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The objective of this study was to determine whether divergent feeding regimes during
the first 41 weeks of the life of a calf are associated with long-term changes in the
rumen microbiota and the associated fermentation end-products. Twenty-four calves
(9 ± 5 days of age) were arranged in a 2 × 2 factorial design with two divergent
treatments across three dietary phases. In phase 1 (P01), calves were offered a low-milk
volume/concentrate starter diet with early weaning (CO) or high-milk volume/pasture
diet and late weaning (FO). In phase 2 (P02), calves from both groups were randomly
allocated to either high-quality (HQ) or low-quality (LQ) pasture grazing groups. In phase
3 (P03), calves were randomly allocated to one of two grazing groups and offered
the same pasture-only diet. During each dietary phase, methane (CH4) and hydrogen
(H2) emissions and dry matter intake (DMI) were measured in respiration chambers,
and rumen samples for the evaluation of microbiota and short-chain fatty acid (SCFA)
characterizations were collected. In P01, CO calves had a higher solid feed intake
but a lower CH4 yield (yCH4) and acetate:propionate ratio (A:P) compared with FO
calves. The ruminal bacterial community had lower proportions of cellulolytic bacteria
in CO than FO calves. The archaeal community was dominated by Methanobrevibacter
boviskoreani in CO calves and by Mbb. gottschalkii in FO calves. These differences,
however, did not persist into P02. Calves offered HQ pastures had greater DMI and
lower A:P ratio than calves offered LQ pastures, but yCH4 was similar between groups.
The cellulolytic bacteria had lower proportions in HQ than LQ calves. In all groups, the
archaeal community was dominated by Mbb. gottschalkii. No treatment interactions
were observed in P02. In P03, all calves had similar DMI, CH4 and H2 emissions, SCFA
proportions, and microbial compositions, and no interactions with previous treatments
were observed. These results indicate that the rumen microbiota and associated
fermentation end-products are driven by the diet consumed at the time of sampling
and that previous dietary interventions do not lead to a detectable long-term microbial
imprint or changes in rumen function.
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INTRODUCTION

The rumen is a fermentation chamber occupied by a diverse,
interactive, and dynamic microbiota comprised of many species
of bacteria, archaea, protozoa, and fungi (Hobson and Stewart,
1997). These microorganisms convert ingested feed into short-
chain fatty acids (SCFA) and microbial biomass, which are the
main source of energy and amino acids for ruminants (Puniya
et al., 2015; Huws et al., 2018; Gruninger et al., 2019). Other
fermentation end-products, including hydrogen (H2) and carbon
dioxide (CO2), formic acid, and methyl groups, are utilized by
methanogens to produce methane (CH4) (Moss et al., 2000; Liu
and Whitman, 2008; Janssen, 2010). Methane production is both
a loss of dietary gross energy (Bergman, 1990) and a greenhouse
gas (Johnson and Johnson, 1995). Thus, manipulation of the
ruminal ecosystem has been used in attempts to improve
the efficiency of feed conversion and decrease environmental
impacts (Mizrahi et al., 2021). However, manipulations in adult
ruminants have shown limited and only short-term effects after
treatment cessation (Weimer, 1998). The microbiota in the
rumen of mature ruminants is characterized by a high degree
of redundancy and resilience, which provides stability to the
rumen environment and maintains the digestive function of
the host across a range of feeding and management conditions
(Weimer, 2015). These properties thus represent a barrier to
manipulating rumen fermentation by selectively targeting groups
of microorganisms. However, some studies in small ruminants
suggest that in early life the rumen microbial community may
be more plastic and, therefore, easier to manipulate (Yáñez-Ruiz
et al., 2010; Abecia et al., 2014; De Barbieri et al., 2015).

During early postnatal life, the rumen microbiota of the young
ruminant is very responsive to dietary interventions (Yáñez-Ruiz
et al., 2010; Abecia et al., 2014; O’Hara et al., 2020). While sterile
in utero (Malmuthuge and Griebel, 2018; Husso et al., 2021),
the rumen of newborn animals undergoes a rapid microbial
colonization during and after birth from maternal (Taschuk
and Griebel, 2012; Yeoman et al., 2018) and environmental
sources (Dehority and Orpin, 1997; Curtis and Sloan, 2004).
After the initial colonization, microbial groups critical to the
degradation of feed have been observed in the undeveloped
rumen, as early as the third day of age (Fonty et al., 1987; Minato
et al., 1992; Guzman et al., 2015; Wang et al., 2017). The rumen
microbiota rapidly shifts toward obligate anaerobic microbes as
young ruminants start to transition from milk to solid diets
(Walters et al., 2011; Rey et al., 2014). In post-weaned calves,
the consumption of solid diets is associated with a progressive
shift in ruminal microbial composition toward a more diverse
microbiota (Rey et al., 2014; Dias et al., 2017; Dill-McFarland
et al., 2017). The ruminal microbiota in young ruminants
acquires an adult-like composition as the solid feed intake
increases between the weaning transition and 1 year of age (Dill-
McFarland et al., 2019), with recent studies indicating that an
increased solid feed intake can result in adult-like fermentation
profiles (Cristobal-Carballo et al., 2019). As a result, dietary
interventions, aimed at altering ruminal microbial composition
and fermentation profiles, may be most effective during the
weaning transition of young ruminants. However, there is little

information available on the effect of early life nutrition of calves
during the transition to weaning and immediately afterward on
the rumen prokaryotic community and fermentation profiles.
The aim of this study was to determine whether contrasting
feeding regimes pre- and post-weaning could imprint the
rumen microbial community and produce associated changes in
rumen fermentation.

