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Background: Rheumatoid arthritis (RA) refers to an autoimmune rheumatic disease that
imposes a huge burden on patients and society. Early RA diagnosis is critical to preventing
disease progression and selecting optimal therapeutic strategies more effectively. In the
present study, the aim was at examining RA’s diagnostic signatures and the effect of
immune cell infiltration in this pathology.

Methods: Gene Expression Omnibus (GEO) database provided three datasets of gene
expressions. Firstly, this study adopted R software for identifying differentially expressed
genes (DEGs) and conducting functional correlation analyses. Subsequently, we
integrated bioinformatic analysis and machine-learning strategies for screening and
determining RA’s diagnostic signatures and further verify by qRT-PCR. The diagnostic
values were assessed through receiver operating characteristic (ROC) curves. Moreover,
this study employed cell-type identification by estimating relative subsets of RNA
transcript (CIBERSORT) website for assessing the inflammatory state of RA, and an
investigation was conducted on the relationship of diagnostic signatures and infiltrating
immune cells.

Results: On the whole, 54 robust DEGs received the recognition. Lymphocyte-specific
protein 1 (LSP1), Granulysin (GNLY), and Mesenchymal homobox 2 (MEOX2) (AUC =
0.955) were regarded as RA’s diagnostic markers and showed their statistically significant
difference by qRT-PCR. As indicated from the immune cell infiltration analysis, resting NK
cells, neutrophils, activated NK cells, T cells CD8, memory B cells, and M0 macrophages
may be involved in the development of RA. Additionally, all diagnostic signatures might be
different degrees of correlation with immune cells.
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Conclusions: In conclusion, LSP1, GNLY, and MEOX2 are likely to be available in terms
of diagnosing and treating RA, and the infiltration of immune cells mentioned above may
critically impact RA development and occurrence.
Keywords: rheumatoid arthritis, immune cells, diagnostic marker, bioinformatic analysis, machine-
learning strategies
INTRODUCTION

Rheumatoid arthritis (RA) is recognized as a general chronic
autoimmune connective tissue disease, which primarily covers the
joints and eventually leads to chronic disability, joint destruction,
and shortened life span (1–3). Rheumatoid arthritis affects 5 to 10
per 1,000 people (3). Ultimately, RA irreversibly damages joints,
imposing a great adverse effect onto individual and society.
Nevertheless, detection of RA at an early stage offers the
opportunity for an effective treatment response, and this
preclinical stage may be as short as a few months (4). At present,
diagnosed rheumatoid factor and anticyclic citrullinated peptide
antibody are serum biomarkers for the diagnosis of rheumatoid (5,
6). Yet early RA, particularly negative serum rheumatoid factor and
anticyclic citrullinated antibodies, cannot easily be diagnosed for
insufficient feasible biomarker. Therefore, finding novel and feasible
biomarker is very important to early diagnose and treat RA.

Recently, increasing articles revealed that infiltration of immune
cells critically impacts RA occurrence and progresses. For instance,
RA exhibits a unique pattern of macrophage infiltration. The degree
of macrophage infiltration in joint tissues and the level of monocyte-
derived cytokines in serum show positive correlations to disease
severity (7). CD8+ T cell exhibits anti-inflammation characteristic
and is likely to contribute to the reduction of persistent autoimmune
responses in rheumatoid joints (8, 9). B cells impact bone
remodeling in RA (10). Nevertheless, the molecular system
allowing different immune cells to impact RA occurrence and
progresses should be clarified (11). For the mentioned reason,
according to the aspect of immune systems, evaluating immune
cells’ infiltration and ascertaining the distinctions within the
infiltrating immune cells’ components are critical in elucidating
RA molecular system and finding novel immunotherapeutic target.
Cell-type identification by estimating relative subsets of RNA
transcript (CIBERSORT) is a computational method for
quantifying cell composition from tissue gene expression profiles
obtained by RNA sequencing (12). Thus far, no studies have used
CIBERSORT to analyze immune cell infiltration in whole blood of
rheumatoid arthritis.

