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Abstract: Background: Advanced prostate cancer (PC) may accumulate genomic alterations that
hallmark lineage plasticity and transdifferentiation to a neuroendocrine (NE) phenotype. Fibroblast
activation protein (FAP) is a key player in epithelial-to-mesenchymal transition (EMT). However, its
clinical value and role in NE differentiation in advanced PC has not been fully investigated. Methods:
Two hundred and eight patients from a multicenter, prospective cohort of patients with metastatic
castration-resistant prostate cancer (CRPC) with available RNA sequencing data were analyzed for
tumor FAP mRNA expression, and its association with overall survival (OS) and NE tumor features
was investigated. Results: Twenty-one patients (10%) were found to have high FAP mRNA expression.
Compared to the rest, this subset had a proportionally higher exposure to taxanes and AR signaling
inhibitors (abiraterone or enzalutamide) and was characterized by active NE signaling, evidenced
by high NEPC- and low AR-gene expression scores. These patients with high tumor mRNA FAP
expression had a more aggressive clinical course and significantly shorter survival (12 months)
compared to those without altered FAP expression (28 months, log-rank p = 0.016). Conclusions:
FAP expression may serve as a valuable NE marker indicating a worse prognosis in patients with
metastatic CRPC.

Keywords: fibroblast activating protein; neuroendocrine differentiation; prostate cancer; castration-
resistant; androgen receptor

1. Introduction

Cancer-associated fibroblasts (CAFs) are an essential component of tumor stroma, with
direct involvement in cancer progression via interactions with other cell types within the
tumor microenvironment [1]. A key mediator of these interactions is fibroblast activation
protein (FAP).

FAP is a transmembrane protease directly implicated in epithelial-mesenchymal tran-
sition (EMT) of various tumors, including in the lungs, breast, colorectal, gastric, pancreatic,
hepatocellular, head and neck, and skin [2-9]. FAP expression is associated with aggressive
tumor features and clinical course including progression and metastasis [2,5,7].

Prostate cancer (PC) represents a disease model for studying EMT, particularly at
later stages when there is transition to a neuroendocrine (NE) phenotype under the effect
of newer androgen receptor targeted agents (ARTA), such as abiraterone and enzalu-
tamide [10,11]. Castration-resistant NEPC is a distinct clinicopathological and molecular
entity compared the typical CRPC adenocarcinoma, with worse prognosis and poor re-
sponse to systemic therapies [12-14]. Therefore, identifying targetable surrogate markers
of transition to this NE phenotype is key to overcome resistance and improve outcomes in
this subset of patients.

In this study, we assessed the transcriptional expression of FAP and its prognostic
relevance in patients with metastatic CRPC.
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2. Materials and Methods

A publicly available database, cBioportal for Cancer Genomics (www.cbioportal.org
accessed on 6 January 2022), was used to query RNA sequencing data for FAP mRNA
expression in a prospective multicenter cohort of 444 tumor samples from 429 patients with
mCRPC [15]. Gene expression as fragments per kilobase of exon per million fragments
mapped (FPKMs) was determined using featureCounts against protein-coding genes from
the Gencode v26 reference [15]. The NEPC score (calculated based on the expression
levels of 70 genes) and the AR score (calculated based on the expression levels of 30 genes)
were computed by the Pearson’s correlation coefficient between the log2-transformed
FPKM values of each score’s gene list and a reference gene expression vector, as previously
described [12]. The Cancer Cell Line Encyclopedia (CCLE) database [16] was used to query
various primary cell lines for FAP mRNA expression.

The Kaplan-Meier method was used to assess the association between high and
unaltered FAP mRNA expression with overall survival (OS), using a threshold z-score
of >1.0 in the mCRPC cohort and in two additional validation cohorts [17,18]. OS was
measured from the date of biopsy to time of death or last follow-up. The Chi-squared
test was used to compare clinical and pathological characteristics and the Wilcoxon test
was used to compare NEPC and AR signaling scores between subgroups with high vs.
unaltered FAP mRNA expression. Multiple hypothesis test correction was applied using
the Benjamini-Hochberg method. p and g values of <0.05 were considered significant for
all analyses.