MATERIALS AND METHODS

Animal procedures were reviewed and approved by the
Grasslands Animal Ethics Committee (AE 13297) and complied
with the institutional Codes of Ethical Conduct for the Use of
Animals in Research, Testing and Teaching, as prescribed in the
New Zealand Animal Welfare Act of 1999 and its amendments.

Experimental Design
Twenty-four calves were randomly selected and balanced across
dietary treatments from a parent production study using 200
Hereford–Friesian-cross female calves (Burggraaf et al., 2020).
Treatments in the large production study were balanced for live
weight and arrival date of the calves. The study was carried
out in a 2 × 2 factorial design with different dietary treatments
across three dietary phases. In phase 1 (P01, 0–14 weeks), calves
were reared using either a low-milk volume and concentrate
starter diet with early weaning (CO) or high-milk volume and
pasture diet with later weaning (FO). In phase 2, post-weaning
(P02, 14–19 weeks), each group of calves was evenly divided
and randomly allocated to either a high-quality (HQ) or low-
quality pasture (LQ) diet. The outcome was the generation of
four groups in P02, where the main effects of pre-weaning rearing
system and post-weaning diet quality and the interactions were
compared. In phase 3 (P03, 30 to 41 weeks), all calves were
randomly allocated to two groups that equally represented all
four treatment groups and managed under commercial grazing
conditions on the same farm. For this study, measurements
and sampling were undertaken in week 9 (P01), week 19 (P02),
and week 41 (P03).

Animal and Feeding Management
Calves from P01 were managed in two pre-weaning rearing
systems: FO calves were housed during week 1 and then moved
to paddocks of ryegrass/white clover pasture from weeks 2 to
12. These calves were fed whole milk powder (WMP; Table 1;
NZ Agbiz, Auckland, New Zealand) at 8.0 L/calf/day (1,000 g
of WMP; 125 g/L of water), divided in two feeds for 5 weeks.
In this group, the intake of WMP was increased from 5.0 to
8.0 L/calf/day during the first 2 weeks. Calves were fed 8.0 L once
per day from weeks 5 to 9, then 4 L once a day for 2 weeks, then
were gradually weaned over the following week. Calves from the
CO group were housed on arrival and fed WMP at 4.0 L/calf/day
(500 g WMP/day; mixed as per the FO group), divided in two
feeds for 5 weeks and then once a day for 2 weeks, before abruptly
weaning off milk at the end of week 7. This group was offered
ad libitum starter concentrate (Table 1; Denver Stock Feeds,
Palmerston North, New Zealand) from weeks 1 to 7, then calves
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TABLE 1 | Chemical composition (% of dry matter) of the whole milk powder
(WMP), concentrate and pasturesa fed to calves in phase 1 (P01), pastures of
highb (HQ) and low qualityc (LQ) in phase 2 (P02) and pasturesd fed to all calves
in phase 3 (P03).

Feed P01 P02 P03

WMP Pasturea Concentrate HQ
Pastureb

LQ
Pasturec

Pastured

Dry
matter
(%)e

95.2 18.7 93.8 21.5 37.7 14.9

Crude
proteinf

24.1 14.8 19.8 19.8 7.3 19.2

ME
(MJ/kg
DM)g

10.5 13.8 10.9 7.6 11.2

NDFh – 49.5 16.2 47.9 64.2 53

ADFi – 25.4 5.9 25.2 35.7 27

Ligninj – 1.8 – 3.8 4.2 2.9

Lipidsk 28.4 1.1 2.3 2.3 1.1 2.8

Ashl 5.5 6.4 6.2 8.8 5.5 10.3

Soluble
sugarsm

41.5n 19.3 8 9.3 9 11.4

Starcho – – 36.8 – – –

aPasture was composed of ryegrass/white clover mixed sward. Chemical
composition of pastures was scanned using near-infrared reflectance spectroscopy
(NIRS; Corson et al., 1999).
bCalves were grazed in irrigated pastures. Chemical composition of pastures was
scanned using near-infrared reflectance spectroscopy (NIRS; Corson et al., 1999).
cCalves were grazed in unirrigated pastures. Chemical composition of pastures
was scanned using near-infrared reflectance spectroscopy (NIRS; Corson et al.,
1999).
dPasture was composed of ryegrass/white clover mixed sward. Chemical
composition of pastures was scanned using near-infrared reflectance spectroscopy
(NIRS; Corson et al., 1999).
eMethod 945.15; AOAC, 2010.
f Method 992.15; AOAC, 2010.
gMetabolizable energy content of pellets was calculated using the equation
ME = DOMD% × 0.16 (Alderman and Cottrill, 1996).
hNeutral detergent fiber; Method 7.074; AOAC, 1990.
iAcid detergent fiber; method 7.074; AOAC, 1990.
jLignin; method 7.074; AOAC, 1990.
kMethod 954.02; AOAC, 1990.
lMethod 942.05; AOAC, 2012.
mPaul, A.A and Southgate, D.A. The Composition of Foods. 4th Edition, 1978.
nLactose.
oMethod 996.11; AOAC, 2010.

