkage disequilibrium panel was 

created using unrelated AD cases and controls. Researchers can access and analyze the genetic 

data via NIAGADS Data Sharing Service, the VariXam tool, or NIAGADS GenomicsDB. 

 

Introduction  
 

Alzheimer's disease (AD) is a neurodegenerative condition characterized by the abnormal 

buildup of amyloid-β peptides in extracellular plaques and hyperphosphorylated tau in 

intracellular neurofibrillary tangles. This progressive neurodegeneration results in a gradual 

decline in cognitive and functional abilities. Genetic variants play a significant role in the 

development of late-onset AD (LOAD). The first notable finding in 1993 reported the ε4 allele of 

the apolipoprotein E (APOE) gene was associated with the risk of developing AD [1].  The 

identification of additional genetic factors for LOAD accelerated with the advent of high-

throughput genomic technologies, such as genotype arrays, in the late 2000s [2, 3]. Since then, 

the list of genetic factors continues to expand with the inclusion of bigger samples sizes through 

international consortium efforts, notably between the Alzheimer's Disease Genetics 

Consortium (ADGC) and International Genomics of Alzheimer’s Project (IGAP) [4-6]. However, 

most of these identified genetic variants are common alleles with individually small causal 

effects on disease susceptibility as the studies focused on genotype array data. These variants 

contribute minimally to the overall genetic liability for the disease, as a study showed that the 

single nucleotide polymorphism (SNP)-heritability estimate from the largest AD genome-wide 

association studies (GWAS) to date is 3.1% [7], which is significantly smaller than the heritability 

estimates for AD obtained from twin studies, which ranges from 60 to 80% [8, 9].  

 

Whole-genome sequencing (WGS) can address this missing heritability challenge by 1) providing 

a more comprehensive view of the genetic architecture via a full-spectrum of variants, and 2) 

identifying rare variants with potentially larger phenotypic effects. Analyzing many samples is 

necessary to address the above gaps. WGS studies are more costly compared to genotyping 

array, and as a result fewer participants of non-European descent have been sequenced [10]. 

Expanding AD research to ancestrally diverse populations is crucial for several reasons.  

Most genetic studies of Alzheimer’s disease (AD) have focused on non-Hispanic White (NHW) 

populations. However, genetic risk factors identified in NHW populations may not fully explain 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 6, 2024. ; https://doi.org/10.1101/2024.12.03.24317000doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.03.24317000
http://creativecommons.org/licenses/by-nd/4.0/


the observed ethnic disparities in AD. For instance, while APOE ε4 is a significant predictor of 

late-onset AD in NHW individuals, its predictive power is weaker and more inconsistent in 

African American (AA) and Hispanic or Latino (HL) populations [11-13]. Investigating how 

genetic risk factors for AD vary among ethnic groups could pave the way for more effective, 

tailored treatments and interventions. Notably, certain genetic variants—such as those in 

SORL1, ABCA7, and ACE—exhibit stronger associations with AD risk in specific groups, including 

Asians [14], AA [15], and Israeli-Arabs [16]. These findings suggest that gene therapies targeting 

these genes may have varying levels of effectiveness across different ethnicities. 

 

Funded through cooperative agreements and research grants, the Alzheimer’s Disease 

Sequencing Project (ADSP) brings together 497 investigators from institutions worldwide. In 

2023, it successfully completed the "Follow-Up Study (FUS) Phase" (the third phase of ADSP), 

sequencing existing cohorts of AA and pan-Hispanic ancestry at The American Genome Center 

at the Uniformed Services University of the Health Sciences (USUHS) and John P. Hussman 

Institute for Human Genomics (HIHG). This effort was conducted in collaboration with 

established NIH-funded AD infrastructure like the National Cell Repository for Alzheimer’s 

Disease (NCRAD), National Institute on Aging Genetics of Alzheimer’s Disease Data Storage Site 

(NIAGADS), and the Genome Center for Alzheimer’s Disease (GCAD). Additionally, participants 

from NHW and Asian ancestries have been sequenced. All genomes, including those from 

previous ADSP phases and other collaborative projects, have been processed using a unified 

pipeline, subjected to comprehensive quality control, and annotated using various resources. 

This collection, the Release 4 (R4) of ADSP data, forms the world’s largest publicly available AD 

genome resource. 

 

Results 
 

Sequence existing ancestrally diverse cohorts via the ADSP Follow-Up Study (ADSP-FUS)  

 

The ADSP-FUS is a National Institute on Aging (NIA) initiative focused on identifying genetic risk 

and protective variants for AD by expanding the ADSP cohorts beyond primarily participants 

with NHW. Given limitations in population diversity in the ADSP, the ADSP-FUS was designed to 

sequence existing ancestrally diverse and unique cohorts. ADSP-FUS 2.0 (The Diverse 

Population Initiative) focuses on HL, non-Hispanic Black with African Ancestry, and Asian 

populations (e.g., the Asian cohort for Alzheimer’s disease). ADSP-FUS intends to sequence over 

100,000 participants from diverse ancestries (Methods - Sequence existing ancestrally diverse 

cohorts via the ADSP Follow-Up Study (FUS)). ADSP has developed a workflow (Supplementary 

Figure 1) to support biospecimens processing, DNA preparation, and sequencing at USUHS and 

HIHG.  
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Sample characteristics 

 

20,771 WGS data (8,159 new) from the ADSP-FUS phases are included in the ADSP Release 4 

(R4) dataset, bringing the total number to 36,361 across 17 cohorts/studies in 14 countries 

(Figure 1A). Sequencing was carried out at ten sequencing centers using Illumina technology. 

Most were generated using the PCR-free protocol (91%) and 150bp in read length (94%). Three 

sequencing platforms were used: Illumina 2000/2500 (7%), HiSeqX (35%), or NovaSeq (58%) 

machines. Supplementary Table S1 provides more details on sequencing configurations. GCAD 

processed all 36,361 WGS samples from read mapping to variant calling using a standard 

pipeline (VCPA1.1) to harmonize all data and minimize batch effects [17] (Methods - Dataflow 

and Sample processing protocol on SNVs and indels). 

 

Of these 36,361 samples, 35,014 participants are genetically unique. Based on ethnicity 

reported by cohorts, there are 5,260 AA, 78 American Indian or Alaskan Native (AIorAN), 2,787 

Asian, 10,972 Hispanics, 9 Native Hawaiian or Pacific Islander (NHoPI), 13,969 NHW 

participants, and 1,896 participants were of unknown ethnicity. A breakdown of demographic 

information is summarized in Figure 1A and Supplementary Table S2. 

 

We inferred the genetic ancestry of each individual using called genetic data to investigate the 

discordance between the reported and genetically inferred ancestries. Most discordance 

reported were in admixed participants [18], presenting additional challenges in identifying 

ancestry-specific variants. We used GRAF-pop [19] (Methods - GRAF-POP), which assumes that 

each individual is an admixture of three ancestral groups: European (e), African (f), and Asian 

(a). GRAF-pop estimates ancestry components Pe, Pf, and Pa, which are then used to assign 

participants to population groups, including European, African/African American, Latin 

American, Asian-Pacific Islander, and East/South Asian. Using the software’s default settings, 

the match rates between reported and genetically inferred ancestries were 99.4% for 

European, 98.3% for African American, 96.8% for Asian, and 80.0% for Hispanic participants 

(Figures 1B and 1C). 
 

We also performed principal component analysis (PCA) based on genotypes derived from WGS 

(Methods – Population substructure). We selected common variants (MAF>0.02) of high 

quality and performed linkage disequilibrium (LD) pruning to yield 146,964 variants, then 

calculated principal components (PCs) and genetic relationship matrix (GRM). We then 

performed the ancestry inference analysis using 145,278 variants common in both the ADSP R4 

and gnomAD data [20], a publicly available population genetics resource generated on 76,215 

diverse samples. Subjects were assigned to an ancestry group in which it has the highest 

ancestry proportion value. The match rates between reported and genetically inferred 

ancestries by this method were 88.3% for Non-Finnish European and 8.7% for Ashkenazi Jewish, 

98.7% for AA, 99.7% for Asian, and among Hispanic participants, 45.5% for Latino, 15% for AA 
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and 37.8% for remaining. The remaining subjects are most likely from Caribbean region (Figures 

1B and 1D). 

 

WGS sample quality assessment  

 

We performed QC checks on all samples and 734 samples with quality issues (Method – ADSP 

Sample level QC protocol) and reassessed the quality of the callset (N=36,361). The mean read 

depth across samples is 40.4x with 99% of samples having a coverage >30x (Figure 2A). The per 

genome percentage of bases with the quality score greater than Q30 (sequencing error rate 

less than 0.1%) is 90.18±2.43%. On average, 98.92±2.13% reads of samples are mapped, and 

94.14±2.76% of paired-end reads have both ends mapped. 

 

On average, each sample contained 4.3 million single nucleotide variants (SNVs) and 999,000 

short insertions and deletions (indels). AA samples have the highest number of variants (4.9 

million) followed by Hispanic samples (4.3 million), Asian samples (4.2 million), and NHW 

samples (4.1 million) (Figures 2B, Supplementary Figure 2a). 

 

We assessed if the number of called variants were affected by sequencing configurations such 

as sequencing platform and use of PCR. We found that samples (regardless of ethnicities) 

sequenced by the PCRFree protocol tend to yield more variants, with the combination of 

NovaSeq + PCRFree returning the highest (Supplementary Figure 2b,2c). 

  
Bi-allelic variants (SNVs and indels) in ADSP R4  

 

We called genotypes for all observed variants across all 36,361 samples and split the joint-

called results into two VCF file sets. One VCF was generated using GATK4.1.1 on all SNVs and 

short indels. We identified 322,757,476 bi-allelic SNVs and 24,005,724 bi-allelic indels on 

autosomes, comprising 83% of the original GATK output, which will be the focus of this article. 

R4 data also contains 54,425,255 multi-allelic SNVs and indels on autosomes. A variant passes 

QC if it has a GATK “FILTER” = PASS or is in tranche >= 99.8%, DP>10 and GQ>20, call 

Rate>=80%, and is supported by <500 reads (Method - ADSP Variant QC protocol). Average call 

rate of the variants is high (97.0%). Details for other quality of the variants can be found in 

Supplementary Table S3. 

The ADSP quality control (QC) protocol flagged 92.94% of autosomal variants, 299,620,924 

SNVs and 22,674,845 indels, as high quality. Of the four major ethnicities, AA (N=5,260), Asian 

(N=2,787), Hispanic (N=10,972), and NHW (N=13,969), there are 101,227,106 (94,371,761 SNVs 

and 6,855,642 indels) for AA, 69,338,361 (64,882,876 SNVs and 4,455,485 indels) for Asian, 

132,424,746 (123,631,863 SNVs and 8,792,883 indels) for Hispanic, and 135,672,855 

(126,113,083 SNVs and 9,559,772 indels) for NHW (Table 1, top) respectively. 
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Regarding allele frequency (AF), 52.53% of variants are singletons, followed by 40.62% rare 

variants with AF < 0.1%, 3.72% with AF 0.1-1%, 1.29% with AF 1-5%, and 1.84% with AF > 5%. 

The distribution of variants across AF ranges is consistent across ethnicities, with singletons 

comprising close to or more than 50% of the variants. AA, Asian, and Hispanic groups (13.16%, 

11.61%, and 7.53%, respectively) have a higher proportion of variants with AF > 1% compared 

to the overall dataset and the NHW group (5.74% and 3.13%, respectively) (Table 1, top). 

In terms of ethnic specific variants, there are 43,607,568 (40,417,070 SNVs and 3,190,498 

indels), 41,397,885 (38,544,025 SNVs and 2,853,860 indels), 65,941,432 (61,362,910 SNVs and 

4,578,522 indels), 80,641,315 (7,4475,786 SNVs and 6,165,529 indels) variants for AA, Asian, 

Hispanic, and NHW. Most of the ancestral specific variants are rare variants (AF < 0.1%, 

Supplementary Table S4) (Table 1, bottom). 

We compared the ADSP R4 bi-allelic variants to gnomAD [21] (Method – Comparison of 

gnomAD). Of the ADSP R4 variants, 62.39% of SNVs and 57.33% of indels are reported in 

gnomAD. In terms of allele frequencies, 99.89% of variants with AF > 5%, 99.80% with 1% < AF ≤ 

5%, 99.74% with 0.1% < AF ≤ 1%, 82.76% with AF ≤ 0.1%, and 41.08% of singletons are present 

in the gnomAD database.   

