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Abstract: In this research work, the gas sensing properties of halogenated chloroaluminum phthalo-
cyanine (ClAlPc) thin films were studied at room temperature. We fabricated an air-stable ClAlPc gas
sensor based on a vertical organic diode (VOD) with a porous top electrode by the solution process
method. The surface morphology of the solution-processed ClAlPc thin film was examined by field
emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). The proposed
ClAlPc-based VOD sensor can detect ammonia (NH3) gas at the ppb level (100~1000 ppb) at room
temperature. Additionally, the ClAlPc sensor was highly selective towards NH3 gas compared to
other interfering gases (NO2, ACE, NO, H2S, and CO). In addition, the device lifetime was tested
by storing the device at ambient conditions. The effect of relative humidity (RH) on the ClAlPc
NH3 gas sensor was also explored. The aim of this study is to extend these findings on halogenated
phthalocyanine-based materials to practical electronic nose applications in the future.

Keywords: organic semiconductor; vertical organic diode; e-nose; ammonia gas sensor;
room temperature

1. Introduction

In recent years, the electronic nose (e-nose) has received considerable attention due
to its potential applications in several fields including environmental monitoring, food
storage, healthcare, industry, automobiles, military, and cosmetics [1–5]. An e-nose is an
analytical tool that can sense and identify odors and flavor using a sensor array. For an
e-nose system, the choice of reliable gas sensors is the key factor for integration. Based on
their working principle, different types of gas sensors have been demonstrated for their
related applications [6,7]. Optical, acoustic, electrochemical, and catalytic sensors have
shown some limitations such as a high cost, huge size, heavy weight, low reproducibility,
poor selectivity, and complex system. In this context, solid-state gas sensors are appropriate
candidates for developing a compact e-nose technology due to their low production cost,
easy handling, good sensing behavior, and device miniaturization [5].

Recently, Ali et al. [1] reviewed e-nose technology for the quality testing of food and
agricultural products. It can be seen that metal oxide semiconductors (MOS) have been
widely used in solid-state gas sensors to detect a wide variety of gases including flammable
and toxic gases. Apart from the advantages of MOS sensor arrays, there are still some chal-
lenges for developing a portable e-nose with MOS sensor arrays. For instance, most MOS
sensor arrays require a high operating temperature, which consumes high energy and takes
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extra time for heating before device operation [3]. To realize a reliable e-nose system, a lot of
aspects including good sensitivity/selectivity, low power consumption, room temperature
operation, high stability, compactness, and cost effectiveness should be considered [5].
Over recent decades, several groups have investigated organic semiconductor (OSC)-based
gas sensor arrays for e-nose applications [8–13]. OSC-based gas sensors are a benefit to
e-nose systems owing to their inherent properties such as room temperature operation,
fast response/recovery, low manufacturing cost, light weight, low power consumption,
wide variety of material choice, and mechanical flexibility. In our prior works, we also
successfully demonstrated numerous air-stable OSC gas sensors with room temperature
operation for healthcare [14–16], environmental [17–19], and food quality monitoring [20].
In addition, we proposed an ultra-low power gas sensor based on a vertical organic diode
(VOD) to detect ppb-level ammonia (NH3) at room temperature [21,22]. The detection of
NH3 is very crucial because of its increasing utilization in multiple fields such as health and
environmental monitoring, food quality testing, agricultural production, and industrial
applications. For example, in healthcare monitoring, NH3 in exhaled human breath has
been considered as a biomarker for chronic kidney diseases (CKD). Other volatile amine
gases such as trimethylamine and dimethylamine have been demonstrated as important
indicators for fish freshness [20]. In addition, only limited OSC gas sensor arrays cur-
rently fulfill the requirements of e-nose applications. Therefore, more explorations on
environmentally stable OSC materials are still needed.