were transferred to paddocks of ryegrass/white clover pasture
with starter concentrate reduced to 1.5 kg/calf/day for 2 weeks
and finally to 1 kg/calf/day for two more weeks until weaning off
concentrate starter at week 12.

In P02, calves in the HQ and LQ groups were grazed
on pastures of either high quality (HQ; irrigated pasture)
or low quality (LQ; non-irrigated pasture). Calves grouped
in LQ were also fed grass silage to meet dry matter intake
(DMI) requirements. The botanical composition of high-quality
pastures was 31.0% of ryegrass, 35.5% of white clover, 7.3%
of herbs, 3.4% other grasses, and 22.4% of dead material (DM
basis), while the botanical composition of non-irrigated low-
quality pastures was of 16.3% of ryegrass, 4.0% of white clover,
1.3% of herbs, 16.0% other grasses, and 61.4% of dead material

(DM basis) (Burggraaf et al., 2020). In P03, from approximately
7 months of age, the calves were randomly allocated to one of
two groups which were balanced for all four previous treatments
and grazed commercially on ryegrass/white clover pasture. Fresh
water was available ad libitum at all times.

Enteric Emissions and Animal
Performance Measurements
Enteric emissions [methane (CH4) and hydrogen (H2)] and
animal performance [DMI and live weight (LW)] measurements
were performed from the 24 selected calves, at weeks 9 (P01),
19 (P02), and 41 (P03). Before enteric emission measurements,
calves were adapted to confinement conditions in covered yards
as follows: in a group pen all together for the first 5 days and
then in individual crates from days 5 to 7. Enteric emission
measurements were carried out in open circuit respiratory
chambers (Pinares-Patiño et al., 2012) over a 48-h period. The air
flow through the chambers was set at 700, 1,000, and 1,200 L/min
during the three measurement phases, respectively, to account for
the increasing gas emissions as the solid feed intake of the calves
increased. Calves entered the chambers in the morning (0900 h)
when feed was offered: WMP (for FO calves in P01) and fresh
solid feed (starter concentrate and/or pasture, depending on the
phase and group). For LQ calves in P02, these animals received
only low-quality grass (Table 1) during confinement and in
respiration chambers; no grass silage was offered to these animals.
Enteric emission measurements were paused for ∼45 min every
morning to offer fresh feed and clean the chambers. During the
adaptation and enteric emission measurement phases, pasture
was cut daily, transported to the animal facility, and offered
ad libitum. Water was available ad libitum.

Samples of concentrate and WMP were analyzed for chemical
composition by wet chemistry (Hill Laboratories Ltd., Hamilton,
New Zealand). Pasture samples of ryegrass/white clover-mixed
sward were analyzed by near-infrared reflectance spectroscopy
(NIRS; FeedTECH, Palmerston North, New Zealand). The
chemical composition of the offered diets during the different
rearing phases is shown in Table 1. During the gas measurement
phases, DMI was calculated from the difference between the
allowance and the residual feed. Milk DMI was not included in
the calculation of the total DMI to estimate methane or hydrogen
yield because most of the milk DM bypasses the rumen (Wise
and Anderson, 1939) and, therefore, has little effect on rumen
fermentation (Lane et al., 2000). Live weights were recorded a
day before methane emission measurements during the morning
and before feeding. Total daily production (g/day) of CH4 and
H2 (pCH4 and pH2, respectively) were calculated from the
enteric emission measurements (Pinares and Waghorn, 2014).
Daily enteric emissions and animal performance parameters
were used to calculate CH4 and H2 yield (yCH4 and yH2,
respectively; g per kg DMI).

Sampling and Fermentation Analysis of
Rumen Contents
Rumen samples were collected in the morning via an oral
stomach tube (Henderson et al., 2013) after enteric emission
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measurements and before feeding new milk and/or solid feed.
Oral stomach tubing was performed using a stainless steel pipe
(25 mm outside diameter, wall thickness 1.2 mm) measuring
520 mm in length with a “T” handle 350 mm from one end.
The stainless steel pipe was used to guide the lavage tube over
the back of the tongue to ensure it entered the rumen. The
lavage tube (19 mm outside diameter) enabled contents to be
aspirated using a 400-ml syringe from the center of the dorsal
rumen. A modification of the technique was used at 9 and
19 weeks, where the stainless steel pipe was not used due to
the size of the animals. Each sample of 10 to 30 ml of rumen
fluid was subsampled for SCFA analysis and DNA extraction.
For DNA analyses, 900 µl of each rumen fluid sample was
snap frozen in a cool rack and immediately stored at −20◦C
until analysis. For SCFA analysis, 1.8 ml of each rumen sample
was prepared as per Guyader et al. (2016). Gas chromatography
was then used to analyze SCFA composition, as per Attwood
et al. (1998), using a gas chromatograph (Model 6869, Hewlett-
Packard, Montreal, QC, Canada) equipped with an auto-sampler,
fitted with a Zebron ZB-FFAP 30.0 m × 0.53 mm I.D. × 1 µm
film column (Phenomenex, Torrance, CA, United States) and a
flame ionization detector set at 265◦C.