 

Annotation of genetic variants  

 

The official ADSP annotation pipeline [22] was used to annotate all 347 million variants (SNVs 

and indels) (Methods – Variant annotation protocol, Figure 3A). Functional impact of variants 

was accessed using snpEff [23] (Methods – LOF analyses). We identified 224,594 high-impact 

loss-of-function variants: frameshift (39%), stop gained (27%), splice donor (16%), splice 

acceptor (12%), start lost (4%), and stop lost (2%) across 22,710 genes (Figure 3B). Among 

these, 1,295 genes were found to be intolerant to protein-truncating loss-of-function variants, 

indicated by a Loss Intolerance Probability (pLI) score of 1, suggesting the critical importance of 

these genes. We also provide annotation for all bi-allelic variants using FAVOR (Methods – 

FAVOR annotation protocol). 27.45 million variants of such are with CADD (phred score) of 20 

or above, with over 63.64 million variants lying in super-enhancer regions.  

 

Structural variants in ADSP R4 samples 

 

We applied the same protocol developed for the ADSP R3 dataset [24] to the R4 dataset 

(Methods – Structural variant calling protocol). Individual Manta and Smoove callsets were 

initially merged for each sample, and then all samples were combined using SVIMMER (v0.1). 

GraphTyper (v2.7) was subsequently applied to the merged VCF for structural variant (SV) 

joint genotyping. Notably, only SVs larger than 10 Mbp were filtered. The final callset consists 

of a total of 6,796,267 SVs, including 4,101,354 deletions, 726,560 duplications, 558,860 

insertions, and 1,409,493 inversions. Since an SV can be associated with multiple joint 

genotyping models, such as AGGREGATED, BREAKPOINT, BREAKPOINT1, BREAKPOINT2, and 

COVERAGE in GraphTyper2, some SVs appeared multiple times in the R4 SV VCF. After 
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consolidating these models, the total number of unique SVs was reduced to 2,208,044, 

comprising 1,367,118 deletions, 184,367 duplications, 186,290 insertions, and 470,269 

inversions. 

 

On average, 15,640 high-quality SVs were identified per sample, including 7,813 deletions, 

1,574 duplications, 6,246 insertions, and 7 inversions. Similar to the patterns observed with 

SNVs and indels, AA samples exhibited a higher number of SVs compared to other groups 

(Figure 4). 
 

LD reference panel from ADSP R4 data  

 

Starting with the ADSP Integrated Phenotypes list which includes 32,236 samples (5,096 AA, 

2,777 Asian, 10,438 Hispanic, 12,692 NHW, and 1,233 others), we constructed panels for AA, 

Asian, Hispanic, and NHW separately. The panels were built using both SNVs and indels. The 

number of variants included in each panel was as follows: 46,462,895 variants (43,494,096 

SNVs and 2,968,799 indels) for AA, 25,779,737 variants (24,235,526 SNVs and 1,544,211 indels) 

for Asians, 57,683,258 variants (54,000,742 SNVs and 3,682,516 indels) for Hispanics, and 

44,629,226 variants (41,794,882 SNVs and 2,834,344 indels) for NHW. 

 

We performed emeraLD [25] with the following parameters, --mac > 5, --threshold 0.2, and --

window 5000000. Each segment was analyzed by 5Mb window with a 3Mb overlapping, then 

we concatenated all segments, removing duplicate records. As a result, we identified 

3,153,513,864, 1,795,829,862, 4,990,587,680, and 3,205,008,552 pairs of variants for the AA, 

Asian, Hispanic, and NHW, respectively. Among these, the proportion of pairs with R
2
 > 0.8 was 

6.3% for AA, 11.0% for Asians, 5.7% for Hispanics, and 9.2% for NHW. For R
2
 > 0.2, the 

proportions were 33.5%, 45.4%, 32.4%, and 40.9%, respectively. 

 
Harmonized phenotypic data for 28,000+ participants with WGS  
 

The ADSP Phenotype Harmonization Consortium (ADSP-PHC) was established to unify detailed 

endophenotype data from various cohort studies. The group collaborates with ADSP to ensure 

high-quality phenotype harmonization across multiple domains, and document data availability 

and harmonization processes. Currently, available phenotypes from the ADSP-PHC include 

autopsy measures of neuropathology, fluid biomarkers of AD neuropathology, positron 

emission tomography measures of amyloid and tau pathology, structural brain imaging using 

magnetic resonance imaging, diffusion tensor imaging, longitudinal measures of cognition, and 

cardiovascular risk factor data. Harmonization methods are detailed in the Methods - ADSP 

Phenotype Harmonization Consortium (ADSP-PHC) section.  

 

In order to ensure the highest quality harmonization is conducted, the ADSP-PHC harmonizes all 

available phenotypic data, regardless of sequencing status, which the research community can 

access directly from each cohort. ADSP-PHC deliverables are then subset to participants with 

available sequencing data. To increase the value and usage of the ADSP dataset, the ADSP-PHC 

has selected >9k phenotypes across 10 domains, expanding on the three domains released 
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previously (NIAGADS ng00067.v9). Figure 5 summarizes the harmonized data availability for 

more than 15,927 participants with whole genome sequencing and harmonized phenotypic 

data in NIAGADS. A data availability and explorer tool are available online via 

https://vmacdata.org/adsp-phc.  

 

Summary of data files shared in this collection 

 

All the described R4 data have been released in NIAGADS Data Sharing Service (DSS, 

https://dss.niagads.org/). These include individual level CRAMs, gVCFs, and SV VCFs, as well as 

aggregated files including the joint-genotyped VCFs from 35,014 unique individuals. We offer 

alternative solutions for users who may not require VCFs with detailed information for their 

analyses. These options include genotype information, full quality metrics, or ADSP QC details, 

and are organized by bi-allelic and multi-allelic variants. Additionally, some of these files are 

available in the CoreArray Genomic Data Structure (GDS) [26], an alternative format to VCF 

designed specifically for R users. Besides we provided sequencing methods, quality data 

metrics, variant metrics, phenotypes and readmes along with these data files. Annotation and 

LD reference panel files are available in open access. We summarize these files by features and 

file size in Table 2.  

 

Browser of variants and annotations of diversified samples 

 

To allow users to explore the ADSP R4 genotypes without downloading the data, we provide 

users with two different visualization options. First, VariXam (https://varixam.niagads.org/) 

allows users to check the alleles and QC quality of any genetic variants in any callsets (this 

release R4 and earlier ADSP releases) (Figure 6A). Users can query by the SNV/gene (IDs or 

genomic coordinates) level or view all variants in a particular genomic region (Methods – 

VariXam).  

 

Second, the NIAGADS Alzheimer’s GenomicsDB [27] (https://www.niagads.org/genomics) 

allows users to explore the variants and annotations in a broader genomic context (Methods - 

NIAGADS Alzheimer’s GenomicsDB).  It provides detailed reports of genetic associations from 

NIAGADS hosted GWAS summary statistic datasets in the context of genes and annotated 

variant records.  ADSP R4 variants are flagged, and can be filtered by the most severe 

consequence predicted by the ADSP annotation pipeline [22]. Besides, variant reports also 

include the full ADSP annotation results (all predicted consequences, CADD [28] 

deleteriousness, loss of function [29], and FAVOR annotations [29]), allele frequencies 

(including, gnomAD [20], 1000Genomes [30]), and links out to related web-resources.  The 

GenomicsDB genome browser provides an ADSP R4 variant track that can be recolored based 

on annotations (e.g., coding vs non-coding variants, consequence type). This track can be 

compared against the summary statistic data or other tracks in GenomicsDB (Figure 6B).  
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Discussion  
 

The R4 WGS dataset is the largest and most diverse whole genome data collection for 

Alzheimer’s disease to date.  Numerous studies utilizing the ADSP WGS data in a smaller scale 

(previous R3 release, 46% of the current sample size, less diversified) have led to multiple 

findings in AD genetics [31-48], including but not limited to the discovery of 1) new AD genes 

PLEC, UTRN, TP53, and POLD1 [33] using a novel approach, GeneEMBED, designed for studying 

gene interactions; DLG2 and DTNB via rvGWAS on family datasets [31]; 2) rare genetic variants 

contributing to AD risk [32]; 3) sex-specific loci identified in family-based designs [36]; 4) novel 

AD risk loci on 13q33.3 via admixture mapping analyses in the Caribbean Hispanic populations 

[44]; and (5) novel AD associations in Ashkenazi Jews with variants that are exceedingly rare or 

absent in other European ancestry populations [49]. The ADSP WGS data has also enable the 

further study of APOE in different ancestries [37, 38, 41, 46, 47] and identification of 

associations of AD risk in multiple population groups with human viruses detected among 

unmapped reads in the WGS data [50]. Finally, these data have led to new insights in Early-

onset Alzheimer's (EOAD) [39], enabled the detection of nuclear and mitochondrial copy 

number variations and structural variants and their association with LOAD [34, 40, 51], as well 

as the generation of ancestry-specific polygenic risk score in the Amish population [35] and the 

development of a pipeline for calling mitochondrial sequence variants and haplogroups [52].  

 

We faced several challenges in this project. First, samples are recruited from independent 

cohorts/projects of various study designs and sequencing experiments are funded during the 

past 10 years, and challenges rise for GCAD to process and cumulatively integrate all genomic 

data. Unlike AllofUS [53]UKBiobank [54] the ADSP program has to address the issue of 

heterogeneity in recruitment criteria, phenotype data collection protocols, and sequencing 

platform and configuration changes as sequencing technology and analysis best practices 

continue to evolve. Subtle batch effects may persist in our datasets even after we process all 

sequence data and perform thorough quality checks during the data harmonization process at 

sample, variant and phenotype levels. 

 

Second, compared to previous releases (R1 and R3 for genomes), this ADSP R4 dataset more 

than doubled the sample size (35,014 vs 16,285) with the biggest growth in the HL group 

(Supplementary Figure 3), yet the Asian population is still significantly underrepresented. These 

gaps must be addressed if we are to fully understand the distribution and effect of human 

genetic variation in AD. Power analyses show we still need 18,500 cases and 18,500 controls 

per ancestry group to gain enough power for detecting variants with MAF of 0.005.   

 

In conclusion, we have shown that the ADSP R4 resource offers researchers in the 

neurodegenerative field multiple tools to explore and analyze the genetic variations associated 

with these diseases. We anticipate that this data will significantly influence nearly all ongoing 

studies on common and rare variants in Alzheimer’s disease (AD), with an even greater impact 

as additional samples from diverse populations become available. Moving forward, we plan to 

provide annotations for the identified structural variants (SVs) further empowering researchers 
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who depend on such resources to conduct fine-mapping and other post-genome-wide genetic 

analyses. 

 

The ADSP program needs to share data in a manner that supports the privacy and consent 

preferences of participants. Members of the scientific community can access most ADSP 

resources (individual level sequence files, phenotype data, VCFs) through the NIAGADS DSS 

platform (dbGAP-like). Some companion data (e.g. annotation LD reference panel) are open 

access, while VariXam variant server and NIAGADS genomicsDB provide a preview of the data 

without any restrictions.  

 

The ADSP R4 dataset of over 347 million variants is available to qualified investigators at 

https://dss.niagads.org/datasets/ng00067/.  

 

 

Methods 
 

Sequence existing ancestrally diverse cohorts via the ADSP Follow-Up Study (FUS)  

The ADSP-FUS is a NIA initiative focused on identifying genetic risk and protective variants for 

Alzheimer Disease (AD) by expanding the ADSP cohorts beyond primarily participants with non-

Hispanic Whites of European Ancestry (NHW). Given the lack of ancestral diversity in the ADSP, 

the ADSP-FUS was designed to sequence existing ancestrally diverse and unique cohorts. The 

current phase for ADSP-FUS, ADSP- FUS 2.0: The Diverse Population Initiative, focuses on 

Hispanic/Latino (HL), non-Hispanic Black with African Ancestry (NHB-AA), and Asian populations 

(e.g., the Asian cohort for Alzheimer’s disease). The ADSP-FUS initiatives intend to sequence 

over 100,000 participants from diverse ancestries. See Supplementary method on cohort 

descriptions. Workflows within the FUS infrastructure (Supplementary Figure 1) include 

biospecimens being processed and DNA prepared and allocated for WGS at USUHS and HIHG. 

All raw sequence data is transferred to the GCAD for processing and harmonization following 

quality control (QC) analysis at the University of Pennsylvania and University of Miami, resulting 

in analysis-ready genotype and sequence data. All clinical, genotype and sequence data are 

housed at the NIAGADS, which stores, manages, and distributes ASDP-FUS data to AD 

researchers. 

 

Dataflow and Sample processing protocol on SNVs and indels  

The data flow from receiving data to data sharing is shown in Supplementary Figure 4. 