This study obtained RA microarray datasets in the GEO
database to conduct investigations for differential expression
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us; RRA, Robust Rank Aggregation;
pedia of Genes and Genomes; GSEA,
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twork analysis; AUC, area under the
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gene. Besides, to screen and identify diagnostic markers of RA
in depth, bioinformatics analysis, and machine-learning
strategies were combined. Next, CIBERSORT was adopted for
investigating the differences in whole-blood immune infiltrates
in 22 immune cell subsets between RA and normal samples.
Furthermore, the associations of diagnostic markers and
infiltrating immune cells were investigated for gaining more
insights into the molecular immune mechanisms involved in
RA development.
MATERIALS AND METHODS

Data Collection and Data Processing
Here, datasets received the search from the Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/)
with the keywords: “Arthritis, Rheumatoid” [MeSH Terms] OR
“Arthritis, Rheumatoid” [All Fields] AND “Homo sapiens”
[porgn: txid9606] AND “Expression profiling by array“ [All
Fields]. The screening standards included the following: the
microarray datasets referred to profiles of gene expressions with
genome-wide of whole blood; the microarray datasets contained
samples from RA and samples from healthy state; all included
samples were not treated with drugs. Eventually, three datasets
received the screening to achieve the in-depth investigation:
GSE100191 (13), GSE17755 (14), and GSE93272 (15). The table
of the clinical information for the samples of RA patients and
healthy subjects is provided in Supplementary Table 1. According
to the inclusion criteria, only RA and healthy samples were
selected for further analysis, including 50 normal controls and
119 RA patients. Next, the present study conducted the data
preprocessing based on RMA (16) (e.g., expression calculation,
normalization, and background correction).

Differential Expression Analysis
The present study adopted LIMMA (http://www.bioconductor.
org/packages/release/bioc/html/limma.html) package for
identifying DEGs through the comparison of the expression
datasets of GSE100191 and GSE17755, and the volcano plot
was drawn to present the differential expression of DEGs. DEGs
with P < 0.05 and |log2 FC| > 1 were considered statistically
significant. Next, the DEGs were further identified based on the
“RobustRankAggreg” package in R to obtain robust DEGs. This
method of Robust Rank Aggregation (RRA) can minimize the
deviation and error between multiple datasets (17).

Functional Correlation Analysis
For the exploration of the function and pathway of the identified
feature gene, this study conducted the gene ontology (GO) and
October 2021 | Volume 12 | Article 724934
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Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment investigations with the use of the “clusterProfiler”
package (18). P <0.05 was considered to show the statistical
significance. In order to more intuitively clarify the gene
expression level of significantly enriched functional pathways,
gene set enrichment analysis (GSEA) was performed in R
software (19).

Screening and Verification of
Diagnostic Markers
The four algorithms were adopted for screening of novel and key
biomarkers for RA, including random forests (RF) (20, 21), least
absolute shrinkage and selection operator (LASSO) logistic
regression (22), support vector machine-recursive feature
elimination (SVM-RFE) (23), and weighted gene co-expression
network analysis (WGCNA) (24). This study adopted the
random forest algorithm with R package “randomForest.” This
study carried out LASSO logistic regression investigation with R
package “glmnet,” and minimal lambda was considered optimal.
This study conducted the featured gene selection with the RFE
function within the caret package based on five-fold cross-
validation. The SVM classifier was constructed using R
package e1071 with five-fold cross-validation. WGCNA was
performed by R package “WGCNA” (25). Then, this study
selected the overlapping genes from the mentioned four
classification models for further analysis. For the in-depth test
of the efficacy of key biomarkers, the dataset of GSE93272 was
combined with GSE100191 and GSE17755 as the validation set.
It was assessed based on the investigation of receiver operating
characteristic (ROC) curves (MedCalc software), and the area
under the curve (AUC) was calculated for evaluating the
predictive effect achieved by the algorithms. A two-sided P <
0.05 showed statistical significance.

