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Abstract

Background: The reproduction number is one of the most crucial parameters in determining disease dynamics,
providing a summary measure of the transmission potential. However, estimating this value is particularly challenging
owing to the characteristics of epidemic data, including non-reproducibility and incompleteness.

Methods: In this study, we propose mathematical models with different population structures; each of these models
can produce data on the number of cases of the influenza A(H1N1)pdm09 epidemic in South Korea. These structured
models incorporating the heterogeneity of age and region are used to estimate the reproduction numbers at various
terminal times. Subsequently, the age- and region-specific reproduction numbers are also computed to analyze the
differences illustrated in the incidence data.

Results: Incorporation of the age-structure or region-structure allows for robust estimation of parameters, while the
basic SIR model provides estimated values beyond the reasonable range with severe fluctuation. The estimated
duration of infectious period using age-structured model is around 3.8 and the reproduction number was estimated
to be 1.6. The estimated duration of infectious period using region-structured model is around 2.1 and the
reproduction number was estimated to be 1.4. The estimated age- and region-specific reproduction numbers are
consistent with cumulative incidence for corresponding groups.

Conclusions: Numerical results reveal that the introduction of heterogeneity into the population to represent the
general characteristics of dynamics is essential for the robust estimation of parameters.
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Background
The reproduction number is defined as the average num-
ber of secondary cases generated by a typical primary
case. It is a measure of the transmission potential asso-
ciated with the contact rate, duration of infectivity, and
probability of transmission per contact. The maximum
reproduction number is attained when an infectious per-
son is introduced into a totally susceptible population
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and is called the basic reproduction number, R0. Vari-
ous approaches such as the exponential growth rate of
infections during the early epidemic stage, model-based
schemes, and maximum-likelihood estimations have been
used to analyze this number [1–4].
When an infection spreads throughout a population,

the time-dependent effective reproduction number, Rt , is
often more useful for assessing the transmission potential
throughout a pandemic, especially during the period with
the highest level of activity. Real-time estimation contin-
ues to track the number of secondary infections caused
by a single infective, providing a quantitative measure of
the time evolution of the epidemic force. Cruz-Pacheco
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et al. demonstrated the manner in which sanitary mea-
sures reduce the prevalence of an infected population [1].
Estimates of the reproduction number were shown to
decrease from 1.4-1.5 initially to 1.1-1.2 later in the sum-
mer, which was most likely because of the vacation period
and the seasonality of influenza transmission [5]. In addi-
tion to capturing temporal dynamics, it is important to
consider heterogeneous patterns of the transmission. It is
well known that school-age children are disproportion-
ately responsible for influenza transmissions. Estimates
of the age-specific reproduction number help with our
understanding of the role of each group in the trans-
mission dynamics and with devising effective targeting
mitigation strategies.
If all incident cases could be traced back to their index

cases, estimating the reproduction number would simply
be a matter of counting the number of secondary cases.
However, with most epidemics, only the epidemic curve
is observed, and there is no available information regard-
ing who infected whom. To appropriately estimate the
reproduction number from the influenza outbreak data, it
is essential that the selected model capture the underly-
ing dynamics embedded in the data. The objective of this
study is to estimate the reproduction numbers based on
the incidence data.
When the World Health Organization announced the

emergence of influenza A(H1N1)pdm09 (pH1N1) in 2009
[6], the first probable patient in South Korea was iden-
tified on April 28. A total of 763,759 confirmed cases,
of which 270 were fatal, were reported by the end
of August 2010 [7]. During the initial epidemic phase,
the main control measure was containment through

quarantine and isolation. Surveillance programs in
schools and medical facilities were implemented, and all
confirmed cases were investigated. However, when com-
munity outbreaks were detected in June, the intervention
policy switched from containment to mitigation, includ-
ing vaccination and antiviral prescription. Vaccination
was started on October 27, 2009, and 12.7 million people
were vaccinated by the end of August 2010. Before August
20, antiviral agents were prescribed to patients with acute
febrile respiratory illness (AFRI) and who had a history
of travel abroad or contact with a confirmed patient.
However, when the number of community-acquired cases
increased, antiviral agents were prescribed to patients
with AFRI symptoms.
According to the database, 3,087,788 courses of antivi-

ral agents were prescribed from August 21, 2009 to April
30, 2010. The daily number of incident patients was esti-
mated based on the amount of prescribed antiviral agents
(Refer to [8] for details). Figure 1 shows the temporal inci-
dence distribution of pH1N1 in South Korea. The amount
of antiviral agents prescribed and the number of incident
patients soared from mid-October, reached its peak at the
end of October, and started declining in mid-November.
Demographic and regional characteristics are illustrated

in Table 1 and Fig. 2. The incidence rate is higher in chil-
dren and students than in other age group individuals
(Table 1). The rate is higher in urban areas than in rural
areas and is the highest in the national capital and the
south-eastern region (Fig. 2).
In this paper, two different structured models are pro-

posed to estimate reproduction numbers on the basis
of the epidemic curve. We begin by introducing a basic