NIAGADS receives genomes in FASTQ, BAM, or CRAM formats from national or international 

investigators through secure FTP or S3 bucket. NIAGADS also received the ID information to 

generate a unique ADSP ID, companion array data for checking concordance, ADSP minimal 

phenotypes, Institutional Certification forms, and cohort and study information for these 

genomes. Once the unique ADSP IDs are received and generated by NIAGADS, GCAD can begin 

production on the genomes.   
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All genomes are processed using the VCPA pipeline [17] (https://bitbucket.org/NIAGADS/vcpa-

pipeline/src/master/), a pipeline optimized for the large-scale production of WGS in an Amazon 

cloud environment and includes all steps from aligning raw sequence reads to variant calling 

using GATK best practices. Depending on the file type received, the first few steps of the 

pipeline are slightly different:  

 

1) CRAM as input: decompression to BAMs is required before running the pipeline as if the 

input is in BAM format 

2) BAM as input: roll back to uBAM (i.e. FASTQ) format before running the pipeline as if the 

input is in FASTQ format 

3) FASTQ as input: no special steps 

 

Using VCPA, FASTQs were first mapped/remapped to hg38 reference genome using BWA-mem 

(v0.7.15). Duplicated reads were then marked using BamUtil (v1.0.13). Base-recalibration and 

indel-realignment were done by GATK (v4.1.1) and a CRAM that contains all above information 

was stored. Genotype calling was then done by GATK4.1.1, resulting in one gVCF across all 

chromosomes (1-22, X, Y, and M). 

 

Joint genotyping SNVs and indels – we followed the steps in GATK best practices (version 

GATK4.1.1) to create a joint genotyped called VCFs using gVCFs generated in step 2. VQSR 

model was performed all chromosomes (1-22, X, Y, and M). This is the “Preview VCF”. 

 

GRAF-POP 

GRAF-pop offers a novel method for global ancestry inference [19], distinguishing itself from 

traditional approaches that require genotypes from reference populations or study participants 

to determine an individual's ancestry. Instead, GRAF-pop precomputes allele frequencies for 

selected SNPs across reference populations and infers ancestry by directly comparing the test 

genotypes to these predefined frequencies, eliminating the need for other individual 

genotypes. 

 

Population substructure  

We included bi-allelic variants that have 1) passed ADSP QC, i.e. with VFLAG=0), 2) Allelic Read 

Ratio >0.3 or <0.7, 3) MAF>0.02, 4) call rate >99.5% and with hardy-Weinberger test P value 

larger than 0.0005. Then we applied LD pruning with R
2
 cutoff at 0.05, window size of 500K bp. 

Across all chromosomes, 146,964 pruned variants remained for principal components 

(PCs)/genetic relationship matrix (GRM) calculations. We used R package "GENESIS" (2.20.1) 

[55] along with GWASTools(1.36.0) [56] and SNPRelate(1.24.0) [26, 57]  to calculate the PCs and 

GRM. 5513 out of 36361 subjects were grouped as related at default threshold. Note, the 

threshold value on kinobj used for declaring each pair of participants as related or unrelated. 

The default value is 2^(-11/2) ~ 0.022, corresponding to 4th degree relatives. 

 

gnomAD 4.0 genome sites data provided allele frequency at ancestry level, which can be used 

for ancestry inference. There are 10 ancestries in the data: African/African-American (afr), 

Amish (ami), Latino (amr), Ashkenazi Jewish (asj), East Asian (eas), Finnish (fin), Middle Eastern 
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(mid), Non-Finnish European (nfe), Remaining, South Asian (sas). 145,278 variants were 

matched between ADSP pruned file and gnomAD4.0 and passed to Software SCOPE 

(https://github.com/sriramlab/SCOPE.git) to perform the ancestry proportion analysis. Subject 

was assigned to ancestry group in which it has the highest ancestry proportion value.  

 

ADSP Sample level QC protocol  

Four checks were performed to identify potentially low-quality samples for exclusion from the 

VCFs: 1) SNV concordance check with available GWAS genotypes; 2) sex check for possible 

sample swaps or misreporting; 3) contamination check for possible sample swaps; and 4) 

relatedness check to confirm known relationships, identify unknown genetically identical 

duplicates, and assess potential cryptic relatedness. 

1) SNV concordance check - this was done by comparing genotypes taken from existing GWAS 

array data and genotypes from the preview pVCFs on all overlapping genotypes.  The goal of 

this analysis is to ensure that samples and IDs match throughout the data management and 

calling processes.    

First, GWAS datasets were converted into VCF format. Then GATK was used to compare the 

pVCF and GWAS file genotypes using the following parameters:   Java –jar 
GenomeAnalysisTK.jar –T GenotypeConcordance –R hg38.fa -eval [PVCF] -comp 

[GWAS_VCF] -o [OUTFILE] where [GWAS_VCF] is the VCF file converted from GWAS, 

[PVCF] is the Preview pVCF, and [OUTFILE] is the user-selected output filename. Of all 

samples kept, they all have a concordance of > 0.91.  

2) Sex checks were performed using BCFtools [58], VCFtools [59] and PLINK [60] with the 

following steps:  

a. Use bcftools to convert chromosome X pvcf into plink format  

b. Filter out chromosome X pseudo-autosomal region (PAR)  

c. Filter out SNVs with MAF<0.05, run ‘impute-sex’  

d. Run sex-check using PLINK for comparison  

Comparing the results of ‘impute-sex’ in BCFtools and ‘’--sex-check” in PLINK without 

filtering on minor allele frequencies (MAFs) or without excluding variants in the 

pseudoautosomal region (PAR), the findings of the two approaches are the same.  There are 

1,918 samples with F-statistic values between 0.2 and 0.8, but only 392 between 0.3 and 

0.7. A total of 74 samples were identified to be the incorrect sex.  The submitting centers 

agreed that these subjects needed to be dropped.   

3) Sample-specific contamination checking was performed by using VerifyBamID [61] to 

calculate the concordance estimate between the GWAS genotype data and the BAM file.  

This approach provides information that can be interpreted to identify potential sample 

contamination or swapping using the GWAS-BAM contamination estimate. The ‘FREEMIX’ 

modeling approach was used in this analysis.  We used suggested thresholds for 

contamination taken from the VerifyBamID website: a sample is potential contaminated if 

the FREEMIX value is >0.05.  The command line to generate FREEMIX contamination 

estimates value is as follows:  verifyBamID --vcf [INPUT.VCF] --bam [INPUT.BAM] --

out [OUTPUT.PREFIX] --verbose --ignoreRG where [INPUT.VCF] is the VCF file 

converted from GWAS, [INPUT.BAM] is the BAM file generated using VCPA1.1, and 

[OUTPUT.PREFIX] is the user-selected prefix to be appended to output files.  
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As implemented, DNA sample contamination is indicated if the FREEMIX value is >0.05. 

Across all samples, all FREEMIX values obtained are <0.05.  

4) Relatedness checks were performed using PLINK as described:  

a. Convert *vcf.gz files into PLINK binary format - Run PLINK “--recode" and “--make-bed” 

commands to convert ‘*.vcf.gz’ files into ‘*.bed’, ‘*.bim’, and ‘*.fam’ files  

b. Combine 22 chromosome-specific PLINK filesets into one genome-wide set and 

organize  

• Clean and rename empty name "." snvs to "chr_pos" format to combine  

• Run PLINK “--merge-list” and “--make-bed” commands to combine 22 binary files 

into one   

• Run PLINK “—extract" command to extract only overlapping ~21k SNVs  

c. Run PLINK to generate pairwise sample IBD values  

• Run PLINK “--genome" command on combined file with ~21k SNVs to get pairwise 

IBD values  

• Using these IBD values, identify related pairs with IBD PI_HAT > 0.4  

The PI_HAT measurement [Proportion IBD, i.e. P(IBD=2) + 0.5*P(IBD=1)] was reported 

for each pair of samples.  All pairs with PI_HAT > 0.4 were evaluated for known 

relatedness.  

 

There was a total of 1,205 genetically unique participants identified with multiple samples 

(including 5 pairs of twins) across the R4 dataset. This included 6 known replicates (sequenced a 

total of 67 times as technical replicates), and 1,199 unintentional replicates (1,173 pairs and 26 

triplicates). After removing the ADSP recommended duplicate samples, there were a total of 

35,023 genetically unique samples.  NOTE: there are 24 subjects from the 36k listed in both the 

family-based and case/control phenotype files. These samples were either sequenced 1) as part 

of a case/control study but were also part of a family so their phenotypes are provided in both 

files, or 2) in both a case/control and family-based study. ADSP recommends using samples 

from family-based sets.  

 

After performing sex check, GWAS concordance and contamination checks for each sample, 

together with the metrics we collected per sample in VCPA, we designed a list of criteria to 

drop or fail samples based on this sample level QC process (Supplementary Figure 5) –. A 

sample is dropped if a) its average genome coverage is lower than 20; or b) multiple of its non-

related sequencing metrics are of bad quality; or c) it fails contamination check, concordance 

check, or sex check; or 4) it is an unexpected duplicate. Alternatively, a sample is flagged if fails 

in less than 3 sequencing metrics.  

 

ADSP Variant QC protocol 

Different filtering and quality-checking strategies were applied at each level (genotype-, and 

variant-) [62]. The QC protocol was applied on the bi-allelic autosomal VCFs. All QC flags were 

applied uniformly across all samples, regardless of cohort or sequencing information. Variants 

of low quality have been flagged but these variants have not been excluded and filtered out of 

the datasets. 
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1) Genotype-level QC was applied to individual genotypes.  Each genotype was evaluated and 

set to missing (“./.”) if either or both read depth (“DP”) was less than 10 (DP<10) or 

genotype quality (“GQ”) score was less than 20 (GQ<20).  All these censored genotypes 

were excluded from subsequent QC steps, except for estimation of variant-level averaged 

depth (“AverageReadDepth”) in variant-level QC.  

2) Variant-level QC was applied to all variants.  Flags were applied in the following order: a) 

Variants in GATK low sequence quality tranches [variants without a FILTER value of “PASS” 

that are above the 99.8% VQSR Tranche]; b) Monomorphic variants were flagged; c) 

Variants with high missing rate were flagged; d) Variants with high read depth were flagged.   

3) Variants with excessive heterozygosity or departure from Hardy-Weinberg equilibrium 

(HWE) were evaluated within race/ethnic subgroup, however given the complexity around 

race/ethnic subgroups, these were not flagged though the measures have been made 

available and can be implemented as user-defined filters if desired. Similarly, (“ABhet”) was 

computed among uncensored heterozygotes at each variant and provided in the files but 

not applied in any filtering criteria. 

 

Comparison with gnomAD  

The gnomAD resource (version 4) were download from 

https://gnomad.broadinstitute.org/downloads#v4. This contains bi-allelic variants from multi-

ethnic samples. To compare with the ADSP R4 data, we first extracted the bi-allelic variants 

from the VCF. We then broke the VCFs down into samples of four ancestry groups – NHW, HL, 

Asians and HHB-AA. Monomorphic variants were excluded from each of the VCFs. We then 

extracted variants from both the gnomAD and ADSP R4 data by MAF thresholds: <=0.1%, 

<=0.5%, <=1% and <=5%, and compared them at the site level. When compared across ancestry 

groups, only sites that are observed in all ancestries were used for analyses.  

 

Variant annotation protocol  

All R4 bi-allelic variants have been annotated using the official ADSP annotation pipeline. First, 

the QCed VCFs were processed using VEP103 [63] (with the --everything flag). Then the JSON-

formatted VEP output was processed so that variants affecting multiple transcripts of the same 

gene were collapsed generate a 'most damaging' consequence for each affected gene. This 

process uses the ranking table specified in the file 'ranking_table.txt' to identify the 'most 

damaging' consequence and to assign an impact score, using a custom annotation ranking 

process which down-weights consequences for non-sense mediated decay transcripts and non-

coding transcripts. Next the QCed VCFs were also processed by SnpEff v5.1d (build 2022-04-19) 

[23]. Variants are matched by chromosome, position, reference allele, and alternate allele to 

CADD v1.6 scores [28]. Lastly, short indels not defined in CADD reference files were processed 

by CADD and integrated into the dataset. This resource is available at NIAGADS open access 

https://dss.niagads.org/open-access-data-portal/ .  

 

LOF analyses  

The functional impact of variants was assessed using SnpEff [23]. Variants were annotated as 

‘MODERATE’ and ‘HIGH’ when they were protein-altering, while variants with ‘LOW’ and 

‘MODIFIER’ effects were considered non-protein altering. All variants categorized as ‘HIGH’ 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 6, 2024. ; https://doi.org/10.1101/2024.12.03.24317000doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.03.24317000
http://creativecommons.org/licenses/by-nd/4.0/


were expected to be disruptive or cause loss of function (LoF) in the protein. Variants with a 

‘MODERATE’ effect were expected to be missense and splice region variants. Variants with 

'MODIFIER' and ‘LOW’ effects were in non-coding regions or were non-disruptive to protein 

functions. We focused on the LoF variants categorized as ‘HIGH’ in the ADSP cohort. 

 

FAVOR annotation protocol 

We downloaded the FAVOR [29] database annotations from https://docs.genohub.org/data in 

July 2023 and used that to annotate all the R4 bi-allelic variants. Then annotation only VCF files 

were converted to GDS format using the SeqArray package [26], containing 156 columns. This 

resource is available at NIAGADS open access https://dss.niagads.org/open-access-data-portal/.  