Microbial DNA Extraction, Library
Preparation, and Sequencing
DNA was extracted from 200 µl of thawed and vortexed
rumen fluid samples using the phenol–chloroform, bead beating
with filtration kit for purification II (PCQI) (Rius et al., 2012;
Henderson et al., 2013). Primers used for PCR amplification
of bacterial and archaeal 16S rRNA genes are listed in
Supplementary Table S1. Amplification reactions used for PCR
targeting the regions of bacterial (30 cycles) and archaeal (35
cycles) 16S rRNA genes were prepared in triplicate as described
by Kittelmann et al. (2013). PCR products were pooled, and the
correct size products (∼500 bp) were verified by agarose gel
electrophoresis and quantified by fluorescence using the Quant-
iT dsDNA BR assay kit (Invitrogen, Carlsbad, CA, United States).
Bacteria and archaea PCR reactions included a negative control
for each separate amplification run. Negative control reactions
containing no template DNA were performed alongside each
PCR amplification and were included in subsequent analyses to
confirm no amplification of product. Agarose gel electrophoresis
was performed using 2 µl of PCR product on a 1% (w/v)
agarose gel containing SYBR Safe. Each amplicon (150 ng) from
the same target gene and region (i.e., all bacteria and archaea
amplicons) was pooled. Pooled samples were concentrated
(vacuum dried) and the final PCR product concentration was
determined using Quant-iT dsDNA HS assay kit (Invitrogen,
Carlsbad, CA, United States). Pools were purified using the
NucleoMag NGS kit (Macherey-Nagel, Dueren, Germany). The
final purification of amplicons was done using the QIAquick
PCR Purification kit (Qiagen, Valencia, CA, USA) and the
DNA concentration quantified using Quant-iT dsDNA HS
assay kit (Invitrogen, Carlsbad, CA, United States). Both pools
were diluted to 6.0 × 109 copies per µl and combined at
a “bacteria to archaea” ratio of 5:1 (Kittelmann et al., 2013).
Pooled libraries were checked for quality control (QC) using

Labchip GX Touch HT instrument (PerkinElmer, Waltham, MA,
United States). Amplicons were sequenced using the Illumina
MiSeq system according to the protocol of the manufacturer
(Illumina, San Diego, CA, United States) at Massey Genome
Service, Massey University, Palmerston North, New Zealand. The
pooled library was run on one Illumina MiSeq (500 cycle V 2
kit). A control library for the run, Illumina-prepared PhiX, was
loaded onto the Illumina MiSeq run at 20% volumes. Sequence
reads were provided in fastq format. The sequences obtained
were deposited in the European Nucleotide Archive under the
accession number PRJEB37783.

Phylogenetic Analysis of Sequencing
Data
Sequencing reads were quality-filtered using the DynamicTrim
function of SolexaQA (Cox et al., 2010). Reads were then
processed and analyzed using the QIIME software package
1.8 (Caporaso et al., 2010). Sequencing reads were grouped
into operational taxonomic units (OTUs) sharing over 97%
and 99% similarity for bacteria and archaea, respectively, by
using the UCLUST algorithm (Edgar, 2010). Sequences were
assigned to phylogenetic kingdoms using the BLAST (version
2.4.0) algorithm (Altschul et al., 1990). Bacterial 16S rRNA
genes were assigned using SILVA 123 (Henderson et al., 2019)
and archaeal 16S rRNA genes using RIM-DB (Seedorf et al.,
2014). QIIME-generated OTU tables were used for downstream
statistical analysis.

Statistical Analysis
Data were checked for normality using Q–Q plots alongside the
Shapiro–Wilk’s W test. After normality assessment, univariate
analyses were performed using a linear mixed effect (LME) model
via the restricted maximum likelihood (REML) framework as
implemented in the NLME package in R (Pinheiro et al., 2015;
R Core Team, 2016). The resulting LME models were analyzed
using analysis of variance (ANOVA). Predicted means from the
model, together with estimates of the standard error of the mean
and pairwise comparisons (Tukey’s or Benjamini–Hochberg test),
were obtained and back transformed (where applicable) using
the PREDICTMEANS package of R (Luo et al., 2014). Statistical
significance was declared at a P-value ≤0.05.