Fig. 1 Daily antiviral agent prescription (dotted line) and incident patients (solid line) from September 1, 2009 to March 30, 2010. The incidence data
used for model calibration was imported from literature and refer to [8] for details
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Table 1 Cumulative incidence by age

Age Population size Total number of cases Incidence rate(%)

0-4 2273634 917793 40

5-9 2671496 1084094 41

10-14 3284134 920937 28

15-19 3368818 781238 23

20-24 3153001 305403 10

25-29 4001090 341940 9

30-34 3856438 290354 8

35-39 4466962 303670 7

40-44 4244225 220743 5

45-49 4321262 164735 4

50-54 3761143 149067 4

55-59 2611705 97571 4

60-64 2117041 73540 3

65-69 1870279 66033 4

70+ 3306607 100728 3

SIR model to describe a single outbreak and build age-
and region-structured models by incorporating popula-
tion heterogeneity. Numerical simulations are conducted
to analyze the impact of terminal time and the effect
of heterogeneous structures on the estimation of param-
eters. Finally, the proposed models are applied to the
2009 incidence data of novel pH1N1 in South Korea
to compute the age- and region-specific reproduction
numbers.

Fig. 2 Cumulative incidence by region, which is own figure drawn
from the incidence data

Methods
Basic SIR model
We consider the standard SIR model to represent
single-outbreak influenza dynamics. The model classi-
fies individuals into three key compartments: susceptible,
infected, and recovered. The nonlinear system of differ-
ential equations describing the dynamics is given by the
following equation.

S′(t) = −βS(t)I(t)
I ′(t) = βS(t)I(t) − γ I(t)
R′(t) = γ I(t).

The state variables S(t), I(t), and R(t) denote the num-
ber of individuals who are susceptible, infected, and recov-
ered, respectively, at time t. The number of contact events
sufficient for transmitting an infection during unit time
per individual is βN based on the mass action incidence.
Infective individuals leave the compartment at the recov-
ery rate γ , thereby acquiring immunity to the disease. We
can drop the equation for R(t) as it has no effect on the
dynamics of others and hence is determined once S(t) and
I(t) are known. Based on the SIRmodel, we have the time-
dependent net reproduction number Rt = βS(t)/γ , which
quantifies the level of transmission at time t. Note that
Rt is the per-infective rate at which new infections occur
within the average duration of infection at time t.

Age-structured model
An age-structured model is employed to estimate the
reproduction number of pH1N1 because the transmis-
sion rate is higher in preschool and schoolchildren than
in other age group individuals, in general. We consider
a subgroup SIR model where the population is divided
into na age groups with different transmission dynam-
ics. We denote the number of susceptible and infected
individuals within the ith age group by Si and Ii, respec-
tively. Let βij refer to the transmission from the jth age
group to the ith age group, and β=[βij] denote the trans-
mission matrix, also known as Who-Acquires-Infection-
From-Whom matrix. Putting these elements together, we
have the following system of differential equations.

S′
i(t) = −

na∑

j=1
βijSi(t)Ij(t)

I ′i(t) =
na∑

j=1
βijSi(t)Ij(t) − γiIi(t).

(1)

In a general structured model of the form (1) with na
distinct classes, n2a transmission terms are required. How-
ever, one transmission term is available at most for each
class. The typical way to address this lack of specificity
is to constrain the structure of the transmission matrix
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and/or to use prior knowledge of social mixing behav-
ior. For an age-structured model, we assume that the
transmission rates are proportional to the rates of social
contact, which can be estimated from contact patterns. A
large multi-country population-based survey conducted
in Europe as a part of the POLYMOD [9] enables us to
implement this approach. The transmission is modeled
as the product of the contact rate in the survey and an
age-specific proportionality factor to account for charac-
teristics related to susceptibility and infectiousness, which
are not captured by contact rates. This leads to

βij =
{
qicij i = j
σ cij i �= j

where cij is the contact rate and qi and σ are proportion-
ality factors.
Based on the age-structured SIR model (1), the repro-

duction number can be calculated by following Driessche
and Watmough [10]. It is the spectral radius of the next
generation matrixM where

Mij = βijSi(t)
γi

.