 

Structural variant calling protocol 

The GCAD and ADSP SV workgroup together designs the production pipeline which includes 

Manta [64] (v1.6.0) and Smoove (ref, v0.2.6) (https://github.com/brentp/smoove) for calling 

deletions and insertions. Individual Manta and Smoove callsets were first merged for each 

sample and merged together with all samples by SVIMMER (v0.1) 

(https://github.com/DecodeGenetics/svimmer) . Then, GraphTyper (v2.7) [65] was applied on 

the merged VCF for SV joint genotyping. Note that the only filter applied is SV size >10 Mbp; 

other than that, there is no advance filter. The code used to generate these SV calls is available 

at: https://github.com/Illumina/manta, https://github.com/brentp/smoove ). 

 

LD reference panel  

We inferred LD separately for each of the four major ancestral groups (NHW, His, AA, and 

Asian). All participants for both cases and controls were included but PSP and CBD samples are 

not included, resulting in 32,236 participants total). We calculated LD for all pairs of variants 

with minor allele count (MAC) � 5 and within 5 Mbps of each other using emerald [25] using 

the following parameters, --mac > 5, --threshold 0.2, and --window 5000000. Each segment was 

analyzed by 5Mb window with a 3Mb overlapping, then we concatenated all segments and 

removed duplicate records. Only variant pairs with R
2
 > 0.2 were then retained. For each 

variant pair, we reported variant genomic positions, reference and non-reference alleles, their 

R and R
2
 correlation, and D and D’ statistics. This resource is available at NIAGADS open access 

https://dss.niagads.org/open-access-data-portal/.  

 

ADSP Phenotype Harmonization Consortium (ADSP-PHC)  

The ADSP Phenotype Harmonization Consortium (ADSP-PHC) harmonizes all available data from 

each domain, regardless of sequencing status, to ensure the highest quality harmonization. The 

harmonized phenotypic data are then subset to participants with available whole-genome 

sequencing. These data are released per participant via NIAGADS. All harmonized data can be 

accessed directly from each cohort. All ADSP phenotype data are harmonized by a multi-

disciplinary team that includes world experts in neuroimaging, neuropsychology, fluid 

biomarkers, neuropathology, and vascular contributions to ADRD. Data processing and domain-

specific harmonization protocols are available in Supplementary Methods - ADSP Phenotype 

Harmonization Consortium Protocol. These files are available in https://dss.niagads.org/ . 
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VariXam  

This is an aggregated database and a variant browser that shows genomic variants detected on 

WGS/WES data of the ADSP. The database currently includes variants of all the R4 36K WGS and 

allows users to search for genes or variants of interests. The human reference genome used is 

GRCh38. It is available here: https://varixam.niagads.org/.  

 

NIAGADS Alzheimer’s GenomicsDB  

This is an interactive knowledgebase for AD genetics [27]. The resource provides unrestricted 

access to GWAS summary statistics datasets, variant annotations, and meta-analysis results 

deposited at the NIAGADS.  The platform allows users to search for genes or variants of 

interests, and interactively mine or visually inspect datasets and annotated ADSP variant tracks 

on a genome browser. The GenomicsDB can be accessed at 

https://www.niagads.org/genomics.  

 

NIAGADS DSS  

The NIAGADS Data Sharing Service (DSS) was developed to facilitate the deposition and sharing 

of whole-genome and whole-exome sequencing data from ADSP and other NIA funded ADRD 

studies to the research community at large. In keeping with the NIH Genomic Data Sharing 

(GDS) Policy, all genomic data are classified as controlled access as outlined in the Institutional 

Certification forms provided by the submitting institutions. Principal investigators can request 

DSS distributed data through the Data Access Request Management (DARM) system by logging 

in using their eRA Commons ID. Once an application is approved by the NIH-formed NIAGADS 

ADRD Data Access Committee (NADAC) and Data Use Committee (DUC), the data can be 

accessed through the Data Portal and downloaded directly or through Amazon EC2. DSS can be 

found at https://dss.niagads.org/ .  

 

Released genotyping files 

Due to the sheer sizes of pVCFs, all pVCFs are split by chromosomes. We provide three versions 

of pVCFs for users to choose from: (1) “Preview pVCF”; (2) “Compact pVCF”: only reserved GT 

(genotype) of each sample for each variant; (3) “Compact filtered pVCF”: a compact version 

with replacing low-quality genotypes to missing (./.). Each set of pVCF files are divided by 

chromosome, then split into bi-allelic and multi-allelic variant files. Besides, we also created the 

fully QCed VCF (output from the “ADSP Variant QC protocol”) in Genomic Data Structure (GDS) 

format to facilitate analysts using R for downstream association analyses. These files are 

available in https://dss.niagads.org/ . 
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Research in Genomic Epidemiology (CHARGE) funded by NIA (R01 AG033193), the National Heart, Lung, 

and Blood Institute (NHLBI), other National Institute of Health (NIH) institutes and other foreign 

governmental and non-governmental organizations. The Discovery Phase analysis of sequence data is 

supported through UF1AG047133 (to Drs. Schellenberg, Farrer, Pericak-Vance, Mayeux, and Haines); 

U01AG049505 to Dr. Seshadri; U01AG049506 to Dr. Boerwinkle; U01AG049507 to Dr. Wijsman; and 

U01AG049508 to Dr. Goate and the Discovery Extension Phase analysis is supported through 

U01AG052411 to Dr. Goate, U01AG052410 to Dr. Pericak-Vance and U01 AG052409 to Drs. Seshadri and 

Fornage. 

Sequencing for the Follow Up Study (FUS) is supported through U01AG057659 (to Drs. PericakVance, 

Mayeux, and Vardarajan) and U01AG062943 (to Drs. Pericak-Vance and Mayeux). Data generation and 

harmonization in the Follow-up Phase is supported by U54AG052427 (to Drs. Schellenberg and Wang). 

The FUS Phase analysis of sequence data is supported through U01AG058589 (to Drs. Destefano, 

Boerwinkle, De Jager, Fornage, Seshadri, and Wijsman), U01AG058654 (to Drs. Haines, Bush, Farrer, 

Martin, and Pericak-Vance), U01AG058635 (to Dr. Goate), RF1AG058066 (to Drs. Haines, Pericak-Vance, 

and Scott), RF1AG057519 (to Drs. Farrer and Jun), R01AG048927 (to Dr. Farrer), and RF1AG054074 (to 

Drs. Pericak-Vance and Beecham). 

The ADGC cohorts include: Adult Changes in Thought (ACT) (U01 AG006781, U19 AG066567), the 

Alzheimer’s Disease Research Centers (ADRC) (P30 AG062429, P30 AG066468, P30 AG062421, P30 

AG066509, P30 AG066514, P30 AG066530, P30 AG066507, P30 AG066444, P30 AG066518, P30 

AG066512, P30 AG066462, P30 AG072979, P30 AG072972, P30 AG072976, P30 AG072975, P30 

AG072978, P30 AG072977, P30 AG066519, P30 AG062677, P30 AG079280, P30 AG062422, P30 

AG066511, P30 AG072946, P30 AG062715, P30 AG072973, P30 AG066506, P30 AG066508, P30 

AG066515, P30 AG072947, P30 AG072931, P30 AG066546, P20 AG068024, P20 AG068053, P20 

AG068077, P20 AG068082, P30 AG072958, P30 AG072959), the Chicago Health and Aging Project 

(CHAP) (R01 AG11101, RC4 AG039085, K23 AG030944), Indiana Memory and Aging Study (IMAS) (R01 

AG019771), Indianapolis Ibadan (R01 AG009956, P30 AG010133), the Memory and Aging Project (MAP) ( 

R01 AG17917), Mayo Clinic (MAYO) (R01 AG032990, U01 AG046139, R01 NS080820, RF1 AG051504, P50 

AG016574), Mayo Parkinson’s Disease controls (NS039764, NS071674, 5RC2HG005605), University of 

Miami (R01 AG027944, R01 AG028786, R01 AG019085, IIRG09133827, A2011048), the Multi-

Institutional Research in Alzheimer’s Genetic Epidemiology Study (MIRAGE) (R01 AG09029, R01 

AG025259), the National Centralized Repository for Alzheimer’s Disease and Related Dementias 

(NCRAD) (U24 AG021886), the National Institute on Aging Late Onset Alzheimer’s Disease Family Study 

(NIA- LOAD) (U24 AG056270), the Religious Orders Study (ROS) (P30 AG10161, R01 AG15819), the Texas 
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Alzheimer’s Research and Care Consortium (TARCC) (funded by the Darrell K Royal Texas Alzheimer’s 

Initiative), Vanderbilt University/Case Western Reserve University (VAN/CWRU) (R01 AG019757, R01 

AG021547, R01 AG027944, R01 AG028786, P01 NS026630, and Alzheimer’s Association), the 

Washington Heights-Inwood Columbia Aging Project (WHICAP) (RF1 AG054023), the University of 

Washington Families (VA Research Merit Grant, NIA: P50AG005136, R01AG041797, NINDS: 

R01NS069719), the Columbia University Hispanic Estudio Familiar de Influencia Genetica de Alzheimer 

(EFIGA) (RF1 AG015473), the University of Toronto (UT) (funded by Wellcome Trust, Medical Research 

Council, Canadian Institutes of Health Research), and Genetic Differences (GD) (R01 AG007584). The 

CHARGE cohorts are supported in part by National Heart, Lung, and Blood Institute (NHLBI) 

infrastructure grant HL105756 (Psaty), RC2HL102419 (Boerwinkle) and the neurology working group is 

supported by the National Institute on Aging (NIA) R01 grant AG033193. 

The CHARGE cohorts participating in the ADSP include the following: Austrian Stroke Prevention Study 

(ASPS), ASPS-Family study, and the Prospective Dementia Registry-Austria (ASPS/PRODEM-Aus), the 

Atherosclerosis Risk in Communities (ARIC) Study, the Cardiovascular Health Study (CHS), the Erasmus 

Rucphen Family Study (ERF), the Framingham Heart Study (FHS), and the Rotterdam Study (RS). ASPS is 

funded by the Austrian Science Fond (FWF) grant number P20545-P05 and P13180 and the Medical 

University of Graz. The ASPS-Fam is funded by the Austrian Science Fund (FWF) project I904), the EU 

Joint Programme – Neurodegenerative Disease Research (JPND) in frame of the BRIDGET project 

(Austria, Ministry of Science) and the Medical University of Graz and the Steiermärkische 

Krankenanstalten Gesellschaft. PRODEM-Austria is supported by the Austrian Research Promotion 

agency (FFG) (Project No. 827462) and by the Austrian National Bank (Anniversary Fund, project 15435. 

ARIC research is carried out as a collaborative study supported by NHLBI contracts 

(HHSN268201100005C, HHSN268201100006C, HHSN268201100007C, HHSN268201100008C, 

HHSN268201100009C, HHSN268201100010C, HHSN268201100011C, and HHSN268201100012C). 

Neurocognitive data in ARIC is collected by U01 2U01HL096812, 2U01HL096814, 2U01HL096899, 

2U01HL096902, 2U01HL096917 from the NIH (NHLBI, NINDS, NIA and NIDCD), and with previous brain 

MRI examinations funded by R01-HL70825 from the NHLBI. CHS research was supported by contracts 

HHSN268201200036C, HHSN268200800007C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, 

N01HC85082, N01HC85083, N01HC85086, and grants U01HL080295 and U01HL130114 from the NHLBI 

with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). 

Additional support was provided by R01AG023629, R01AG15928, and R01AG20098 from the NIA. FHS 

research is supported by NHLBI contracts N01-HC-25195 and HHSN268201500001I. This study was also 

supported by additional grants from the NIA (R01s AG054076, AG049607 and AG033040 and NINDS 

(R01 NS017950). The ERF study as a part of EUROSPAN (European Special Populations Research 

Network) was supported by European Commission FP6 STRP grant number 018947 (LSHG-CT-2006-

01947) and also received funding from the European Community’s Seventh Framework Programme 

(FP7/2007-2013)/grant agreement HEALTH-F4- 2007-201413 by the European Commission under the 

programme “Quality of Life and Management of the Living Resources” of 5th Framework Programme 

(no. QLG2-CT-2002- 01254). High-throughput analysis of the ERF data was supported by a joint grant 

from the Netherlands Organization for Scientific Research and the Russian Foundation for Basic 

Research (NWO-RFBR 047.017.043). The Rotterdam Study is funded by Erasmus Medical Center and 

Erasmus University, Rotterdam, the Netherlands Organization for Health Research and Development 

(ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and 

Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII), and the 

municipality of Rotterdam. Genetic data sets are also supported by the Netherlands Organization of 

Scientific Research NWO Investments (175.010.2005.011, 911-03-012), the Genetic Laboratory of the 
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Department of Internal Medicine, Erasmus MC, the Research Institute for Diseases in the Elderly (014-

93-015; RIDE2), and the Netherlands Genomics Initiative (NGI)/Netherlands Organization for Scientific 

Research (NWO) Netherlands Consortium for Healthy Aging (NCHA), project 050-060-810. All studies are 

grateful to their participants, faculty and staff. The content of these manuscripts is solely the 

responsibility of the authors and does not necessarily represent the official views of the National 

Institutes of Health or the U.S. Department of Health and Human Services. 