3. Results

Two hundred and eight patients/samples with available RNA sequencing data out of
the entire mCRPC cohort [15] were analyzed. Of those, 21 patients (10%) were found to
have high (z-score > 1) FAP mRNA expression (Figure 1), as a result of gene amplification
and copy number gains (Figure 2). There were no structural variants.
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Figure 1. Oncoplot of FAP mRNA expression in patients with mCRPC. #: number, *: % of profiled.
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Figure 2. Copy-number alterations associated with high FAP mRNA expression in mCRPC patients.

The median age at diagnosis was 61 years and the median PSA of all patients was
27.5 (0.68-2000 ng/mL). Other key clinical characteristics including tissue sites of biopsy,
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RP Gleason score, ARTA (abiraterone or enzalutamide) and taxane exposure status between
high and unaltered groups are depicted in Figure 2. The tumor sites studied were bone
(n = 82) and lymph nodes (n = 79), followed by the liver (n = 26), other soft tissues
(n =9), the prostate (n = 5), and the adrenal glands (n = 2) (Figure 3A). Patients with high
tumor FAP expression had proportionally higher Gleason 9 scores at RP (9/21 or 43% vs.
58/187 or 31%) (Figure 3B). Ten out of 21 (48%) patients with high tumoral FAP expression
were either previously exposed or on-treatment with ARTA (abiraterone or enzalutamide),
while 85/187 (45%) had the same exposure in the unaltered group (Figure 3C). A greater
proportion of patients with high FAP tumor expression had received taxanes prior to biopsy
(11/21 or 52%) compared to those with unaltered FAP transcript levels (68/187 or 36%)
(Figure 3D).
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Figure 3. Distribution of mCRPC patients with altered (high) and unaltered tumor FAP mRNA expres-
sion according to (A) tumor biopsy sites, (B) Gleason scores at RP, (C) abiraterone and enzalutamide
exposure status, and (D) taxane exposure status. #: number.

There were no statistically significant differences in the distribution of RP Gleason
scores (Chi-squared test g-value = 0.948), ARTA exposure (Chi-squared test g-value = 0.420)
or taxane exposure (Chi-squared test g-value = 0.420) between patients with high vs.
unaltered FAP mRNA expression.

Patients with tumors harboring high FAP mRNA expression had a significantly shorter
median OS (12 months) compared to those without altered FAP expression (28 months,
log-rank p = 0.016) (Figure 4).

To validate our findings in other tumor types, we assessed FAP mRNA expression
across 947 human cancer cell lines from the Cancer Cell Line Encyclopedia (CCLE) [16].
The highest transcript levels above a z-score of 1.0 were found in melanoma (64.4% of
59 cell lines) and glioma (58.7% of 46 cell lines) (Figure 5A). We thus sought to examine the
prognostic utility of high FAP mRNA in two independent cohorts of melanoma (1 = 64),
and glioblastoma (n = 155) from The Cancer Atlas Database (TCGA) [17,18]. High FAP
mRNA was found in 10% and 4% of tumors, respectively, and was associated with shorter
median OS (melanoma cohort: 5.5 vs. 32.4 mos, p = 0.046; glioblastoma cohort: 10.4 vs.
14 mos, p = 0.024) (Figure 5B-D).
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Figure 4. Kaplan-Meier curve of OS according to FAP mRNA expression (high vs. unaltered).
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Figure 5. (A) Frequency of high FAP mRNA in various human cell lines from CCLE. (B) Oncoplots
of FAP mRNA expression in melanoma and glioblastoma patient cohorts. Kaplan Meier curves of
OS according to FAP mRNA expression (high vs. unaltered) in melanoma (C) and glioblastoma
(D) cohorts. *: % of profiled.