The details are given in Appendix.

Region-structuredmodel
The second mechanism incorporates a heterogeneous
population based on regions to account for the wave of
the pH1N1 pandemic. We denote the number of sus-
ceptible and infected individuals within the ith region by
Si and Ii, respectively. Let βij refer to the transmission
from the jth subgroup to the ith subgroup and β=[βij]
denote the transmission matrix. In the same manner as
the age-structured model, we have the following system of
differential equations.

S′
i(t) = −

nr∑

j=1
βijSi(t)Ij(t)

I ′i(t) =
nr∑

j=1
βijSi(t)Ij(t) − γiIi(t).

(2)

We assume that transmission rates between distinct
regions in the region-structured model can be expressed
as the frequency of transportationsmultiplied by a region-
specific proportionality factor. The transportation infor-
mation was extracted from the highway portal site and
Kakao map for number of buses and highway traffic,
respectively [11, 12]. Let the number of buses and high-
way traffic from region j to region i be denoted by wi,j and
Wi,j, respectively. Note that w is symmetric because the

bus route is circular, although W is not necessarily. The
transmission rate can be written as

βij =
{
qi i = j
qiσlwij + qiσgWij i �= j

where qi is the proportionality factor, and σl are σg can
be chosen such that they balance the weight between
different types of transportations.
The same argument as that presented in the age-

structured model gives the expression of the effective
reproduction number Rt , which is the spectral radius of
the following next generation matrix

[
βijSi(t)

γi

]
.

Study subjects and parameter estimation
Study subjects were patients who were prescribed antivi-
ral agents from the national stockpile from August 21,
2009 to April 30, 2010. Because of mandatory antivi-
ral agent management program during study period,
all patients who were prescribed antiviral agent were
included in this study. The data employed to estimate
the parameters are the daily number of incident patients
in Fig. 1. It was estimated based on the aggregation of
prescribed antiviral agents from deidentified database.
This study was approved by the Institutional Review
Board (IRB) of Yonsei University Health System. Since this
study used retrospective data and the study subjects were
anonymized, the IRB waived the requirement for written
consent from the patients.
Our goal is to estimate the optimal parameters that pro-

vide the states that are best fit to the given data. This
section briefly reviews the parameter estimation tech-
nique of the least squares method. In general, parameter
estimation is conducted by minimizing the cost function,
which measures the difference between the model predic-
tion and observation. The simplex algorithm proposed by
John Nelder and Roger Mead is applied to solve the opti-
mization problem [13]. Let θ be the parameter set and
time points tj (j = 1, ...,N) are uniformly distributed with
daily time step. The data vector yj (j = 1, ...,N) denotes
the number of cases at time tj. It is a scalar for basic SIR
model, but it is a vector structured by age and region for
age-stratified and region-stratified models, respectively.
For example, the yj is a column vector of length 15 for the
age-structured model. We recast the mathematical model
as

x′(t) = g (t, x(t), θ) ,

and assume a statistical model for measurement of the
form

yj = f
(
tj; θ

) + εj, j = 1, · · · ,N
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where f
(
tj; θ

)
is the model prediction at time tj with

parameter θ and the measurement error εj ∼ N
(
0, a2

)
.

The least squares estimator can be obtained by minimiz-
ing the following cost function over the given parameter
space �θ [14]:

N∑

j=1

[
yj − f

(
tj; θ

)]T [
yj − f

(
tj; θ

)]
(3)

The parameter sets to be estimated for the basic
SIR model, age-structured model and region-structured
model, are

θbasic = {β , γ } and initial values of S and I,

θage = {
qi, σ , γi fori = 1, 2, · · · , na

}
and initial values of Si and Ii,

θ region = {
qi, σl , σg , γi fori = 1, 2, · · · , nr

}
and initial values of Si and Ii

where na and nr denote the number of age groups and
regions, respectively.