The FUS cohorts include: the Alzheimer’s Disease Research Centers (ADRC) (P30 AG062429, P30 

AG066468, P30 AG062421, P30 AG066509, P30 AG066514, P30 AG066530, P30 AG066507, P30 

AG066444, P30 AG066518, P30 AG066512, P30 AG066462, P30 AG072979, P30 AG072972, P30 

AG072976, P30 AG072975, P30 AG072978, P30 AG072977, P30 AG066519, P30 AG062677, P30 

AG079280, P30 AG062422, P30 AG066511, P30 AG072946, P30 AG062715, P30 AG072973, P30 

AG066506, P30 AG066508, P30 AG066515, P30 AG072947, P30 AG072931, P30 AG066546, P20 

AG068024, P20 AG068053, P20 AG068077, P20 AG068082, P30 AG072958, P30 AG072959), Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) (U19AG024904), Amish Protective Variant Study (RF1AG058066), 

Cache County Study (R01AG11380, R01AG031272, R01AG21136, RF1AG054052), Case Western Reserve 

University Brain Bank (CWRUBB) (P50AG008012), Case Western Reserve University Rapid Decline 

(CWRURD) (RF1AG058267, NU38CK000480), CubanAmerican Alzheimer’s Disease Initiative (CuAADI) 

(3U01AG052410), Estudio Familiar de Influencia Genetica en Alzheimer (EFIGA) (5R37AG015473, 

RF1AG015473, R56AG051876), Genetic and Environmental Risk Factors for Alzheimer Disease Among 

African Americans Study (GenerAAtions) (2R01AG09029, R01AG025259, 2R01AG048927), Gwangju 

Alzheimer and Related Dementias Study (GARD) (U01AG062602), Hillblom Aging Network (2014-A-004-

NET, R01AG032289, R01AG048234), Hussman Institute for Human Genomics Brain Bank (HIHGBB) 

(R01AG027944, Alzheimer’s Association “Identification of Rare Variants in Alzheimer Disease”), Ibadan 

Study of Aging (IBADAN) (5R01AG009956), Longevity Genes Project (LGP) and LonGenity (R01AG042188, 

R01AG044829, R01AG046949, R01AG057909, R01AG061155, P30AG038072), Mexican Health and Aging 

Study (MHAS) (R01AG018016), Multi-Institutional Research in Alzheimer’s Genetic Epidemiology 

(MIRAGE) (2R01AG09029, R01AG025259, 2R01AG048927), Northern Manhattan Study (NOMAS) 

(R01NS29993), Peru Alzheimer’s Disease Initiative (PeADI) (RF1AG054074), Puerto Rican 1066 (PR1066) 

(Wellcome Trust (GR066133/GR080002), European Research Council (340755)), Puerto Rican Alzheimer 

Disease Initiative (PRADI) (RF1AG054074), Reasons for Geographic and Racial Differences in Stroke 

(REGARDS) (U01NS041588), Research in African American Alzheimer Disease Initiative (REAAADI) 

(U01AG052410), the Religious Orders Study (ROS) (P30 AG10161, P30 AG72975, R01 AG15819, R01 

AG42210), the RUSH Memory and Aging Project (MAP) (R01 AG017917, R01 AG42210Stanford Extreme 

Phenotypes in AD (R01AG060747), University of Miami Brain Endowment Bank (MBB), University of 

Miami/Case Western/North Carolina A&T African American (UM/CASE/NCAT) (U01AG052410, 

R01AG028786), and Wisconsin Registry for Alzheimer’s Prevention (WRAP) (R01AG027161 and 

R01AG054047). 

The four LSACs are: the Human Genome Sequencing Center at the Baylor College of Medicine (U54 

HG003273), the Broad Institute Genome Center (U54HG003067), The American Genome Center at the 

Uniformed Services University of the Health Sciences (U01AG057659), and the Washington University 

Genome Institute (U54HG003079). Genotyping and sequencing for the ADSP FUS is also conducted at 

John P. Hussman Institute for Human Genomics (HIHG) Center for Genome Technology (CGT). 

Biological samples and associated phenotypic data used in primary data analyses were stored at Study 

Investigators institutions, and at the National Centralized Repository for Alzheimer’s Disease and 
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Related Dementias (NCRAD, U24AG021886) at Indiana University funded by NIA. Associated Phenotypic 

Data used in primary and secondary data analyses were provided by Study Investigators, the NIA funded 

Alzheimer’s Disease Centers (ADCs), and the National Alzheimer’s Coordinating Center (NACC, 

U24AG072122) and the National Institute on Aging Genetics of Alzheimer’s Disease Data Storage Site 

(NIAGADS, U24AG041689) at the University of Pennsylvania, funded by NIA. Harmonized phenotypes 

were provided by the ADSP Phenotype Harmonization Consortium (ADSP-PHC), funded by NIA (U24 

AG074855, U01 AG068057 and R01 AG059716) and Ultrascale Machine Learning to Empower Discovery 

in Alzheimer’s Disease Biobanks (AI4AD, U01 AG068057). This research was supported in part by the 

Intramural Research Program of the National Institutes of health, National Library of Medicine. 

Contributors to the Genetic Analysis Data included Study Investigators on projects that were individually 

funded by NIA, and other NIH institutes, and by private U.S. organizations, or foreign governmental or 

nongovernmental organizations. 

The ADSP Phenotype Harmonization Consortium (ADSP-PHC) is funded by NIA (U24 AG074855, U01 

AG068057 and R01 AG059716). The harmonized cohorts within the ADSP-PHC include:Nthe Anti-Amyloid 

Treatment in Asymptomatic Alzheimer’s study (A4 Study), a secondary prevention trial in preclinical 

Alzheimer's disease, aiming to slow cognitive decline associated with brain amyloid accumulation in 

clinically normal older participants. The A4 Study is funded by a public-private-philanthropic partnership, 

including funding from the National Institutes of Health-National Institute on Aging, Eli Lilly and 

Company, Alzheimer's Association, Accelerating Medicines Partnership, GHR Foundation, an anonymous 

foundation and additional private donors, with in-kind support from Avid and Cogstate. The companion 

observational Longitudinal Evaluation of Amyloid Risk and Neurodegeneration (LEARN) Study is funded 

by the Alzheimer's Association and GHR Foundation. The A4 and LEARN Studies are led by Dr. Reisa 

Sperling at Brigham and Women's Hospital, Harvard Medical School and Dr. Paul Aisen at the 

Alzheimer's Therapeutic Research Institute (ATRI), University of Southern California. The A4 and LEARN 

Studies are coordinated by ATRI at the University of Southern California, and the data are made 

available through the Laboratory for Neuro Imaging at the University of Southern California. The 

participants screening for the A4 Study provided permission to share their de-identified data in order to 

advance the quest to find a successful treatment for Alzheimer's disease. We would like to acknowledge 

the dedication of all the participants, the site personnel, and all of the partnership team members who 

continue to make the A4 and LEARN Studies possible. The complete A4 Study Team list is available 

on: a4study.org/a4-study-team.; the Adult Changes in Thought study (ACT), U01 AG006781, U19 

AG066567; Alzheimer’s Disease Neuroimaging Initiative (ADNI): Data collection and sharing for this 

project was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of 

Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-

0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging 

and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer's 

Association; Alzheimer's Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-

Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and 

Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; 

GE Healthcare; IXICO Ltd.;Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & 

Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.;Meso 

Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals 

Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition 

Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites 

in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of 

Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and 
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Education, and the study is coordinated by the Alzheimer's Therapeutic Research Institute at the 

University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at 

the University of Southern California; Estudio Familiar de Influencia Genetica en Alzheimer 

(EFIGA): 5R37AG015473, RF1AG015473, R56AG051876; Memory & Aging Project at Knight Alzheimer’s 

Disease Research Center (MAP at Knight ADRC): The Memory and Aging Project at the Knight-ADRC 

(Knight-ADRC). This work was supported by the National Institutes of Health (NIH) grants R01AG064614, 

R01AG044546, RF1AG053303, RF1AG058501, U01AG058922 and R01AG064877 to Carlos Cruchaga. The 

recruitment and clinical characterization of research participants at Washington University was 

supported by NIH grants P30AG066444, P01AG03991, and P01AG026276. Data collection and sharing 

for this project was supported by NIH grants RF1AG054080, P30AG066462, R01AG064614 and 

U01AG052410. We thank the contributors who collected samples used in this study, as well as patients 

and their families, whose help and participation made this work possible. This work was supported by 

access to equipment made possible by the Hope Center for Neurological Disorders, the Neurogenomics 

and Informatics Center (NGI: https://neurogenomics.wustl.edu/) and the Departments of Neurology and 

Psychiatry at Washington University School of Medicine; National Alzheimer’s Coordinating Center 

(NACC): The NACC database is funded by NIA/NIH Grant U24 AG072122. NACC data are contributed by 

the NIA-funded ADRCs: P30 AG062429 (PI James Brewer, MD, PhD), P30 AG066468 (PI Oscar Lopez, 

MD), P30 AG062421 (PI Bradley Hyman, MD, PhD), P30 AG066509 (PI Thomas Grabowski, MD), P30 

AG066514 (PI Mary Sano, PhD), P30 AG066530 (PI Helena Chui, MD), P30 AG066507 (PI Marilyn Albert, 

PhD), P30 AG066444 (PI John Morris, MD), P30 AG066518 (PI Jeffrey Kaye, MD), P30 AG066512 (PI 

Thomas Wisniewski, MD), P30 AG066462 (PI Scott Small, MD), P30 AG072979 (PI David Wolk, MD), P30 

AG072972 (PI Charles DeCarli, MD), P30 AG072976 (PI Andrew Saykin, PsyD), P30 AG072975 (PI David 

Bennett, MD), P30 AG072978 (PI Neil Kowall, MD), P30 AG072977 (PI Robert Vassar, PhD), P30 

AG066519 (PI Frank LaFerla, PhD), P30 AG062677 (PI Ronald Petersen, MD, PhD), P30 AG079280 (PI Eric 

Reiman, MD), P30 AG062422 (PI Gil Rabinovici, MD), P30 AG066511 (PI Allan Levey, MD, PhD), P30 

AG072946 (PI Linda Van Eldik, PhD), P30 AG062715 (PI Sanjay Asthana, MD, FRCP), P30 AG072973 (PI 

Russell Swerdlow, MD), P30 AG066506 (PI Todd Golde, MD, PhD), P30 AG066508 (PI Stephen 

Strittmatter, MD, PhD), P30 AG066515 (PI Victor Henderson, MD, MS), P30 AG072947 (PI Suzanne Craft, 

PhD), P30 AG072931 (PI Henry Paulson, MD, PhD), P30 AG066546 (PI Sudha Seshadri, MD), P20 

AG068024 (PI Erik Roberson, MD, PhD), P20 AG068053 (PI Justin Miller, PhD), P20 AG068077 (PI Gary 

Rosenberg, MD), P20 AG068082 (PI Angela Jefferson, PhD), P30 AG072958 (PI Heather Whitson, MD), 

P30 AG072959 (PI James Leverenz, MD); National Institute on Aging Alzheimer’s Disease Family Based 

Study (NIA-AD FBS): U24 AG056270; Religious Orders Study (ROS): P30AG10161,R01AG15819, 

R01AG42210; Memory and Aging Project (MAP - Rush): R01AG017917, R01AG42210; Minority Aging 

Research Study (MARS): R01AG22018, R01AG42210; Washington Heights/Inwood Columbia Aging 

Project (WHICAP): RF1 AG054023;and Wisconsin Registry for Alzheimer’s Prevention 

(WRAP): R01AG027161 and R01AG054047. Additional acknowledgments include the National Institute 

on Aging Genetics of Alzheimer’s Disease Data Storage Site (NIAGADS, U24AG041689) at the University 

of Pennsylvania, funded by NIA. 

Alzheimer's Disease Neuroimaging Initiative (sa000002) data: 

Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging 

Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of 

Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the 

National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from 

the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; 

BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan 
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Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated 

company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy 

Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; 

Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack 

Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda 

Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is 

providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by 

the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the 

Northern California Institute for Research and Education, and the study is coordinated by the 

Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are 

disseminated by the Laboratory for Neuro Imaging at the University of Southern California. 

Additional information to include in an acknowledgment statement can be found on the LONI 

site: https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Data_Use_Agreement.pdf. 

Alzheimer’s Disease Genetics Consortium (sa000003) data: 

Use the following for use of any ADGC generated data: 

The Alzheimer’s Disease Genetics Consortium (ADGC) supported sample preparation, sequencing and 

data processing through NIA grant U01AG032984. Sequencing data generation and harmonization is 

supported by the Genome Center for Alzheimer’s Disease, U54AG052427, and data sharing is supported 

by NIAGADS, U24AG041689. Samples from the National Centralized Repository for Alzheimer’s Disease 

and Related Dementias (NCRAD), which receives government support under a cooperative agreement 

grant (U24 AG021886) awarded by the National Institute on Aging (NIA), were used in this study. We 

thank contributors who collected samples used in this study, as well as patients and their families, 

whose help and participation made this work possible. 