Dietary effects were evaluated on animal performance, enteric
emissions, and rumen fermentation data. In P01, dietary
treatment (FO or CO) was used as a fixed effect and animal as
a random effect. Data from P02 and P03 were analyzed using
dietary treatments from P01 (FO and CO) and P02 (HQ and
LQ) as fixed effects and animal as random effect. Live weight
analysis for each feeding phase was adjusted using the initial
LW as covariate in the model. The resulting LME models were
analyzed using one-way ANOVA for P01 and a 2 × 2 factorial
ANOVA for P02 and P03. Treatment effects were assessed and
predicted means from the model, together with estimates of
the standard errors of the means, were obtained and compared
using Tukey’s test.

A total of 364 bacterial OTUs and 17 archaea OTUs
(Supplementary Tables S2, S3) were analyzed after using a
minimum average cutoff of 70 reads per sample. The alpha
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diversity of the bacterial and archaeal community of calves
under contrasting dietary management conditions was analyzed
separately using Shannon index in the Vegan package of R
(Oksanen et al., 2017). Dietary treatment effects for the Shannon
index of the microbial (bacterial and archaeal) community during
P01, P02, and P03 were fitted in an LME model and analyzed
using ANOVA as described for DMI, rumen fermentation, and
gas emissions data. Predicted means from the models, together
with estimates of the standard error of the mean (SEM), were
obtained, and pairwise comparisons were done using Tukey’s
test. Beta diversity of the bacteria and archaea community in
each group of calves was analyzed using a partial least squares
discriminant analysis (PLSDA) using the mixOmics package of
R (Lê Cao et al., 2016). Groups of calves in the PLSDA analysis
were assigned combining phase and treatments as follows: phase
1 (P01) corresponded to groups FO and CO, and phases 2 (P02)
and 3 (P03) were the groups formed by the combination of
dietary treatments from P01 and P02, resulting in FOHQ, FOLQ,
COHQ, and COLQ. Additionally, a PLSDA was conducted
for abundant microbes. Abundant microbes were defined as
bacteria genera and archaea species with a relative abundance
≥0.70% and ≥1.00%, respectively. The aim was to identify
whether the abundant microbiota showed a similar cluster
separation pattern to that observed in the whole microbiota.
Association scores for bacteria and archaea were visualized
using clustered image maps (CIM) representing the first two
dimensions (Henderson et al., 2015).

Univariate analyses were used to determine the effect of
dietary treatments on the abundant microbial community. The
abundant microbial community was defined from the OTU
data table as those taxa with an overall relative abundance
across phases ≥1.0 and ≥0.7% at bacteria phylum and genus
level, respectively, and ≥1.0% at species level for archaea. After
checking for normality, bacteria (phyla and genera) and archaea
(species) community data were transformed using natural
logarithm. The analysis of the abundant microbial community
in each feeding phase was assessed as described for animal
performance, enteric emissions, and rumen fermentation data.
Predicted means from the models, together with estimates of
the confident intervals (CI) with upper limit (UL) and lower
limit (LL), were obtained and back transformed, and pairwise
comparisons were done using the Benjamini–Hochberg test.

RESULTS

Animal Performance, Enteric Emissions,
and Rumen Fermentation
The effects of dietary treatments on animal performance, enteric
emissions, and rumen fermentation are presented in Table 2. In
P01 (week 9), CO calves had a 136% greater (P < 0.01) DMI than
FO calves (total DMI, including milk intake, CO = 2.10 kg vs.
FO = 1.84 kg; P < 0.01). Live weight was 8% lower (P = 0.02) in
CO than in FO calves. Daily pCH4 was 25% higher in CO than
FO calves but this was not significant (P = 0.06). Calves in the CO
group had 47% lower (P < 0.01) yCH4 than FO calves. Hydrogen
production and yield were not affected (P ≥ 0.33) by the dietary
regime. Total SCFA concentrations in the rumen were 45% higher

(P < 0.01) in CO than FO calves. Compared with FO calves, the
proportion of acetate in CO calves was lower (P < 0.01), while the
proportions of propionate and valerate were greater (P < 0.01).
The proportions of butyrate and caproate were similar (P ≥ 0.11)
in both groups, while both isobutyrate and isovalerate were lower
(P < 0.01) in CO than FO calves.

In P02 (week 19), CO calves were 10% lighter (P < 0.01)
than FO calves. Isovalerate proportions were higher in CO than
FO calves (1.00 vs. 0.87; P = 0.03). No other effects from P01
dietary regimes (i.e., CO and FO) and no interactions between the
dietary regimes in P01 and P02 (i.e., HQ and LQ) were observed
(P ≥ 0.13). Dry matter intake was 41% greater in HQ than LQ
calves. Live weight in HQ calves was 8% lower (P = 0.03) than
in LQ calves. The pCH4 and pH2 were 31% (P < 0.01) and
133% (P = 0.03) greater in HQ than LQ calves, respectively.
No differences between yCH4 and yH2 were observed between
these groups (P ≥ 0.15). Total SCFA concentrations in HQ calves
were 36% greater (P < 0.01) than in LQ calves. In HQ calves,
acetate proportions were lower (P < 0.01), while propionate and
valerate proportions were greater (P < 0.01) than in LQ calves.
The proportions of butyrate and caproate were 20% lower and 8%
greater in HQ than in LQ calves, but these were not significant
(P = 0.07). Both isobutyrate and isovalerate proportions were
greater (P < 0.01) in HQ than LQ calves.