Results
Time-dependent reproduction number
We illustrate the proposed methodology and investigate
its performance by applying it to 2009 incidence data of
pH1N1 in South Korea. This section presents the results
of the estimation obtained by applying the least squares
method to basic SIR, age- and region-structured models.
In each experiment, data with different time periods by
varying the terminal time are tested to determine the ear-
liest stage of the epidemic sufficient to provide a reason-
able estimation. Figure 3 displays the predicted incidence
based on the basic SIRmodel compared with the observed
data. Predictions using data only during the initial growth
phase cannot effectively exhibit the dynamics and sub-
stantially overestimate the spread of the infection. The
results of simulation improved after the peak of the epi-
demic, and the wave is roughly generated at a later stage.

However, the simple SIR model does not provide a rea-
sonable estimation of parameters. The estimated values of
γ and R0 demonstrate a large variation and remains out-
side of the feasible range for the influenza, regardless of
the time period for data in Fig. 4. The plausible reason for
this involves the model assumptions that are too simple to
capture the underlying mechanisms.
For the age-structured SIR model (1), the total pop-

ulation is split into 14 subgroups of 5-year age bands
and one with 70 years and older (i.e., 0-4, 5-9, ..., 65-
69, 70+). This incorporates a heterogeneous population
into the model in order to reflect different transmission
rates in each age group. In Fig. 5, the outbreaks are simu-
lated using data during various time periods in the same
manner as mentioned above. Results of both the models
show similar trends as long as the terminal time is earlier
than mid-November when the gentle growth begins dur-
ing the decline stage. Additionally, as the growth begins
to decline, the age-structured SIR model fits the incidence
data better than the basic SIR model. In Fig. 4, the repro-
duction number starts increasing in early October, peaks
at 2.5 on October 17, and then decreases to unity at the
end of October. Real-time estimation demonstrated that
the effective reproduction number rose sharply during
mid-October when the number of patients increased dra-
matically. The reproduction number fell below unity at
the end of October and stayed lower than unity indicating
that the epidemic starts decreasing, which is consistent
with the incidence data. In the age-stratified model, het-
erogeneity was incorporated by WAIFW matrix where
the transmission was assumed to be proportional to the
contacts. The effective contacts were measured by POLY-
MOD contact survey, which showed a clear evidence for
an age-dependency in contact patterns. Taking heteroge-
neous mixing into the model enabled better description
of the dynamics, because the trend in behavior was con-
sistent with the demographic characteristics of cases (as
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Fig. 3 Comparison of pH1N1 incidence data with predictions of least squares method (LSM) using the basic SIR model (top and bottom left): The red
dots show the number of new cases per day and the blue line presents the predicted number of cases. Terminal time of data used for estimation is
displayed by a black dotted vertical bar. In each figure, the end of time period was set at October 24, 2009, November 14, 2009, and March 30, 2010
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Fig. 4 Estimated parameters and prediction using three different models: The x-axis denotes the terminal time t of data collection for which we
have computed three different quantities as time passes. The duration of infectious period 1/γ (t) and transmission rate β(t) were estimated by
fitting the model prediction to the number of cases as the data collection period increased. Then the basic reproduction number was obtained by
computing β(t)N/γ (t) with the estimated parameters, where N represented the size of total population. And the effective reproduction number
was calculated through β(t)S(t)/γ (t) using the model prediction S(t) with estimated parameters

shown in Table 1). Estimated parameters are possible
indicators to determine the feasibility of models. Incorpo-
ration of the age structure allows for robust estimation of
parameters, while the basic SIR model provides estimated
values beyond the reasonable range with severe fluctua-
tion in Fig. 4. Table 2 summarizes the parameter estimates
using three different models. The estimated duration of
infectious period using age-structured model is around
3.8. The reproduction number was estimated to be 1.6
which is similar to those obtained in Mexico, the United
States, New Zealand, Peru, and Chile [2, 15–18].
The general characteristics of regional difference led us

to consider a second type of heterogeneity in the model.
The nation is split into 252 in the region-structuredmodel
(2), where the transmission rates are implemented based
on transportation patterns. Figure 6 compares the pre-
dicted cases based on the region-structured SIR model

with the observed data over the course of the epidemic.
As it was discussed in the previous experiment, it is not
earlier than the epidemic peak for estimation to start
adjusting to outbreak data. Since this outbreak, the inci-
dence data is well described in the form of the char-
acteristic exponential rise, turnover, and decline pattern
predicted by the process model. The estimated duration of
infectious period using region-structuredmodel is around
2.1 and the reproduction number was estimated to be
1.4 (Table 2). The time-dependent effective reproduction
number is also illustrated in Fig. 4, which demonstrates a
pattern similar to that obtained using the age-structured
SIR model.
Estimated duration of infectious period and reproduc-

tion numbers using three different models are compared
in Fig. 4. Values of the cost function defined by (3) are also
provided in Fig. 7, which shows the goodness-of-fit in the
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Fig. 5 Comparison of pH1N1 incidence data with predictions of least squares method (LSM) using age-structured SIR model (top and bottom left):
The red dots show the number of new cases per day, and the blue line presents the predicted number of cases. Terminal time of data used for
estimation is displayed by a black dotted vertical bar. In each figure, the end of time period was set at October 24, 2009, November 14, 2009, and
March 30, 2010
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Table 2 Estimated parameters using three different models