For use with the ADGC-TARCC-WGS (snd10030) data: 

This study was made possible by the Texas Alzheimer’s Research and Care Consortium (TARCC) funded 

by the state of Texas through the Texas Council on Alzheimer’s Disease and Related Disorders and the 

Darrell K Royal Texas Alzheimer’s Initiative. 

The Familial Alzheimer Sequencing Project (sa000004) data: 

This work was supported by grants from the National Institutes of Health (R01AG044546, P01AG003991, 

RF1AG053303, R01AG058501, U01AG058922, RF1AG058501 and R01AG057777). The recruitment and 

clinical characterization of research participants at Washington University were supported by NIH P50 

AG05681, P01 AG03991, and P01 AG026276. This work was supported by access to equipment made 

possible by the Hope Center for Neurological Disorders, and the Departments of Neurology and 

Psychiatry at Washington University School of Medicine. 

We thank the contributors who collected samples used in this study, as well as patients and their 

families, whose help and participation made this work possible. This work was supported by access to 
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equipment made possible by the Hope Center for Neurological Disorders, and the Departments of 

Neurology and Psychiatry at Washington University School of Medicine 

Charles F. and Joanne Knight Alzheimer’s Disease Research Center (sa000008) data: 

This work was supported by grants from the National Institutes of Health (R01AG044546, P01AG003991, 

RF1AG053303, R01AG058501, U01AG058922, RF1AG058501 and R01AG057777). The recruitment and 

clinical characterization of research participants at Washington University were supported by NIH P50 

AG05681, P01 AG03991, and P01 AG026276. This work was supported by access to equipment made 

possible by the Hope Center for Neurological Disorders, and the Departments of Neurology and 

Psychiatry at Washington University School of Medicine. 

We thank the contributors who collected samples used in this study, as well as patients and their 

families, whose help and participation made this work possible. This work was supported by access to 

equipment made possible by the Hope Center for Neurological Disorders, and the Departments of 

Neurology and Psychiatry at Washington University School of Medicine. 

For use of the ADSP-PHC harmonized phenotypes deposited within dataset, ng00067, use the following 

statement: 

The Memory and Aging Project at the Knight-ADRC (Knight-ADRC), supported by NIH grants 

R01AG064614, R01AG044546, RF1AG053303, RF1AG058501, U01AG058922 and R01AG064877 to 

Carlos Cruchaga. The recruitment and clinical characterization of research participants at Washington 

University was supported by NIH grants P30AG066444, P01AG03991, and P01AG026276. Data collection 

and sharing for this project was supported by NIH grants RF1AG054080, P30AG066462, R01AG064614 

and U01AG052410. This work was supported by access to equipment made possible by the Hope Center 

for Neurological Disorders, the Neurogenomics and Informatics Center 

(NGI: https://neurogenomics.wustl.edu/) and the Departments of Neurology and Psychiatry at 

Washington University School of Medicine. 

Accelerating Medicines Partnership-Alzheimer’s Disease (AMP-AD) (sa000011) data: 

Mayo RNAseq Study- Study data were provided by the following sources: The Mayo Clinic Alzheimer's 

Disease Genetic Studies, led by Dr. Nilufer Ertekin-Taner and Dr. Steven G. Younkin, Mayo Clinic, 

Jacksonville, FL using samples from the Mayo Clinic Study of Aging, the Mayo Clinic Alzheimer's Disease 

Research Center, and the Mayo Clinic Brain Bank. Data collection was supported through funding by NIA 

grants P50 AG016574, R01 AG032990, U01 AG046139, R01 AG018023, U01 AG006576, U01 AG006786, 

R01 AG025711, R01 AG017216, R01 AG003949, NINDS grant R01 NS080820, CurePSP Foundation, and 

support from Mayo Foundation. Study data includes samples collected through the Sun Health Research 

Institute Brain and Body Donation Program of Sun City, Arizona. The Brain and Body Donation Program 

is supported by the National Institute of Neurological Disorders and Stroke (U24 NS072026 National 

Brain and Tissue Resource for Parkinson's Disease and Related Disorders), the National Institute on 

Aging (P30 AG19610 Arizona Alzheimer's Disease Core Center), the Arizona Department of Health 

Services (contract 211002, Arizona Alzheimer's Research Center), the Arizona Biomedical Research 

Commission (contracts 4001, 0011, 05-901 and 1001 to the Arizona Parkinson's Disease Consortium) and 

the Michael J. Fox Foundation for Parkinson's Research 
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ROSMAP- We are grateful to the participants in the Religious Order Study, the Memory and Aging 

Project. This work is supported by the US National Institutes of Health [U01 AG046152, R01 AG043617, 

R01 AG042210, R01 AG036042, R01 AG036836, R01 AG032990, R01 AG18023, RC2 AG036547, P50 

AG016574, U01 ES017155, KL2 RR024151, K25 AG041906-01, R01 AG30146, P30 AG10161, R01 

AG17917, R01 AG15819, K08 AG034290, P30 AG10161 and R01 AG11101. 

Mount Sinai Brain Bank (MSBB)- This work was supported by the grants R01AG046170, RF1AG054014, 

RF1AG057440 and R01AG057907 from the NIH/National Institute on Aging (NIA). R01AG046170 is a 

component of the AMP-AD Target Discovery and Preclinical Validation Project. Brain tissue collection 

and characterization was supported by NIH HHSN271201300031C. 

University of Pittsburg- Kamboh (sa000012) data: 

This study was supported by the National Institute on Aging (NIA) grants AG030653, AG041718, 

AG064877 and P30-AG066468. 

NACC Genentech Study (sa000013) data: 

We would like to thank study participants, their families, and the sample collectors for their invaluable 

contributions. This research was supported in part by the National Institute on Aging grant 

U01AG049508 (PI Alison M. Goate). This research was supported in part by Genentech, Inc. (PI Alison M. 

Goate, Robert R. Graham). 

The NACC database is funded by NIA/NIH Grant U01 AG016976. NACC data are contributed by these 

NIA-funded ADCs: P30 AG013846 (PI Neil Kowall, MD), P50 AG008702 (PI Scott Small, MD), P50 

AG025688 (PI Allan Levey, MD, PhD), P30 AG010133 (PI Andrew Saykin, PsyD), P50 AG005146 (PI 

Marilyn Albert, PhD), P50 AG005134 (PI Bradley Hyman, MD, PhD), P50 AG016574 (PI Ronald Petersen, 

MD, PhD), P30 AG013854 (PI M. Marsel Mesulam, MD), P30 AG008017 (PI Jeffrey Kaye, MD), P30 

AG010161 (PI David Bennett, MD), P30 AG010129 (PI Charles DeCarli, MD), P50 AG016573 (PI Frank 

LaFerla, PhD), P50 AG005131 (PI Douglas Galasko, MD), P30 AG028383 (PI Linda Van Eldik, PhD), P30 

AG010124 (PI John Trojanowski, MD, PhD), P50 AG005142 (PI Helena Chui, MD), P30 AG012300 (PI 

Roger Rosenberg, MD), P50 AG005136 (PI Thomas Grabowski, MD), P50 AG005681 (PI John Morris, MD), 

P30 AG028377 (Kathleen Welsh-Bohmer, PhD), and P50 AG008671 (PI Henry Paulson, MD, PhD). 

Samples from the National Cell Repository for Alzheimer’s Disease (NCRAD), which receives government 

support under a cooperative agreement grant (U24 AG21886) awarded by the National Institute on 

Aging (NIA), were used in this study. We thank contributors who collected samples used in this study, as 

well as patients and their families, whose help and participation made this work possible. 

The Alzheimer's Disease Genetics Consortium supported the collection of samples used in this study 

through National Institute on Aging (NIA) grants U01AG032984 and RC2AG036528. 

Cache County Study (sa000014) data: 

We acknowledge the generous contributions of the Cache County Memory Study participants. 

Sequencing for this study was funded by RF1AG054052 (PI: John S.K. Kauwe).  
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NIH, CurePSP and Tau Consortium PSP WGS (sa000015) data: 

This project was funded by the NIH grant UG3NS104095 and supported by grants U54NS100693 and 

U54AG052427. Queen Square Brain Bank is supported by the Reta Lila Weston Institute for Neurological 

Studies and the Medical Research Council UK. The Mayo Clinic Florida had support from a Morris K. 

Udall Parkinson's Disease Research Center of Excellence (NINDS P50 #NS072187), CurePSP and the Tau 

Consortium. The samples from the University of Pennsylvania are supported by NIA grant P01AG017586. 

CurePSP and Tau Consortium PSP WGS (sa000016) data: 

This project was funded by the Tau Consortium, Rainwater Charitable Foundation, and CurePSP. It was 

also supported by NINDS grant U54NS100693 and NIA grants U54NS100693 and U54AG052427. Queen 

Square Brain Bank is supported by the Reta Lila Weston Institute for Neurological Studies and the 

Medical Research Council UK. The Mayo Clinic Florida had support from a Morris K. Udall Parkinson's 

Disease Research Center of Excellence (NINDS P50 #NS072187), CurePSP and the Tau Consortium. The 

samples from the University of Pennsylvania are supported by NIA grant P01AG017586. Tissues were 

received from the Victorian Brain Bank, supported by The Florey Institute of Neuroscience and Mental 

Health, The Alfred and the Victorian Forensic Institute of Medicine and funded in part by Parkinson’s 

Victoria and MND Victoria. We are grateful to the Sun Health Research Institute Brain and Body 

Donation Program of Sun City, Arizona for the provision of human biological materials (or specific 

description, e.g. brain tissue, cerebrospinal fluid). The Brain and Body Donation Program is supported by 

the National Institute of Neurological Disorders and Stroke (U24 NS072026 National Brain and Tissue 

Resource for Parkinson's Disease and Related Disorders), the National Institute on Aging (P30 AG19610 

Arizona Alzheimer's Disease Core Center), the Arizona Department of Health Services ( contract 211002, 

Arizona Alzheimer's Research Center), the Arizona Biomedical Research Commission (contracts 4001, 

0011, 05-901 and 1001 to the Arizona Parkinson's Disease Consortium) and the Michael J. Fox 

Foundation for Parkinson's Research. Biomaterial was provided by the Study Group DESCRIBE of 

theClinical Research of the German Center for Neurodegenerative Diseases (DZNE). 

UCLA Progressive Supranuclear Palsy (sa000017) data: 

If data are used for a publication, “on behalf of the AL-108-231 investigators” should be included in the 

authorship list. 

The Diagnostic Assessment of Dementia for the Longitudinal Aging Study of India (LASI-DAD) 

(sa000019) data: 

In text: "The Longitudinal Aging Study in India, Diagnostic Assessment of Dementia data is sponsored by 

the National Institute on Aging (grant numbers R01AG051125 and U01AG065958) and is conducted by 

the University of Southern California." 

In references: "The Longitudinal Aging Study in India, Diagnostic Assessment of Dementia Study. 

Produced and distributed by the University of Southern California with funding from the National 

Institute on Aging (grant numbers R01AG051125 and U01AG065958), Los Angles, CA." 

Dissecting the Genomic Etiology of non-Mendelian Early-Onset Alzheimer Disease (EOAD) and Related 

Phenotypes (sa000023) data: 
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This work was supported by the National Institutes of Health (NIH) grant R01AG064614. The ADSP-FUS is 

supported by U01AG057659. 

The National Institutes of Health, National Institute on Aging (NIH-NIA) supported this work through the 

following grants: ADGC, U01 AG032984, RC2 AG036528; samples from the National Centralized 

Repository for Alzheimer’s Disease and Related Dementias (NCRAD), which receives government 

support under a cooperative agreement grant (U24 AG21886) awarded by the National Institute on 

Aging (NIA), were used in this study. Sequencing data generation and harmonization is supported by the 

Genome Center for Alzheimer’s Disease, U54AG052427, and data sharing is supported by NIAGADS, 

U24AG041689. We thank contributors who collected samples used in this study, as well as patients and 

their families, whose help and participation made this work possible. 