Quantitative PCR Analysis
A total of 34 whole blood samples (including 16 RA without drug
treatments and 18 control samples with healthy state) were
collected from Fuzhou Second Hospital affiliated to Xiamen
University. The Ethical Committee of Fuzhou Second Hospital
affiliated to Xiamen University approved this study, and the
respective patient provided informed consent in a written form.
All whole blood samples were immediately frozen in liquid
nitrogen after the collecting process and stored at −80°C. The
extraction of total RNA was performed with the use of Trizol
reagent (TAKARA, Dalian, China). With a miRNA First Strand
cDNA Synthesis Kit (Sangon, China), the reverse transcription of
total RNA and miRNAs was performed. Besides, this study
adopted the MicroRNAs qPCR Kit (Sangon, China) for
examining miRNA and mRNA expressions, with the following
primers: GAPDH (forward: 5′-GACAGTCAGCCGCATCTTCT-
3′, reverse: 5′-ACCAAATCCGTTGACTCCGA-3′), LSP1
(forward: 5′-CTGTTAGCTTGGGAAGAGG-3′, reverse: 5′-ATA
GCCCCTCTCAGATAGTC-3′), MEOX2 (forward: 5′-ATACT
AGGGGAGATTCTCGC-3′, reverse: 5′-TAGGACTTTGGA
GGGCTTAG-3′), and GNLY (forward: 5′-TCTGGTCCT
AACTCTACTGG-3′, reverse: 5′-CAATCCTAGACAGT
Frontiers in Immunology | www.frontiersin.org 3
GTAGGC-3′) synthesized by Sangon Biotech. GAPDH was then
handled as an internal reference. The relative expression was
calculated using the 2−DDCT method. P values < 0.05 showed
statistical significance.

Evaluation and Correlation Analysis of
Infiltration-Related Immune Cells
The CIBERSORT website was used to filter 22 kinds of the
immune cell matrix. According to P < 0.05, the immune cell
infiltration matrix was obtained. The “ggplot2” package was used
for PCA cluster investigation of the immune cell infiltration
matrix. The present study adopted “corrplot” package for
drawing the correlation heatmap for visualizing the correlation
of 22 kinds of infiltrating immune cells. The “ggstatsplot” and
“ggplot2” packages were adopted for analyzing the Spearman
relationship between characteristic diagnostic markers and
immune infiltrating cells and visualizing the result.
RESULTS

Screening of DEGs in Different Datasets
Figure 1 illustrates a workflow of this study. There were 1,226
DEGs in GSE100191, including 207 upregulated and 1,019
downregulated genes (Supplementary Table 2 and
Figure 2A). Meanwhile, 58 DEGs were screened from the
GSE17755 datasets, including 33 upregulated and 25
downregulated genes (Supplementary Table 3 and Figure 2B).
Next, 54 robust DEGs were screened in total with the RRA
method (including 29 upregulated and 25 downregulated genes)
(Supplementary Table 4).

Functional Enrichment Analyses
Based on the results of the present study, the significantly
enriched biological processes included immune response,
regulation of natural killer cell–mediated immunity, regulation
of chronic inflammatory response, adaptive immune response,
innate immune response, etc. (Figure 3A). Moreover, antigen
processing and presentation, endocytosis, natural killer cell–
mediated cytotoxicity, primary immunodeficiency, and
oxidative phosphorylation were considered to be the most
remarkably enriched pathways (Figure 3B), and GSEA results
presented the enriched mainly pathways (Figure 3C). The above
results suggest that the immune system is critical to RA.