Basic SIR Age-
structured
SIR

Region-structured SIR

R0 1.0722 1.6398 1.4487

Infectious period 0.5462 3.8539 2.1359

order of region-structured, age-structured and simple SIR
model.

Age-specific and region-specific reproduction numbers
It is widely known that the transmission is consider-
ably different among various age groups. We also observe
from the pH1N1 epidemic data that the incidence rate is
higher in children and students than in other age groups
(Table 1). Estimates of the age-specific reproduction num-
ber help in clarifying the role of each age group in the
transmission dynamics and in suggesting guidelines for
effective targeting intervention strategies. The estimated
age-specific reproduction numbers are displayed in Fig. 8.
The result is closely related to the cumulative incidence
for each age group because it is often the contact rate
within the same age group is higher than with other
groups.
The incidence rate is higher in urban areas than in

rural areas, and the highest in the national capital and the
south-eastern region, as shown in Fig. 2. We estimated the
region-specific reproduction number and observed that
it is more than two in some areas and less than one in
the others (Fig. 9). This is consistent with regions hav-
ing larger cumulative incidence with a similar argument
regarding contact patterns to age-specific cases.

Discussion
An estimation of reproduction numbers is crucial because
it provides a measure of the transmission potential when

an infection is spreading throughout a population. The
reproductive numbers in the early phase of Influenza
A(H1N1)pdm09 have been estimated in several countries
with different settings, yielding median 1.46 and range
1.0–3.6 [19]. Many of these studies focused on cases
confirmed in the early stage of the pandemic. Because
laboratory tests focused on severe cases and there are pos-
sible changes in laboratory testing and notification rates,
the number of confirmed cases does not necessarily rep-
resent the underlying epidemic. It also does not reflect the
dynamics during the period of the highest level of activity,
which is the winter in temperate climates. Some studies
used the number of cases from sentinel surveillance that
is much less than the actual number of influenza patients.
It is necessary to estimate the reproductive number using
the number of all the patients throughout a pandemic,
including the period with the highest level of activity. In
this study, the reproductive number was estimated based
on the national data of incidence deduced from antiviral
agent prescription in South Korea during the pandemic.
We discussed parameter estimation methodologies

based on deterministic SIR models that included age or
spatial structures with the main aim being to estimate
the effective reproduction numbers, R0 and Rt . There
could bemanymodelling choices to compute these impor-
tant epidemiological parameters, including simple SIR
model with time varying parameters [20, 21] or renewal
equations [22, 23]. We proposed one possible approach
to introduce population heterogeneity since we observed
demographic and regional characteristics of incidence
data. Age-structured and region-structured models were
employed to describe the underlying epidemic process, in
particular. To avoid exacerbating non-identifiability prob-
lem by increasing the complexity of a model, age- and
region-specific data were used to estimate parameters
for age- and region-structured model, respectively. And
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Fig. 6 Comparison of pH1N1 incidence data with the predictions of least squares method (LSM) obtained using the region-structured SIR model
(top and bottom left): The red dots show the number of new cases per day, and the blue line presents the predicted number of cases. The terminal
time of data used for estimation is displayed by a black dotted vertical bar. In each figure, the end of time period was set at October 24, 2009,
November 14, 2009, and March 30, 2010
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Fig. 7 Residual sum of squares (RSS) which measures the goodness-of-fit in least squares estimation using three different models as time passes: The
time average values of RSS for the basic, age-structured and region-structured models are 1.097 × 1011, 1.787 × 109, and 7.023 × 108, respectively

contact measurements of POLYMOD contact matrix (for
age-structured model) and transportation information
(for region-structured model) have been incorporated to
compensate the discrepancy in the increased dimension
of transmission parameters and the data. Nevertheless, we

are aware that the complexity of this type of model can
leave some problems of non-identifiability.
The proposed mechanisms were applied to influenza