We then specifically sought to assess whether high FAP expression is associated with
presence of neuroendocrine features. NEPC and AR signaling scores were assessed in each
tumor sample and compared between subgroups with high vs. unaltered FAP transcript
levels. Tumors with high FAP expression were characterized by a significantly higher NEPC
score of 0.05 (—0.06-0.23) compared to those without alteration in FAP transcript levels
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[—0.04 (—0.20-0.16); g < 0.001] (Figure 6A). Reversely, AR score was significantly lower
[0.40 (—0.10-0.54); g < 0.001] in tumors with high FAP expression (Figure 6B).
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Figure 6. NEPC (A) and AR (B) scores in mCRPC patients with altered (high) and unaltered tumor
FAP mRNA expression.

4. Discussion

FAP is an increasingly recognized CAF marker, and high FAP protein expression in
various cancers often indicates an aggressive course. This study assessed the clinical rele-
vance of FAP transcriptional expression in patients with mCRPC with respect to prognosis
and presence of NE features. We found that high FAP expression is a harbinger of shorter
OS in mCRPC patients. We validated our findings on the negative prognostic significance
of FAP in independent cohorts of patients with high FAP-expressing tumors based on the
CCLE, including melanoma and glioma. Additionally, we showed that CRPC tumors
with high FAP expression are characterized by a higher NEPC score and lower AR score
suggesting an enrichment in NE features.

A gradient of increasing FAP protein expression in prostate tissue microarrays (TMA)
from 94 patients at different stages of PC (primary PC, patients undergoing neoadjuvant
androgen deprivation therapy, CRPC, and NEPC) was recently reported, indicating a
significant rise upon disease progression at the CRPC and NEPC states [19]. Our work
complements these findings, by demonstrating that high FAP transcript levels are associated
with worse prognosis of mCRPC patients. Taking a step further, our findings indicate that
this aggressive clinical course of patients with high FAP-expressing tumors is associated
with an enrichment in NE differentiation signals as indicated by a high NEPC score and
low AR score.

It is likely that within this highly heterogenous, multicenter cohort, with variable
treatment intervals of ARTA (ABI/ENZA) or/and taxanes, small differences in FAP ex-
pression are difficult to be detected. On the other hand, while it did not reach statistical
significance, there was a numeric enrichment of high GS tumors at RP, particularly GS 9, in
the high FAP-expressing subset compared to those patients whose tumors did not display
FAP transcript level alterations.

Our findings have important diagnostic and therapeutic implications. First, the
feasibility of detecting FAP for imaging purposes with use of small molecules on optical
and single-photon computed tomography was recently shown in vitro and in vivo [20].
Furthermore, PET imaging with a FAP-targeted antibody imaging probe, 3Zr-B12 IgG, was
successfully evaluated in preclinical PC models, demonstrating high tumor uptake and
long-term retention of the probe [21]. Clinical evaluation of another PET-probe, ®*Ga-FAPI
PET/CT demonstrated multiple metastatic lesions confirmed by conventional CT scan in
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three metastatic CRPC and NEPC patients, supporting the role of FAP as a key diagnostic
target [19]. Interestingly, when ®8Ga-FAPI was compared head-to-head with 8F-FDG
PET/CT in a multicenter study of 71 patients with various primaries, the former had similar
quantitative tumor uptake, but lower background uptake, yielding improved diagnostic
information particularly in tumor areas with high physiological 8F-FDG uptake [22]. From
a therapeutic perspective, targeting of stromal FAP with monoclocal antibodies can be
effective, particularly when combined with tumor targeting approaches against the prostate
tumor antigen tumor-associated calcium signal transducer 2 (TROP2) using engineered
natural killer NK-92 cells expressing CD64 [23].

Collectively, while our analysis requires additional prospective validation, our find-
ings strengthen the clinical value of FAP as a surrogate marker of NE differentiation and
prognosticator in metastatic CRPC, providing the rational for its diagnostic and therapeutic
targeting to improve outcomes of these patients.
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