In P03 (week 41), CO calves were 6% lighter than FO calves,
but this was not significant (P = 0.08), while HQ calves were 23%
heavier (P < 0.01) than LQ calves. No direct effect of previous
dietary treatments (P ≥ 0.12) or their interactions (P ≥ 0.14)
was observed on animal performance, enteric emissions, and
rumen fermentation.

Rumen Microbial Diversity
Negative control reactions containing no template for bacteria
and archaea resulted in no 16S rRNA amplicons after PCR;
therefore, no subsequent analysis was undertaken. After merging,
filtering, and trimming, Illumina sequencing generated a total of
8,087,270 bacterial and archaeal 16S rRNA sequences from the
72 samples. The average number of sequences of bacteria and
archaea was 97,286 ± 29,785 SD and 15,037 ± 2,875 SD as per
sample, respectively, while the number of OTUs was 1,509 and 41
for bacteria and archaea, respectively.

Figure 1 shows the Shannon index of the bacterial and
archaeal community in each of the dietary treatment groups of
calves during each sampling phase. In P01, the bacteria diversity
in CO calves was lower (P = 0.01) than in FO calves. However,
the Shannon index for bacteria in P02 and P03 did not show
dietary effects from P01 and P02 (P ≥ 0.69) or dietary interaction
effects (P ≥ 0.70; Figure 1A). The archaea diversity did not show
dietary treatment effect (P ≥ 0.29) in P01, or carryover effects
(P ≥ 0.17) from P01, dietary treatment effects during P02, or their
interaction effects during P02 and P03 (Figure 1B).

Figure 2 shows the beta diversity analysis of the bacteria and
archaea for the community and abundant microbes, respectively,
during each feeding phase. The PLSDA for the bacteria
community (364 bacteria genus; Figure 2A) and abundant
bacteria (25 genus; Figure 2B) in CO calves differed from
pasture-fed calves in P01–P03. Within pasture-fed calves, the beta
diversity for the bacteria community differed between calves in
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TABLE 2 | Effect of dietary treatmentsa on dry matter intake (DMI)b, live weight (LW)c, enteric emissionsd , and fermentation profilese in calves during three measurement
phasesf .

P01 P02 P03

FO CO SEM P-T1 FO CO SEM HQ LQ SEM P-T1 P-T2 P-int FO CO SEM HQ LQ SEM P-T1 P-T2 P-int

DMI
(kg/day)

0.89 2.1 0.039 < 0.01 3.50 3.31 0.202 3.98 2.83 0.202 0.52 < 0.01 0.81 4.11 3.91 0.168 4.20 3.81 0.168 0.4 0.12 0.87

LW (kg) 82.0 75.6 1.751 0.02 123.1 111.3 2.859 121.7 112.8 2.931 < 0.01 0.03 0.78 192.7 182.5 3.974 206.9 168.3 4.073 0.08 < 0.01 0.59

pCH4

(g/day)g
14.59 18.20 1.265 0.06 67.84 62.90 2.321 74.78 56.97 2.321 0.15 < 0.01 0.41 121.6 117.8 4.428 124.6 114.7 4.428 0.55 0.13 0.46

yCH4 (g/kg
of DMI)h

16.21 8.66 0.690 < 0.01 20.60 19.42 1.412 18.87 21.16 1.412 0.56 0.27 0.91 29.81 30.41 0.901 29.91 30.32 0.901 0.65 0.75 0.68

pH2

(g/day)i
0.123 0.211 0.063 0.33 0.101 0.062 0.020 0.114 0.049 0.020 0.18 0.03 0.76 0.033 0.036 0.022 0.034 0.035 0.022 0.93 0.97 0.67

yH2 (g/kg)j 0.143 0.101 0.035 0.41 0.027 0.019 0.005 0.029 0.017 0.005 0.26 0.11 0.15 0.008 0.009 0.005 0.007 0.009 0.005 0.91 0.82 0.44

SCFA
(mM)k

70.1 101.6 6.150 < 0.01 63.5 64.7 3.831 73.8 54.4 3.831 0.82 < 0.01 0.28 74.5 71.0 5.894 76.2 69.4 5.894 0.68 0.43 0.18

Acetate (%) 62.48 45.05 1.080 < 0.01 70.31 70.6 0.386 68.55 72.36 0.386 0.6 < 0.01 0.8 67.96 67.89 0.548 68.02 67.84 0.548 0.93 0.82 0.26

Propionate
(%)

21.83 39.14 1.061 < 0.01 17.51 17.19 0.295 17.98 16.72 0.295 0.45 < 0.01 0.75 16.53 16.63 0.427 16.41 16.75 0.427 0.87 0.58 0.92

Butyrate
(%)

12.04 10.99 0.801 0.37 9.19 8.95 0.255 9.41 8.73 0.255 0.52 0.07 0.71 11.71 11.64 0.276 11.77 11.58 0.276 0.87 0.65 0.14