Screening and Verification of
Diagnostic Markers
The present study adopted LASSO logistic regression algorithm
to identify 16 key biomarkers from DEGs (Figures 4A, B).
Sixteen genes were identified as key biomarkers from DEGs by
the SVM-RFE algorithm (Figure 4C). Moreover, 15 genes were
identified as vital biomarkers with RF algorithm (Figure 4D).
When 0.92 acted as the correlation coefficient threshold, the soft-
thresholding power was selected as 20 (Figures 5A, B).
In accordance with WGCNA analysis, six remarkable co-
expression modules were built. As indicated from the
October 2021 | Volume 12 | Article 724934
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investigations of module-trait correlations, multiple modules
were related to RA (Figure 5C), and the turquoise module was
the most significant one, with 2,166 genes included in total
(Figures 5D, E). LSP1, GNLY, and MEOX2 were overlapping
genes by the four algorithms including one upregulated (MEOX2)
Frontiers in Immunology | www.frontiersin.org 4
and two downregulated (LSP1 and GNLY) genes (Figure 6A). The
ROC curves of LSP1, GNLY, and MEOX2 revealed their
probability as valuable biomarkers with AUCs of 0.967, 0.854,
and 0. 923, respectively (Figure 6B), indicating that the three
biological markers had a high accuracy of predictive value.
FIGURE 1 | The flowchart of the analysis process.
A B

FIGURE 2 | Volcano plots of DEGs distribution in GSE17755 (A) and GSE100191 (B). Orange represented a high expression of robust DEG, while blue represented
a low expression of robust DEG.
October 2021 | Volume 12 | Article 724934
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The expression levels of the three biomarkers were examined by
qRT-PCR in 34 whole blood samples. Three biomarkers (LSP1,
GNLY, and MEOX2) were reported to be significantly
dysregulated in RA compared with healthy samples. LSP1 and
GNLY showed the significant downregulation, while MEOX2
showed a significant upregulation in RA (P<0.005) (Figures 6C–
E), indicating that the results were reproducible and reliable.

Infiltration of Immune Cells Results
With the CIBERSORT algorithm, we first summarized the results
obtained from 50 normal controls and 119 RA patients. By PCA,
the proportions of immune cells from the whole blood of RA
patients and normal controls displayed distinct group-bias
clustering and individual differences (Figure 7A). As indicated
from the correlation heatmap of the 22 types of immune cells,
eosinophils and M0 macrophages, resting T cells CD4 memory
and naive T cells CD4, T cells follicular helper and naive T cells
CD4, and activated NK cells and resting NK cells displayed a
significant negative correlation, respectively. M1 macrophages
and monocytes, M1 macrophages and T cells CD8, resting mast
Frontiers in Immunology | www.frontiersin.org 5
cells and naive B cells, eosinophils and resting dendritic cells
displayed significant positive correlations, respectively
(Figure 7B). In comparison with normal samples, RA samples
generally contained a higher proportion of resting NK cells,
neutrophils, whereas the proportions of B cells memory, T cells
CD8, activated NK cells, and M0 macrophages were relatively
lower (P < 0.05) (Figure 7C).

Correlation Analysis Between Key
Biomarkers and Infiltration-Related
Immune Cells
Based on the results of correlation analysis, LSP1 displayed a
positive correlation with memory B cells (r = 0.512, p = 0.011)
and activated mast cells (r = 0.423, p = 0.024) and showed a
negative correlation with activated dendritic cells (r = −0.382, p =
0.026) and activated T cells CD4 memory (r = −0.341, p = 0.037)
(Figure 8A). GNLY showed a positive correlation with
neutrophils (r = 0.321, p = 0.025) and showed a negative
correlation with resting mast cells (r = −0.292, p = 0.012) and
resting NK cells (r = 0.242, p = 0.026) (Figure 8B). MEOX2
A

B C

FIGURE 3 | The results of functional enrichment analyses. (A) GO analyses results of DEGs; (B) Pathway analysis results of DEGs; (C) GSEA profiles depicting the
five significant GSEA sets.
October 2021 | Volume 12 | Article 724934
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showed a positive correlation with M2 macrophages (r = 0.382,
p = 0.033) and activated T cells CD4 memory (r = 0.282, p =
0.045) and showed a negative correlation with monocytes (r =
0.202, p = 0.039) (Figure 8C).
DISCUSSION