NIH grants supported enrollment and data collection for the individual studies including the Alzheimer’s 

Disease Centers (ADC,  P30 AG062429 (PI James Brewer, MD, PhD), P30 AG066468 (PI Oscar Lopez, MD), 

P30 AG062421 (PI Bradley Hyman, MD, PhD), P30 AG066509 (PI Thomas Grabowski, MD), P30 

AG066514 (PI Mary Sano, PhD), P30 AG066530 (PI Helena Chui, MD), P30 AG066507 (PI Marilyn Albert, 

PhD), P30 AG066444 (PI John Morris, MD), P30 AG066518 (PI Jeffrey Kaye, MD), P30 AG066512 (PI 

Thomas Wisniewski, MD), P30 AG066462 (PI Scott Small, MD), P30 AG072979 (PI David Wolk, MD), P30 

AG072972 (PI Charles DeCarli, MD), P30 AG072976 (PI Andrew Saykin, PsyD), P30 AG072975 (PI David 

Bennett, MD), P30 AG072978 (PI Neil Kowall, MD), P30 AG072977 (PI Robert Vassar, PhD), P30 

AG066519 (PI Frank LaFerla, PhD), P30 AG062677 (PI Ronald Petersen, MD, PhD), P30 AG079280 (PI Eric 

Reiman, MD), P30 AG062422 (PI Gil Rabinovici, MD), P30 AG066511 (PI Allan Levey, MD, PhD), P30 

AG072946 (PI Linda Van Eldik, PhD), P30 AG062715 (PI Sanjay Asthana, MD, FRCP), P30 AG072973 (PI 

Russell Swerdlow, MD), P30 AG066506 (PI Todd Golde, MD, PhD), P30 AG066508 (PI Stephen 

Strittmatter, MD, PhD), P30 AG066515 (PI Victor Henderson, MD, MS), P30 AG072947 (PI Suzanne Craft, 

PhD), P30 AG072931 (PI Henry Paulson, MD, PhD), P30 AG066546 (PI Sudha Seshadri, MD), P20 

AG068024 (PI Erik Roberson, MD, PhD), P20 AG068053 (PI Justin Miller, PhD), P20 AG068077 (PI Gary 

Rosenberg, MD), P20 AG068082 (PI Angela Jefferson, PhD), P30 AG072958 (PI Heather Whitson, MD), 

P30 AG072959 (PI James Leverenz, MD). The Miami ascertainment and research were supported in part 

through: RF1AG054080, R01AG027944, R01AG019085, R01AG028786-02, RC2AG036528. The Columbia 

ascertainment and research were supported in part through: R37AG015473 and U24AG056270. The 

University of Washington ascertainment and research were supported in part through R01AG044546, 

RF1AG053303, RF1AG058501, U01AG058922 and R01AG064877. 

Code availability 
• VCPA code https://bitbucket.org/NIAGADS/vcpa-pipeline/src/master/  

• SV related code  

o https://github.com/DecodeGenetics/svimmer ,  

https://github.com/DecodeGenetics/graphtyper  

• QC code https://bitbucket.org/Taha_Iqbal_UPenn/gcad-vcf-qc_public/  

 

Data availability 
• Complete list of files showing the NIAGADS accession number together with a description of the files 

is available at Supplementary Table S5.  

• NIAGADS DSS is accessible at https://dss.niagads.org/  
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• VariXam is accessible at https://varixam.niagads.org/  

• GenomicsDB is accessible at https://www.niagads.org/genomics/app  

 

Figures and Tables  
 

Figure 1 Participants in ADSP R4 dataset. A) Worldwide cohorts assembled for this ADSP R4 dataset. 

Non-Hispanic Black with African Ancestry (NHB-AA) samples are from Africa, and North America 

(Canada, USA); Asian and Asian American are from Asia, and North America (Canada, USA); 

Hispanic/Latino (HL) are from North America (Mexico/Caribbean, Canada, USA), and South America; 

non-Hispanic white (NHW) are from Europe and North America (Canada, USA). Lastly, some samples 

categorized as others or unknown and they are from Australia. B) Comparison of reported ethnicity 

against those inferred by GRAF-POP and SCOPE based methods. C) Estimated GRAF-pop ancestral 

components Pe, Pf, and Pa for all participants. D) PCA plot on R4 participants colored by reported 

ethnicity (top) or SCOPE.  
 

Figure 2 WGS sample quality. A) Coverage (30x) for the ADSP R4 data. Red dotted line indicates 

coverage value at 30. 99% of samples pass this threshold. B) Number of SNVs called per sample in each 

reported ethnic group. Line in each displayed boxplot denotes the mean value where each dot is a 

sample.  
 

Figure 3 The distribution of variant types across the genome, with a specific focus on high-risk loss-of-

function variants. A) Bar chart depicting the breakdown of the total number of variants across the 

genome, categorized by genomic annotation as follows: insertions and deletions, loss-of-function 

variants, upstream gene variants, synonymous variants, non-coding transcript exon variants, missense 

variants, intron variants, intragenic variants, intergenic variants, downstream variants, 5 prime UTR 

variants, and 3 prime UTR variants. B) The distribution of 224,594 loss-of-function variants is further 

broken down into the following categories: frameshift (39%), stop gained (27%), splice donor (16%), 

splice acceptor (12%), start lost (4%), and stop lost (2%). 

 

Figure 4 – Comparison of the number of SVs called in the ADSP R4 dataset across different reported 

ethnicities. SVs can be categorized into four different types of SVs: deletion (DEL), duplication (DUP), 

inversion (INV), and insertion (INS).  

 

Figure 5 –ADSP-PHC Release (ng00067.v11) Sample sizes (“N” on the right) reflect individuals with ADSP 

sequencing data in R4.  

 

Figure 6 Browser of variants and annotations of diversified samples. A) VariXam interface. A variant 

browser displaying all genomic variants identified in the ADSP whole genome and exome data across 

releases. The figure below shows the search results of APOE. Accessible at: https://varixam.niagads.org/.  

B) The R4 Variants can be visually inspected as a track on the NIAGADS Genome Browser.  The track 

displays annotated short INDELS and SNVs that passed the biallelic QC criteria.  Track annotations 

include the most severe variant consequences and consequence impacts predicted by the ADSP 

annotation pipeline and mappings to dbSNP refSNP identifiers.  The track settings menu can be used to 

recolor the variants based on various annotations; the legend (made available by clicking on the track 

name) will update accordingly.   Users can zoom into regions of interest (here, the green rectangle 

highlights the region displayed in the close-up inset) to view sequence information and click on 
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individual variants for a brief summary of the annotations.  Full annotation results can be browsed by 

following the link to the GenomicsDB record for the variant.    

 

Table 1 – Number of variants (SNVs and indels) identified in the four major ethnic groups in ADSP R4 

data, broken down allele frequency (AF). Shown in top is the variant count and percentages per 

ethnicity. Instead of the total number of variants identified, we showed at the bottom the ethnic 

specific variants.  

 

Table 2 – ADSP R4 released file set. All files are available under 

https://dss.niagads.org/datasets/ng00067/. Both individual (CRAMs, gVCFs, SV VCFs and phenotypes) 

and summary level files (VCFs, GDS, annotation files) are available. Annotation and LD reference panel 

files are also available in NIAGADS Open Access Data Portal https://dss.niagads.org/open-access-data-

portal/. 
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D)  
 

 

 
 
Figure 1 Participants in ADSP R4 dataset. A) Worldwide cohorts assembled for this ADSP R4 dataset. 

Non-Hispanic Black with African Ancestry (NHB-AA) samples are from Africa, and North America 

(Canada, USA); Asian and Asian American are from Asia, and North America (Canada, USA); 

Hispanic/Latino (HL) are from North America (Mexico/Caribbean, Canada, USA), and South America; 

non-Hispanic white (NHW) are from Europe and North America (Canada, USA). Lastly, some samples 

categorized as others or unknown and they are from Australia. B) Comparison of reported ethnicity 

against those inferred by GRAF-POP and SCOPE based methods. C) Estimated GRAF-pop ancestral 

components Pe, Pf, and Pa for all participants. D) PCA plot on R4 participants colored by reported 

ethnicity (top) or SCOPE.  
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A)  

 
B)  

 
 
Figure 2 WGS sample quality. A) Coverage (30x) for the ADSP R4 data. Red dotted line indicates 

coverage value at 30. 99% of samples pass this threshold. B) Number of SNVs called per sample in each 

reported ethnic group. Line in each displayed boxplot denotes the mean value where each dot is a 

sample.  
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A)  

 
B)  
 

 
 
Figure 3 The distribution of variant types across the genome, with a specific focus on high-risk loss-of-

function variants. A) Bar chart depicting the breakdown of the total number of variants across the 

genome, categorized by genomic annotation as follows: insertions and deletions, loss-of-function 

variants, upstream gene variants, synonymous variants, non-coding transcript exon variants, missense 

variants, intron variants, intragenic variants, intergenic variants, downstream variants, 5 prime UTR 

variants, and 3 prime UTR variants. B) The distribution of 224,594 loss-of-function variants is further 

broken down into the following categories: frameshift (39%), stop gained (27%), splice donor (16%), 

splice acceptor (12%), start lost (4%), and stop lost (2%). 
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Figure 4 – Comparison of the number of SVs called in the ADSP R4 dataset across different reported 

ethnicities. SVs can be categorized into four different types of SVs: deletion (DEL), duplication (DUP), 

inversion (INV), and insertion (INS).  
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Figure 5 –ADSP-PHC Release (ng00067.v11) Sample sizes (“N” on the right) reflect individuals with ADSP 

sequencing data in R4.  
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Figure 6 Browser of variants and annotations of diversified samples. A) VariXam interface. A variant 

browser displaying all genomic variants identified in the ADSP whole genome and exome data across 

releases. The figure below shows the search results of APOE. Accessible at: https://varixam.niagads.org/.  

B) The R4 Variants can be visually inspected as a track on the NIAGADS Genome Browser.  The track 

displays annotated short INDELS and SNVs that passed the biallelic QC criteria.  Track annotations 

include the most severe variant consequences and consequence impacts predicted by the ADSP 

annotation pipeline and mappings to dbSNP refSNP identifiers.  The track settings menu can be used to 

recolor the variants based on various annotations; the legend (made available by clicking on the track 

name) will update accordingly.   Users can zoom into regions of interest (here, the green rectangle 

highlights the region displayed in the close-up inset) to view sequence information and click on 

individual variants for a brief summary of the annotations.  Full annotation results can be browsed by 

following the link to the GenomicsDB record for the variant.    
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Table 1 – Number of variants (SNVs and indels) identified in the four major ethnic groups in ADSP R4 

data, broken down allele frequency (AF). Shown in top is the variant count and percentages per 

ethnicity. Instead of the total number of variants identified, we showed at the bottom the ethnic 

specific variants.  

 
All AA Asian Hispanic NHW 

AF Count % Count % Count % Count % 

Singleton 
  

48,980,233  

  

48.4  

  

38,123,455  55.0 

  

61,467,493  46.4 

  

78,473,265  57.8 

<0.1% 
  

27,252,406  

  

26.9  

  

15,126,076  21.8 

  

48,762,383  36.8 

  

43,759,910  32.3 

0.1-1% 
  

11,674,387  

  

11.5  

     

8,038,369  11.6 

  

12,218,350  9.2 

     

5,653,864  4.2 

1-5% 
     

5,806,358  

     

5.7  

     

2,370,814  3.4 

     

4,054,972  3.1 

     

2,242,076  1.7 

>5% 
     

7,514,019  

     

7.4  

     

5,679,746  8.2 

     

5,921,548  4.5 

     

5,543,740  4.1 

Unique AA Asian Hispanic NHW 

AF Count % Count % Count % Count % 

Singleton 
  

33,348,856  

  

76.5  

  

29,033,386  70.1 

  

44,486,085  67.5 

  

61,301,483  76.0 

<0.1% 
  

10,107,022  

  

23.2  

     

9,289,546  22.4 

  

20,809,053  31.6 

  

19,206,135  23.8 

0.1-1% 
         

151,690  

     

0.3  

     

2,916,818  7.0 

         

644,326  1.0 

         

133,697  0.2 

1-5% 
                        

-    

         

-    

         

157,348  0.4 

               

1,967  0.0 

                        

-    0.0 

>5% 
                        

-    

         

-    

                    

787  0.0 

                        

1  0.0 

                        

-    0.0 
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Table 2 – ADSP R4 released file set. All files are available under 

https://dss.niagads.org/datasets/ng00067/. Both individual (CRAMs, gVCFs, SV VCFs and phenotypes) 

and summary level files (VCFs, GDS, annotation files) are available. Annotation and LD reference panel 

files are also available in NIAGADS Open Access Data Portal https://dss.niagads.org/open-access-data-

portal/. 

 

Descriptions Genotype 

quality 

information  

ADSP QC 

info 

With 

Multiallelic 

Individual level CRAMs - - - 

gVCFs - - - 

SV Manta VCFs - - - 

SV Smoove VCFs - - - 

Phenotypes - - - 

Summary level Preview VCFs Full No Yes 

Preview Compact VCFs Partial No Yes 

Preview Compact filtered VCFs Partial No Yes 

Fully QC-ed VCFs Full Yes No 

Fully QC-ed Compact filtered VCFs Partial Yes No 

Fully QC-ed GDS Partial Yes No 

Annotation  - - - 

LD reference panel  - - - 

 

References 

1. Strittmatter, W.J., et al., Binding of human apolipoprotein E to synthetic amyloid beta peptide: 

isoform-specific effects and implications for late-onset Alzheimer disease. Proc Natl Acad Sci U S 

A, 1993. 90(17): p. 8098-102. 