Phthalocyanines (Pcs) are one type of robust semiconducting, organic, small molecule
material which can be considered a candidate for e-nose applications. In prior reports, Pcs
have been utilized in various applications including field effect transistors [23], nonlinear
optics [24], chemical sensors [25–28], photovoltaics [29], and heterojunction devices [30]
due to their simple synthesis, non-toxicity, and chemical/thermal stability. Additionally, a
variety of MPcs (e.g., CuPc, PbPc, ZnPc, FePc, CoPc) have been used as active layers in gas
sensors, which show good sensitivity to both electron acceptor and donor gases [31–35].
It was noted that the MPc active layers were mostly prepared by vacuum or thermal
evaporation because of their insolubility in conventional solvents.

In the present work, chloroaluminum phthalocyanine (ClAlPc) was used as the sens-
ing layer to detect ppb-regime NH3 gas at room temperature. According to the literature,
halogenated Pcs exhibit a favorable morphological structure and high thermal stability
compared to metal Pcs [36,37]. In a few studies, ClAlPc and its composites have been
utilized in gas and humidity sensors [38–46]. In 2011, Azim-Araghi et al. [42] studied the
effect of temperature and humidity on a ClAlPc-based O2 sensor. Similarly, Jafari et al. [41]
found the sensing response of a ClAlPc sensor (NH3 and ethanol) to be enhanced with the
increase in the temperature up to the optimal operating temperature (Tmax = 76 ◦C), and
the sensing response gradually reduced at high temperatures (>85 ◦C) due to the adsorp-
tion/desorption equilibrium phenomenon [43]. Recently, Araghi et al. [46] fabricated a
CO2 gas sensor using ClAlPc by thermal evaporation. However, all the reported ClAlPc
gas sensors were demonstrated to realize as low as ppm-regime sensitivity. In this paper,
we explored the basic sensing properties of a ClAlPc-based VOD sensor, which exhibited a
ppb-regime NH3 sensitivity at room temperature. The proposed ClAlPc-based VOD sensor
could be a potential candidate for a reliable e-nose system in the future.

2. Experimental Details
2.1. Materials and Device Fabrication

The fabrication process flow of the proposed VOD sensor is shown in Figure S1,
see Supplementary Materials. The proposed porous VOD sensor was fabricated on a
pre-cleaned and oxygen plasma-treated (100 W, 600 s) indium tin oxide (ITO) glass sub-
strate. Insulating cross-linkable poly (4-vinylphenol) (PVP) solution was spun (3500 rpm,
40 s) on the ITO substrate and annealed at 200 ◦C for 1 h (thickness: ~250 nm). Poly(3-
hexylthiophene) (P3HT) solution (1.5 wt% in chlorobenzene) was spin coated (3500 rpm,
40 s) onto the PVP layer and annealed at 200 ◦C for 10 min as a surface modification layer
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to adsorb polystyrene (PS) nanospheres. PS nanospheres with a diameter of 200 nm were
then coated for the following colloidal lithography process [18–21]. Aluminum 60 nm
in thickness was thermally evaporated as the top electrode. The PS nanospheres were
removed with 3M scotch adhesive tape to form a porous Al electrode. Afterwards, the
region without the top Al electrode was etched by O2 plasma. Finally, the sensing material
ClAlPc was dissolved in trifluoroacetic acid (0.1 wt%), spun (2000 rpm, 40 s) onto the
porous structure, and annealed at 75 ◦C for 10 min (thickness: 50~60 nm) to fill into the
vertical cylinders and to connect the top and bottom electrodes. The final structure of
the fabricated VOD and its cross-section view are shown in Figure 1a,b. The molecular
structure of ClAlPc is illustrated in Figure 1c. The active area of the ClAlPc VOD sensor
was 1 mm2, defined by the cross-section of the patterned ITO and Al electrodes.
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device. (c) Molecular structure of ClAlPc.