RA primarily features chronic synovitis, systemic inflaming
process, as well as the arrival of autoantibodies, leading to
chronic inflammation, joint damage, and dysfunction of other
vital organs. Moreover, according to existing articles, infiltration
of immune cells noticeably impacts on RA’s occurrence and
progresses (8, 26). Therefore, it is of profound significance to
search for particular diagnosis marker and analyze the
infiltration patterns pertaining to RA immune cells in terms of
facilitating RA cases’ prognosis. Here, an attempt was made for
finding diagnosis marker pertaining to RA and delving into the
effect exerted by infiltration of immune cells within RA.

In our study, we identified 54 robust DEGs, covering 29 risen
and 25 declined DEGs, by comparing genes expressed in RA and
normal samples. Afterwards, the DEGs underwent the annotation
based on function-related enrichment study. The mentioned genes
displayed tight associations to immune responses and inflaming
Frontiers in Immunology | www.frontiersin.org 6
signals (e.g., immune responses, regulation of natural killer cell–
mediated immunity, responses to singlet oxygen, regulation of
chronic inflammatory response and adaptive immune response).
KEGG channels undergoing the enriching process covered
endocytosis, cytotoxicity under the mediation of natural killer
cell, antigen-presenting process and processing, primary
immunodeficiency, and oxidative phosphorylation. Based on
GO and KEGG enrichment study, RA achieved robust immune
activating process and immune cell involvements, largely causing
RA synovial inflaming process, thereby inducing arthralgia and
arthritis. Generally, arthralgia and arthritis refer to the major RA
clinically related reflections (3).

The model of random forest (RF) refers to a non-parametric
approach to achieve the classifying process under the supervision
(21). RF covers decision tree respectively originating from data
subdivided set. The present work conducted the training and
analysis for one RF classifying model for identifying descriptors
that could discriminate RA from general sample. LASSO logistic
regression, one machine-learning algorithm, determined
variables by searching for l under the smallest probability of
classification error (22). SVM Recursive Feature Elimination
(SVM-RFE) refers to an approach for machine learning and
achieves extensive applications to rank features and to select the
significant ones for classification (23). WGCNA refers to an
A B

DC

FIGURE 4 | Screening of diagnostic markers via the comprehensive strategy. (A) Least absolute shrinkage and selection operator (LASSO) logistic regression
algorithm to screen diagnostic markers; (B) Different colors represent different genes; (C, D) Based on support vector machine-recursive feature elimination (SVM-
RFE) and random forest (RF) algorithm to screen biomarkers.
October 2021 | Volume 12 | Article 724934
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approach for investigating gene expressing modes within sample.
Gene exhibiting consistent expressing modes underwent the
clustering process, and the relations of the module with
particular trait or phenotype can be determined (24). We
integrated the four different algorithms, each of which had its
own inherent characteristics. Finally, LSP1, GNLY, and MEOX2
were selected and were accurate for in-depth verifications here,
which suggested that our prediction exhibited the feasibility by
the integration strategy.