Valerate (%) 1.35 3.53 0.179 < 0.01 0.94 1.00 0.039 1.20 0.74 0.039 0.32 < 0.01 0.32 0.99 1.02 0.038 0.99 1.02 0.038 0.49 0.67 0.43

Caproate
(%)

0.45 0.68 0.097 0.11 0.29 0.34 0.027 0.28 0.35 0.027 0.17 0.07 0.13 0.12 0.13 0.008 0.13 0.11 0.008 0.43 0.17 0.72

Isobutyrate
(%)

0.92 0.28 0.042 < 0.01 0.89 0.92 0.023 1.22 0.58 0.023 0.45 < 0.01 0.86 1.30 1.27 0.054 1.28 1.29 0.054 0.74 0.84 0.25

Isovalerate
(%)

0.94 0.33 0.082 < 0.01 0.87 1.00 0.039 1.35 0.53 0.039 0.03 < 0.01 0.88 1.40 1.42 0.065 1.41 1.41 0.065 0.88 0.96 0.28

Results are the means and standard error of the means (SEM), P-value for treatment effect for FO vs. CO (P01), treatment effect for HQ vs. LQ (P02) and their interactions
(P-int).
aDietary treatments corresponded to phase 1 (P01) concentrate (CO) vs. pasture (FO) diets and phase 2 (P02) high-quality (HQ) vs. low-quality (LQ) pastures, with
measurements in P01 (9 weeks), P02 (19 weeks), and phase 3 (P03; 41 weeks) when all calves were offered a common pasture diet.
bDMI (kg/day) was measured in two consecutive days during gas emission measurements.
cLW (kg) was analyzed adjusting LW to initial LW.
dMethane (CH4) and hydrogen (H2) production in two consecutive days (g/day) and yield per kilogram of DMI (y; g/kg DMI) measured.
eTotal concentrations (mM) and individual proportions (%) of short-chain fatty acids (SCFA).
f Dietary treatments in each phase were evaluated as follows: a one-way ANOVA in P01 (9 weeks) to analyze FO vs. CO diets and a 2 × 2 factorial ANOVA in P02 and
P03 to evaluate FO vs. CO and HQ vs. LQ dietary treatment effects and their interactions.
gMethane production per animal (g of CH4/day).
hMethane yield (g of CH4/kg of DMI).
iHydrogen production per animal (g of H2/day).
jHydrogen yield (g of H2/kg of DMI).
kShort-chain fatty acids.

P01–P02 and those in P03; however, for the abundant bacteria,
differences were only observed between pasture-fed calves in P01
and those in P03. The PLSDA of the archaea community (17
species; Figure 2C) and abundant archaea (7 species; Figure 2D)
showed that concentrate-fed calves had different archaea diversity
than those pasture-fed calves. Beta diversity within pasture-fed
calves, for the archaea community and for the abundant archaea,
showed that calves from the HQ groups (FOHQ and COHQ) in
P02 differed from the other groups of calves in P01–P03.

Bacterial Community
The most prominent difference in P01 was a decrease (P < 0.01)
in the proportion of Fibrobacteres and Tenericutes in CO
compared with FO calves. No other differences were observed
for bacteria phyla composition between treatments (Table 3).
At the genus level, members of the Firmicutes phylum had

greater (P < 0.01) Lachnospiraceae NK3A20 group, Roseburia,
Erysipelotrichaceae UCG-002, and Succiniclasticum proportions,
but lower (P < 0.01) Ruminiclostridium 9, Ruminococcaceae
NK4A214 group, Ruminococcus 1, and Kandleria proportions in
CO compared with FO calves. On the other hand, members of
the Bacteroidetes phylum showed greater (P < 0.01) Prevotella 7
proportions but lower (P < 0.01) Prevotella 1; Bacteroidales BS11,
RF16, and S24-7; Prevotellaceae UCG-003; and Rikenellaceae RC9
gut group proportions in CO compared with FO calves (Table 4).

During P02, the bacterial community in HQ when compared
with LQ calves had greater Firmicutes proportions (P < 0.01) but
lower Fibrobacteres proportions (P < 0.01). At the genus level,
members of the Firmicutes phylum in HQ calves had greater
(P ≤ 0.02) proportions of Butyrivibrio 2, Pseudobutyrivibrio,
Roseburia, Ruminiclostridium 9, and Ruminococcaceae NK4A214,
but lower (P ≤ 0.02) Christensenellaceae R-7, Ruminococcus 1,
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FIGURE 1 | Effects of dietary treatments in the Shannon diversity indices of the microbial communities in the rumen of calves during the three measurement phases.
The alpha diversity of dietary treatment concentrate (CO) vs. pasture (FO) during phase 1 (P01; blue) and the combination of dietary treatments from P01 and
high-quality (HQ) vs. low-quality (LQ) pastures from phase 2 (P02), resulting in FOHQ, FOLQ, COHQ, and COLQ, evaluated during P02 (red) and phase 3 (P03;
green) are shown for (A) bacteria Shannon index and (B) archaea Shannon index. Boxplots represent the 25th and 75th percentiles, the whiskers extend to the most
extreme data points, lines within boxes are the medians, and dots represent outliers.