2.2. Sensor Measurement System

In order to investigate the gas sensing and electrical properties of the proposed
ClAlPc VOD sensor, we utilized our standard sensor measurement system. More details
of our sensing system have been reported in our prior works [19,21]. The target gas
was introduced into a sensing chamber through a gas-tight syringe to interact with the
sensor device. The carrier gas (air) was well mixed with the target gas before reaching
the sensing chamber. The gas flow was controlled by a pump (flow rate: 500 mL/min).
For our measurement, we fixed the gas injection period at 60 s for each concentration.
The gas concentration can be accurately controlled by adjusting the injection rate of the
electrical syringe pump system. A constant relative humidity (RH = 10%) was maintained
throughout the measurement with the help of a NaOH cylinder. For comparative study,
the device was also tested at different humidity conditions (RH = 10%, 20%, 50%, 70%).
In this case, the NaOH cylinder was removed, and the flow rate was controlled by a
mass flow controller in the system. The current–voltage characteristics of the sensor were
measured by a Keithley Source Meter (model 2400) and a Keysight U2722A USB Modular
Source Measure Unit. The sensing response was calculated using the following formula:
R = (∆I/Iinitial), i.e., the current variation ratio within the sensing time divided by the initial
current, where R is the sensing response, ∆I is the current difference at a fixed sensing time
(60 s), and Iinitial is the initial current.
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3. Results and Discussions
3.1. Morphology Analysis

The surface morphology of the solution-processed ClAlPc thin film was investigated
with the aid of a field emission scanning electron microscope (SEM SU8010) and an atomic
force microscope (Bruker Edge). Figure 2a,b show the AFM and FESEM images of the
ClAlPc thin film deposited on a glass substrate via spin coating (same method used for
the device fabrication). The root mean square (RMS) value of the surface roughness was
5.1 nm, indicating a uniform surface morphology. As shown in Figure 2b, the grains are
uniformly distributed, and the average grain size is between 42 and 50 nm.

3.2. Electrical and Sensing Behavior

The current–voltage characteristic of the ClAlPc sensor is depicted in Figure 2c. The
ClAlPc VOD sensor showed good diode behavior. The real-time measurement of the ClAlPc
sensor was conducted with a fixed operating voltage of 5 V under various concentrations
of NH3 (100–1000 ppb) at room temperature. Figure 2d displays the representative current
in real-time measurements. The cyan color periods in Figure 2d indicate the time under
the exposure of NH3 (60 s). In general, when OSC-based chemical sensors are exposed to
analytes, specific interactions (e.g., doping/de-doping, or trapping/quenching of charge
carriers) occur between the sensing layer and the analyte. These interactions lead to
affecting the charge transport properties (charge carrier density or mobility) in the OSC
sensing layers [14,15,20,46–49]. As shown in Figure 2d, the current of the ClAlPc device
obviously decreases when the sensor is exposed to NH3 gas and increases after the removal
of NH3 gas from the sensing chamber. According to prior reports, the reducing NH3, due
to its lone pair of electrons, acts as a de-doping agent for p-type semiconductors. Thus, for
ClAlPc, which is a p-type OSC [47], the hole carrier density may be decreased under the
exposure of NH3 [47–50]. As a result, the current (in the cyan color periods) decreases upon
different concentrations of NH3 exposure (100~1000 ppb) and recovers when removing
NH3 from the chamber. The sensing responses to 1000, 500, 300, and 100 ppb NH3 are 10.8%,
5.7%, 3.1%, and 0.6%, respectively. To know the effect of humidity on the ClAlPc NH3 gas
sensor, we tested the device under different relative humidity conditions (RH = 10~70%).
The sensing response gradually increases while varying the humidity of the sensing system,
as shown in Figure S2. For instance, at RH = 10%, the responses to 1000, 500, 300, and
100 ppb NH3 were 10.8%, 5.7%, 3.1%, and 0.6%, respectively. At RH = 70%, the responses
to 1000, 500, 300, and 100 ppb NH3 were 20.4%, 15.5%, 10.6%, and 5.9%, respectively.
Similar results have also been seen in other organic semiconductor materials such as
DPA-Ph-DBPzDCN and polyaniline [51,52]. However, more studies are needed to further
understand the mechanism between relative humidity and NH3 sensing in ClAlPc in the
future. It is worthy to note that the response curves exhibit good linearity under different
humidity conditions, indicating the sensor can provide a convincing sensing capability, if a
calibration is conducted under the test circumstance in advance, or the measuring system
is equipped with some humidity control part (e.g., NaOH cylinder) to maintain a constant
humidity.