2. Harold, D., et al., Genome-wide association study identifies variants at CLU and PICALM 

associated with Alzheimer's disease. Nat Genet, 2009. 41(10): p. 1088-93. 

3. Lambert, J.C., et al., Genome-wide association study identifies variants at CLU and CR1 

associated with Alzheimer's disease. Nat Genet, 2009. 41(10): p. 1094-9. 

4. Bellenguez, C., et al., New insights into the genetic etiology of Alzheimer's disease and related 

dementias. Nat Genet, 2022. 54(4): p. 412-436. 

5. Kunkle, B.W., et al., Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk 

loci and implicates Abeta, tau, immunity and lipid processing. Nat Genet, 2019. 51(3): p. 414-

430. 

6. Lambert, J.C., et al., Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for 

Alzheimer's disease. Nat Genet, 2013. 45(12): p. 1452-8. 

7. Wightman, D.P., et al., Author Correction: A genome-wide association study with 1,126,563 

individuals identifies new risk loci for Alzheimer's disease. Nat Genet, 2021. 53(12): p. 1722. 

8. Bergem, A.L., K. Engedal, and E. Kringlen, The role of heredity in late-onset Alzheimer disease and 

vascular dementia. A twin study. Arch Gen Psychiatry, 1997. 54(3): p. 264-70. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 6, 2024. ; https://doi.org/10.1101/2024.12.03.24317000doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.03.24317000
http://creativecommons.org/licenses/by-nd/4.0/


9. Gatz, M., et al., Role of genes and environments for explaining Alzheimer disease. Arch Gen 

Psychiatry, 2006. 63(2): p. 168-74. 

10. Popejoy, A.B. and S.M. Fullerton, Genomics is failing on diversity. Nature, 2016. 538(7624): p. 

161-164. 

11. Farrer, L.A., et al., Effects of age, sex, and ethnicity on the association between apolipoprotein E 

genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis 

Consortium. JAMA, 1997. 278(16): p. 1349-56. 

12. Crean, S., et al., Apolipoprotein E epsilon4 prevalence in Alzheimer's disease patients varies 

across global populations: a systematic literature review and meta-analysis. Dement Geriatr 

Cogn Disord, 2011. 31(1): p. 20-30. 

13. Fortea, J., et al., APOE4 homozygozity represents a distinct genetic form of Alzheimer's disease. 

Nat Med, 2024. 30(5): p. 1284-1291. 

14. Miyashita, A., et al., SORL1 is genetically associated with late-onset Alzheimer's disease in 

Japanese, Koreans and Caucasians. PLoS One, 2013. 8(4): p. e58618. 

15. Reitz, C., et al., Variants in the ATP-binding cassette transporter (ABCA7), apolipoprotein E 

<4,and the risk of late-onset Alzheimer disease in African Americans. JAMA, 2013. 309(14): p. 

1483-92. 

16. Meng, Y., et al., Association of polymorphisms in the Angiotensin-converting enzyme gene with 

Alzheimer disease in an Israeli Arab community. Am J Hum Genet, 2006. 78(5): p. 871-877. 

17. Leung, Y.Y., et al., VCPA: genomic variant calling pipeline and data management tool for 

Alzheimer's Disease Sequencing Project. Bioinformatics, 2019. 35(10): p. 1768-1770. 

18. Mersha, T.B. and T. Abebe, Self-reported race/ethnicity in the age of genomic research: its 

potential impact on understanding health disparities. Hum Genomics, 2015. 9(1): p. 1. 

19. Jin, Y., et al., GRAF-pop: A Fast Distance-Based Method To Infer Subject Ancestry from Multiple 

Genotype Datasets Without Principal Components Analysis. G3 (Bethesda), 2019. 9(8): p. 2447-

2461. 

20. Chen, S., et al., A genomic mutational constraint map using variation in 76,156 human genomes. 

Nature, 2024. 625(7993): p. 92-100. 

21. Karczewski, K.J., et al., The mutational constraint spectrum quantified from variation in 141,456 

humans. Nature, 2020. 581(7809): p. 434-443. 

22. Butkiewicz, M., et al., Functional annotation of genomic variants in studies of late-onset 

Alzheimer's disease. Bioinformatics, 2018. 34(16): p. 2724-2731. 

23. Cingolani, P., et al., A program for annotating and predicting the effects of single nucleotide 

polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-

3. Fly (Austin), 2012. 6(2): p. 80-92. 

24. Wang, H., et al., Structural Variation Detection and Association Analysis of Whole-Genome-

Sequence Data from 16,905 Alzheimer's Diseases Sequencing Project Subjects. medRxiv, 2023. 

25. Quick, C., et al., emeraLD: rapid linkage disequilibrium estimation with massive datasets. 

Bioinformatics, 2019. 35(1): p. 164-166. 

26. Zheng, X., et al., SeqArray-a storage-efficient high-performance data format for WGS variant 

calls. Bioinformatics, 2017. 33(15): p. 2251-2257. 

27. Greenfest-Allen, E., et al., NIAGADS Alzheimer's GenomicsDB: A resource for exploring 

Alzheimer's disease genetic and genomic knowledge. Alzheimers Dement, 2024. 20(2): p. 1123-

1136. 

28. Schubach, M., et al., CADD v1.7: using protein language models, regulatory CNNs and other 

nucleotide-level scores to improve genome-wide variant predictions. Nucleic Acids Res, 2024. 

52(D1): p. D1143-D1154. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 6, 2024. ; https://doi.org/10.1101/2024.12.03.24317000doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.03.24317000
http://creativecommons.org/licenses/by-nd/4.0/


29. Zhou, H., et al., FAVOR: functional annotation of variants online resource and annotator for 

variation across the human genome. Nucleic Acids Res, 2023. 51(D1): p. D1300-D1311. 

30. Genomes Project, C., et al., A global reference for human genetic variation. Nature, 2015. 

526(7571): p. 68-74. 

31. Prokopenko, D., et al., Region-based analysis of rare genomic variants in whole-genome 

sequencing datasets reveal two novel Alzheimer's disease-associated genes: DTNB and DLG2. 

Mol Psychiatry, 2022. 27(4): p. 1963-1969. 

32. Prokopenko, D., et al., Whole-genome sequencing reveals new Alzheimer's disease-associated 

rare variants in loci related to synaptic function and neuronal development. Alzheimers Dement, 

2021. 17(9): p. 1509-1527. 

33. Lagisetty, Y., et al., Identification of risk genes for Alzheimer's disease by gene embedding. Cell 

Genom, 2022. 2(9). 

34. Lee, W.P., et al., Copy Number Variation Identification on 3,800 Alzheimer's Disease Whole 

Genome Sequencing Data from the Alzheimer's Disease Sequencing Project. Front Genet, 2021. 

12: p. 752390. 

35. Osterman, M.D., et al., Founder population-specific weights yield improvements in performance 

of polygenic risk scores for Alzheimer disease in the Midwestern Amish. HGG Adv, 2023. 4(4): p. 

100241. 

36. Prokopenko, D., et al., Identification of Novel Alzheimer's Disease Loci Using Sex-Specific Family-

Based Association Analysis of Whole-Genome Sequence Data. Sci Rep, 2020. 10(1): p. 5029. 

37. Bhattarai, P., et al., Rare genetic variation in fibronectin 1 (FN1) protects against APOEepsilon4 in 

Alzheimer's disease. Acta Neuropathol, 2024. 147(1): p. 70. 

38. Lopatko Lindman, K., et al., PILRA polymorphism modifies the effect of APOE4 and GM17 on 

Alzheimer's disease risk. Sci Rep, 2022. 12(1): p. 13264. 

39. Mantyh, W.G., et al., Early-onset Alzheimer's disease explained by polygenic risk of late-onset 

disease? Alzheimers Dement (Amst), 2023. 15(4): p. e12482. 

40. Malamon, J.S., et al., A comparative study of structural variant calling in WGS from Alzheimer's 

disease families. Life Sci Alliance, 2024. 7(5). 

41. Le Guen, Y., et al., Association of Rare APOE Missense Variants V236E and R251G With Risk of 

Alzheimer Disease. JAMA Neurol, 2022. 79(7): p. 652-663. 

42. Le Guen, Y., et al., A novel age-informed approach for genetic association analysis in Alzheimer's 

disease. Alzheimers Res Ther, 2021. 13(1): p. 72. 

43. He, Z., et al., GhostKnockoff inference empowers identification of putative causal variants in 

genome-wide association studies. Nat Commun, 2022. 13(1): p. 7209. 

44. Horimoto, A., et al., Admixture mapping implicates 13q33.3 as ancestry-of-origin locus for 

Alzheimer disease in Hispanic and Latino populations. HGG Adv, 2023. 4(3): p. 100207. 

45. Lee, S., et al., A comparison between similarity matrices for principal component analysis to 

assess population stratification in sequenced genetic data sets. Brief Bioinform, 2023. 24(1). 

46. Belloy, M.E., et al., APOE Genotype and Alzheimer Disease Risk Across Age, Sex, and Population 

Ancestry. JAMA Neurol, 2023. 80(12): p. 1284-1294. 

47. Belloy, M.E., et al., Challenges at the APOE locus: a robust quality control approach for accurate 

APOE genotyping. Alzheimers Res Ther, 2022. 14(1): p. 22. 

48. Belloy, M.E., et al., A Fast and Robust Strategy to Remove Variant-Level Artifacts in Alzheimer 

Disease Sequencing Project Data. Neurol Genet, 2022. 8(5): p. e200012. 

49. Li, D., et al., Novel loci for Alzheimer's disease identified by a genome-wide association study in 

Ashkenazi Jews. Alzheimers Dement, 2023. 19(12): p. 5550-5562. 

50. Tejeda, M., et al., DNA from multiple viral species is associated with Alzheimer's disease risk. 

Alzheimers Dement, 2024. 20(1): p. 253-265. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 6, 2024. ; https://doi.org/10.1101/2024.12.03.24317000doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.03.24317000
http://creativecommons.org/licenses/by-nd/4.0/


51. Tong, T., et al., Blood-derived mitochondrial DNA copy number is associated with Alzheimer 

disease, Alzheimer-related biomarkers and serum metabolites. Alzheimers Res Ther, 2024. 16(1): 

p. 234. 

52. Zhu, C., et al., MitoH3: Mitochondrial Haplogroup and Homoplasmic/Heteroplasmic Variant 

Calling Pipeline for Alzheimer's Disease Sequencing Project. J Alzheimers Dis Rep, 2024. 8(1): p. 

575-587. 

53. All of Us Research Program Genomics, I., Genomic data in the All of Us Research Program. 

Nature, 2024. 627(8003): p. 340-346. 

54. Halldorsson, B.V., et al., The sequences of 150,119 genomes in the UK Biobank. Nature, 2022. 

607(7920): p. 732-740. 

55. Gogarten, S.M., et al., Genetic association testing using the GENESIS R/Bioconductor package. 

Bioinformatics, 2019. 35(24): p. 5346-5348. 

56. Gogarten, S.M., et al., GWASTools: an R/Bioconductor package for quality control and analysis of 

genome-wide association studies. Bioinformatics, 2012. 28(24): p. 3329-31. 

57. Zheng, X., et al., A high-performance computing toolset for relatedness and principal component 

analysis of SNP data. Bioinformatics, 2012. 28(24): p. 3326-8. 

58. Li, H., A statistical framework for SNP calling, mutation discovery, association mapping and 

population genetical parameter estimation from sequencing data. Bioinformatics, 2011. 27(21): 

p. 2987-93. 

59. Danecek, P., et al., The variant call format and VCFtools. Bioinformatics, 2011. 27(15): p. 2156-8. 

60. Purcell, S., et al., PLINK: a tool set for whole-genome association and population-based linkage 

analyses. Am J Hum Genet, 2007. 81(3): p. 559-75. 

61. Jun, G., et al., Detecting and estimating contamination of human DNA samples in sequencing 

and array-based genotype data. Am J Hum Genet, 2012. 91(5): p. 839-48. 

62. Naj, A.C., et al., Quality control and integration of genotypes from two calling pipelines for whole 

genome sequence data in the Alzheimer's disease sequencing project. Genomics, 2019. 111(4): p. 

808-818. 

63. McLaren, W., et al., The Ensembl Variant Effect Predictor. Genome Biol, 2016. 17(1): p. 122. 

64. Chen, X., et al., Manta: rapid detection of structural variants and indels for germline and cancer 

sequencing applications. Bioinformatics, 2016. 32(8): p. 1220-2. 

65. Eggertsson, H.P., et al., GraphTyper2 enables population-scale genotyping of structural variation 

using pangenome graphs. Nat Commun, 2019. 10(1): p. 5402. 

 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 6, 2024. ; https://doi.org/10.1101/2024.12.03.24317000doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.03.24317000
http://creativecommons.org/licenses/by-nd/4.0/