Lymphocyte-specific protein 1 (LSP1) is capable of encoding
intracellular F-actin-binding protein (27), achieving the expressions
within endothelial cell, macrophage, neutrophil, and lymphocyte
and regulating neutrophils’ movement, fibrinogen matrix protein
adhesion, and transendothelial migration (28). The F-actin-bound
cytoskeleton protein LSP1 has been identified as a regulator of
neutrophil chemotaxis during inflammation (29, 30). Hwang et al.
reported that cases with RA had reduced LSP1 expression in
peripheral blood T cell, but improved migration ability, indicating
that defects in the LSP1 signaling pathway lowered T-cell activation
threshold (cell migrating process) in RA cases (27). LSP1 regulates a
variety of biological processes in immune cells. However, immune
cell, largely comprising macrophage, T cell, and B cell, to be
autoimmune disease, critically impacts the pathogenesis of RA.
Frontiers in Immunology | www.frontiersin.org 7
Granulysin (GNLY), a member of the saponin family, has a location
within the cytotoxic granules pertaining to T cells and is released in
response to antigen stimulation. GNLY is a cytotoxic
granuloprotein secreted by cytotoxic T lymphocytes and natural
killer cells (31, 32). Although many studies have evaluated serum
GNLY as a biomarker in cases with solid or hematological
malignancies (33, 34), few studies have reported serum GNLY
concentrations in RA cases (35). Mesenchymal homobox 2
(MEOX2) encodes a member of a non-aggregated, divergent,
tentacle-like homobox gene subfamily. The MEOX family
includes two homologous domain proteins, MEOX1 and
MEOX2, which have 95% sequence homology in the
homologous domain and are required for the normal
development of bone and muscle in mouse embryos (36).
MEOX2 expression is inhibited by zinc finger binding protein
(37), and the abnormal expression of zinc finger protein displays a
tight relation with RA occurrence and progresses (38, 39).
Accordingly, this work infers that MEOX2 is likely to critically
impact RA progresses. Considering the above findings, LSP1,
GNLY, and MEOX2 are likely to impact RA progresses and act
as diagnosis markers, whereas a large number of clinically related
articles are further required for the verification of the diagnosis
significance for LSP1, GNLY, as well as MEOX2.
A B

D E

C

FIGURE 5 | WGCNA revealed gene co-expression networks in the whole peripheral blood of 169 RA patients. (A, B) Analysis of the scale-free fit index and the
mean connectivity for various soft-thresholding powers; (C) Relationships of consensus modules with samples. It contains a set of highly linked genes. Each
specified color represents a specific gene module; (D) Clustering dendrogram of differentially expressed genes related to RA; (E) The gene significance for RA in the
turquoise module (one dot represents one gene in the turquoise module).
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A B

D EC

FIGURE 6 | (A) Venn diagram showed the intersection of diagnostic markers obtained by the four algorithms. (B) The ROC curve of the diagnostic efficacy verification
after fitting three diagnostic markers to one variable. (C–E) The miRNA expressions of potential diagnostic markers were validated by qRT-PCR. ***P < 0.001.
A B

C

FIGURE 7 | Evaluation and visualization of immune cell infiltration. (A) PCA cluster plot of immune cell infiltration between RA samples and control samples. (B) Heatmap of
correlation in 22 types of immune cells. The size of the colored squares represents the strength of the correlation; red represents a positive correlation, and blue represents
a negative correlation. Darker color implies stronger association. (C) Violin diagram of the proportion of 22 types of immune cells. The red marks represent the difference in
infiltration between the two groups of samples.
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To more specifically examine effects exerted by infiltration of
immune cell in RA, the present study applied CIBERSORT for
assessing the immune infiltrating process within RA. The
infiltration of resting NK cells and neutrophils increased, while
the infiltration of B cell memory, T cell CD8, activated NK cells,
and M0 macrophages decreased, probably showing associations
with RA occurrence and progresses. It is well known that B cells
are a vital part pertaining to human adaptive immunity, whereas
these cells under RA become a possible factor in RA pathogenesis
(40). Local synthesizing process for cytokine (e.g., IL-1a, IL-23,
IL-12, IL-6, and TNF-a) under the induction from local
autoreactive B cell was suggested to impact pathology-
associated RA cells, triggering bone injury, inflammation, and
immune disorder (41, 42). It is currently evidenced that CD4+ T
helper cells impact the pathogenesis of RA largely via the
secreting process for cytokine and chemokine. Type 1 T-helper
cells achieve the significant activation within RA and secrete pro-
inflammation cytokines (e.g., IFN-g, IL-2, and TNF-a) (43).
CD8+ T cells exhibit anti-inflammation characteristic and are
likely to contribute to the reduction of ongoing autoimmune
responses in rheumatoid joints (8). CD56+ NK cells were
overexpressed and produced higher levels of IFN-g in
inflammatory joints compared with NK cell of peripheral
blood (44). Nevertheless, NK cell’s exact mechanism continues
to be unclear. Under normal conditions (45), most macrophages
Frontiers in Immunology | www.frontiersin.org 9
exist in the tissue in a resting state. However, in inflammatory
joints, they conduct the regulation of the secreting process for
pro-inflammatory cytokine and injury-associated enzyme under
the relation to the inflaming response and afterwards trigger
joint destructing process (45). Although this has been mentioned
many times, further research into the molecular mechanisms and
functions of immune cell infiltration in rheumatoid arthritis is
urgently needed.