3.3. Selectivity and Repeatability

In gas sensor technology, selectivity and repeatability are two important points to
evaluate in sensors for real-time applications. To study the selectivity of the ClAlPc sensor,
the sensor was exposed to various gases separately at the same concentration (1 ppm).
As shown in Figure 3a, the device shows a high response when exposed to NH3 (11.5%),
whereas the response to NO2 and CO is only 3.1% and 1.6%, respectively. Interestingly,
the ClAlPc sensor shows no response to ACE, H2S, and NO gases. Furthermore, we also
exposed the ClAlPc device to NH3 and other interfering gases (ACE, CO, H2S, NO, and
NO2) at the same ratio of concentrations (1:1 ppm) simultaneously. As shown in Figure 3b,
there is no significant change in NH3 sensing when mixed with other interfering gases
(CO, H2S. NO, ACE), except for NO2. Therefore, the ClAlPc sensor can be employed for the
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detection of NH3 gas even in harsh environments. As shown in Figure S4, even the ClAlPc
sensor stored for 30 days exhibits a stable response in repeated test cycles. These results
suggest that the proposed ClAlPc sensor exhibits good selectivity as well as repeatability.
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3.4. Long-Term Stability

Finally, the long-term stability of the ClAlPc NH3 sensor was determined, where the
senor was stored in ambient air. The device current at an operating voltage of 5 V and
the NH3 sensing response of the ClAlPc sensor were traced as a function of the storage
days, which are shown Figure 4a,b, respectively. After one month, the current in the
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ClAlPc device decreased from 9.2 × 10−6 to 6.8 × 10−8 A. Initially, the sensing response
decreased and then maintained a constant level after 20 days, as shown in Figure 4b. To
understand the degradation mechanism of the gas sensor, further analysis will be carried
out in the future. However, the performance of the proposed solution-processed ClAlPc
sensor showed a better performance compared with previously reported ClAlPc film
sensors (Table 1). In particular, our proposed ClAlPc VOD sensor exhibits ppb-regime
NH3 sensitivity at room temperature. The nanoporous diode with a vertical structure
demonstrates effective gas sensing because the nanopores act as direct pathways for gas
molecules to interact deeply with the ClAlPc sensing layer. Therefore, the sensor provides
a good selectivity, good repeatability, and reasonable sensing response even after 30 days.
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Table 1. Comparison of reported gas sensors based on chloroaluminum phthalocyanine.

Material Film Formation Target Gas Operating
Temperature (◦C) Lifetime Reference

ClAlPc Thermal
evaporation NO2, Cl2, NH3 (500 ppm) RT~106 ◦C NA 40

ClAlPc Thermal
evaporation NH3, Ethanol (100 ppm) RT~175 ◦C >60 days 41

PAni-ClAlPc Spin coating NO2 (10 ppm) RT~76.8 ◦C NA 42

PdPc/ClAlPc Thermal
evaporation O2 (%) RT~76.8 ◦C ~60 days 43

PAni-ClAlPc Spin coating CO2 (500 ppm) RT NA 46

ClAlPc Thermal
evaporation CO2 (1000 ppm) RT~176 ◦C NA 47

ClAlPc Spin coating NH3 (100 ppb) RT >30 days This work

4. Conclusions

In this study, we fabricated a solution-processed vertical organic diode NH3 sensor
using ClAlPc as the sensing layer. The proposed sensor was operated at room temperature
to detect NH3 gas at a ppb regime with a fixed operating voltage of 5 V. The solution-
processed ClAlPc thin film exhibited a good surface morphology. The ClAlPc sensor
showed good selectivity to NH3 gas, and the sensing capability could be sustained over a
month at ambient conditions. The device also showed a stable performance in the test with
repeated cycles. Moreover, the effect of the relative humidity (RH = 10~70%) on the ClAlPc
sensor was studied. The ClAlPc ammonia sensor satisfies all the basic requirements for a
reliable gas sensor owing to its good selectivity, sensitivity, repeatability, stability, and room
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temperature operation. These results suggest that a porous vertical organic diode utilizing
ClAlPc as the sensing film will be a potential candidate for electronic nose applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/s21175783/s1.
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