A(H1N1)pdm09 in South Korea to compute the time-
dependent effective reproduction numbers. Real-time
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Fig. 8 Age-specific reproduction number (left) and cumulative incidence for each age group (right)
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Fig. 9 Region-specific reproduction number (left) and cumulative incidence for each region (right)

estimation showed that the reproduction number started
increasing in early October, peaked at 2.5 on October 17,
and then decreased to unity at the end of October. The
effective number rose sharply during the mid-October
when the number of patients increased dramatically. The
reproduction number fell below unity at the end of Octo-
ber and remained lower that unity, indicating that the
epidemic starts decreasing, which is consistent with the
incidence data.
Subsequently, age-specific and region-specific basic

reproduction numbers were estimated to account for the
differences of incidence.We observe from the pH1N1 epi-
demic data that the incidence rate is higher in children
and students than in other age groups. The estimated age-
specific reproduction numbers agree with the cumulative
incidence for each age group because the mixing is assor-
tative. The incidence rate is higher in urban areas than
in rural areas, highest in the national capital and in the
south-eastern region. We estimated the region-specific
reproduction number whose trend is similar to the num-
ber of cases in each region. Estimates of the age-specific
and region-specific reproduction number help to predict
the transmission dynamics, and to suggest guidelines for
effective targeting intervention strategies.
This study has both limitations and strengths. First, the

number of cases is estimated from the amount of pre-
scribed antiviral agents assuming the time lag between
symptom onset and antiviral agent prescription, the

proportion of prescription and the proportion of pH1N1
confirmation among AFRI patients. Also, vaccination is
not considered in the model. However, the effect of vac-
cination on the transmission of pH1N1 may have been
insignificant because the vaccination for general group
was initiated in January 2010. The effective contacts were
employed from POLYMOD contact survey, which pos-
sibly yields discrepancy in mixing pattern of Korea [24].
The use of POLYMOD as well as the potential non-
identifiability of complex models are limitations of this
study. We will be able to improve the outcome as we
gather more information, because additional knowledge is
required to achieve a better result.
On the contrary, the present research has its strengths

compared to previous studies. The reproduction number
was estimated based on the national level antiviral agent
prescription data in South Korea throughout the pan-
demic including the period of the highest level of activity.
The real-time estimation incorporating population struc-
tures can be used to predict the disease dynamics, thereby
providing guidelines for the optimal implementation of
preventive measures, such as school closing and distribu-
tion of antiviral agents.

Conclusions
Numerical results reveal that the introduction of hetero-
geneity into the population and sufficient data to rep-
resent general characteristics of dynamics are essential
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to the robust estimation of parameters. Real-time esti-
mation showed that the reproduction number started
increasing in early October, peaked on October 17, and
then decreased to fell below unity at the end of October,
which is consistent with the incidence data. The estimated
age- and region-specific reproduction numbers are also
consistent with cumulative incidence for corresponding
groups.

Appendix
The reproduction number for the age-structured SIR
model (1), can be calculated following the approach of
Driessche and Watmough [10]. Let Fi be the new infec-
tions and Vi be the transitions of ith compartment, then

Fi = Si

⎛

⎝qiciiIi +
∑

j �=i
σ cijIj

⎞

⎠ (4)

and

Vi = γ Ii. (5)

for i = 1, · · · , na.
Subsequently, the derivatives of F =[Fi] and V =[Vi]

are

F =

⎡

⎢⎢⎢⎣

S1q1c11 S1σ c12 · · · S1σ c1na
S2σ c21 S1q2c22 · · · S2σ c2na

...
...

. . .
...

Snaσ cna1 Snaσ cna2 · · · Snaqnacnana

⎤

⎥⎥⎥⎦ ,

V =

⎡

⎢⎢⎢⎣

γ 0 · · · 0
0 γ · · · 0
...

...
. . .

...
0 0 · · · γ

⎤

⎥⎥⎥⎦ ,

respectively, and the next generation matrix is

FV−1 = 1
γ

⎡

⎢⎢⎢⎣

S1q1c11 S1σ c12 · · · S1σ c1na
S2σ c21 S1q2c22 · · · S2σ c2na

...
...

. . .
...

Snaσ cna1 Snaσ cna2 · · · Snaqnacnana

⎤

⎥⎥⎥⎦ .

(6)

Thus, the reproduction number is the spectral radius of
FV−1 and the age-specific reproduction number is the
column sum of FV−1 corresponding to the age of interest.
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