Based on the investigation of the correlations of immune cell
and diagnostic signatures, LSP1 suggested a positive correlation
with memory B cell and mast cell under the activation and
negative correlations to activated dendritic cell and activated T
cell CD4 memory. GNLY showed positive correlations to
neutrophils and showed negative correlations to resting mast
cell and resting NK cell. MEOX2 showed positive correlations to
M2 macrophage and activated T cell CD4 memory and a
negative correlation with monocytes. Interestingly, a study
reported found that cases with RA achieved declining LSP1
expressing state within peripheral T cell with improved
migratory ability, thereby demonstrating that defects within
LSP1 signaling lead to the decline of T-cell activation threshold
(46). Kulkarni et al. reported that LSP1 underwent the
interacting process with the interferon-inducible protein inside
dendritic cell for facilitating surface-bound HIV-1 endocytosis
and early endosome forming processes (47). Granulysin refers to
A B

C

FIGURE 8 | Correlation between diagnostic markers and infiltrating immune cells. (A) Correlation between LSP1 and infiltrating immune cells. (B) Correlation between
GNLY and infiltrating immune cells. (C) Correlation between MEOX2 and infiltrating immune cells. The size of the dots represents the strength of the correlation between
genes and immune cells; the larger the dots, the stronger the correlation, and the smaller the dots, the weaker the correlation. The color of the dots represents the
p-value; the greener the color, the lower the p-value; and the red the color, the larger the p-value. P < 0.05 was considered statistically significant.
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one protein in the granules of natural killer cell and human
cytotoxic T lymphocyte, exhibiting cytolysis activity against
tumor and microbe (32), whereas there is no information
concerning the mechanisms involved in RA. Due to a relatively
small amount of research, the sophisticated interacting processes
of gene and immune cell should be investigated in depth based
on the mentioned assumption.

New science approaches (e.g., RF, LASSO logistic regression,
WGCNA, and SVM-RFE algorithm) were used for identifying
RA diagnosis-related markers. Besides, CIBERSORT was used
for investigating infiltration of immune cells. Nevertheless, this
study is subject to some limits. The CIBERSORT investigation
complies with confined genetic information probably deviating
from cellular heterogeneity interacting process, disease-induced
diseases, or phenotypic plastic property. Moreover, this study
indicates a 2nd mining and investigation for existing datasets.
Though the results of several existing studies show no
consistency with the result of this analysis, whether the results
here are reliable should receive in-depth verification by
experiments with large samples.
CONCLUSIONS

In brief, this study reported that LSP1, GNLY, and MEOX2 refer
to diagnostic markers of RA. This study also reported that resting
NK cells, neutrophils, memory B cells, T cells CD8, activated NK
cells, and M0 macrophages are likely to participate in the
occurrence and progress of RA. In addition, LSP1 was
significantly associated with memory B cells, activated mast
cells, activated dendritic cells, activated T cells CD4 memory;
GNLY was significantly associated with neutrophils, resting mast
cells, resting NK cells; MEOX2 was significantly associated with
M2 macrophages, activated T cells CD4 memory, monocytes.
The mentioned immune cells are likely to critically impact RA
development, and the in-depth exploration of the immune cells
is likely to ascertain the targets in immunotherapy and help
optimize immunomodulatory therapy for RA patient.
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