Saccharofermentans, and Succiniclasticum compared with LQ
calves. Conversely, members of the Bacteroidetes phylum in
HQ calves had lower (P ≤ 0.03) Bacteroidales BS11 and S24-7,
Prevotellaceae UCG-003, and Rikenellaceae RC9 gut proportions
than LQ calves. No effects (P > 0.10) from dietary treatments
in P01 or the interaction (P = 0.07) between P01 and P02 were
observed in P02 for the most abundant bacteria phyla and genera
(Tables 3, 4).

In P03, no direct effect of previous dietary treatments or
their interactions was observed on the abundant bacteria at
the phylum and genus levels (Tables 3, 4). Low abundant
bacterial genera showed similar patterns to abundant bacteria
(Supplementary Table S2).

Archaeal Community
Table 5 shows the effects that dietary treatments during
the three feeding phases have on the main archaea species
in calves. During P01, the methanogenic community in
CO calves was dominated by Methanobrevibacter (Mbb.)
boviskoreani, while in FO calves, this was dominated
by Mbb. gottschalkii. The abundant archaeal community
in CO calves had greater (P < 0.01) proportions of
Mbb. boviskoreanii, Methanosphaera (Mph.) A4, and
Mph. Group 5, respectively, but lower (P < 0.01)
proportions of Mbb. gottschalkii, Mbb. ruminantium,
and Mph. ISO3_F5 when compared with FO calves
(Supplementary Figure S1).
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FIGURE 2 | Partial least square discriminant analysis (PLSDA) of the bacteria community at the genus level and archaea community at the species level from calves
fed different treatments and treatment combinations in three sampling phases. Dietary treatments corresponded to: phase 1 (P01), concentrate (CO) vs. pasture
(FO); and phase 2 (P02) high-quality (HQ) vs. low-quality (LQ) pastures. The treatment groups analyzed by phase were as follows: phase 1 (P01; blue) corresponded
to groups from FO and CO; phase 2 (P02; red) and phase 3 (P03; green) were the groups formed by the combination of dietary treatments from P01 and P02,
resulting in FOHQ, FOLQ, COHQ, and COLQ. (A) PLSDA of the bacteria community—364 bacterial genera, (B) PLSDA of the abundant (>0.7%) bacteria—25
abundant genera, (C) PLSDA of the archaea community—17 archaeal species, and (D) PLSDA of the abundant (>1.0%) archaea—7 abundant species.

In P02, the archaea community was dominated by Mbb.
gottschalkii in both treatment groups. Compared with LQ calves,
the abundant archaea community composition in HQ calves had
greater (P ≤ 0.04) proportions of Mph. sp. A4, Mph. Group
5, and Mph. ISO3_F5, but lower (P < 0.01) proportions of
Methanomassiliicoccales (Mmc.) Group 10 sp. During P02, the
archaea community did not show carryover effects from P01

treatments (P ≥ 0.24) or interactions between P01 and P02
treatments (P ≥ 0.32) in the abundant archaeal species.

In P03, animals that previously grazed the HQ swards
showed greater (P < 0.01) Mbb. ruminantium proportions
when compared with LQ calves. No main effects of P01 diets
(P ≥ 0.08) on the relative proportions of the abundant archaea
were observed in P03.

Frontiers in Microbiology | www.frontiersin.org 8 October 2021 | Volume 12 | Article 711040

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-711040 October 20, 2021 Time: 11:57 # 9

Cristobal-Carballo et al. Rumen Microbiota During Dietary Transitions

TABLE 3 | Effect of dietary treatmentsa on the abundant bacteria phylumb during the measurement phases: 1 (P01), 2 (P02), and 3 (P03)c.

P01

CO 95% CI (UL–LL) FO 95% CI (UL–LL) P-val

Actinobacteria 1.01 (0.635–1.623) 0.67 (0.420–1.073) 0.226

Bacteroidetes 40.45 (33.032–49.542) 52.93 (43.219–64.821) 0.074

Cyanobacteria 0.13 (0.068–0.244) 0.31 (0.164–0.591) 0.064

Fibrobacteres 0.01 (0.005–0.034) 0.40 (0.158–1.017) < 0.0001

Firmicutes 48.73 (39.936–59.466) 40.45 (33.149–49.361) 0.199

Proteobacteria 0.49 (0.307–0.781) 0.43 (0.267–0.679) 0.676

Tenericutes 0.29 (0.176–0.486) 0.89 (0.536–1.485) 0.005

F:Bd 1.20 (0.786–1.846) 0.76 (0.499–1.171) 0.131

P02

CO 95% CI (UL–LL) FO 95% CI (UL–LL) HQ 95% CI (UL–LL) LQ 95% CI (UL–LL) P-T1 P-T2 P-int

Actinobacteria 0.73 (0.547–0.986) 1.03 (0.771–1.389) 1.04 (0.774–1.395) 0.73 (0.545–0.982) 0.102 0.094 0.820

Bacteroidetes 55.23 (51.252–59.508) 55.46 (51.467–59.759) 53.59 (49.732–57.744) 57.15 (53.040–61.585) 0.935 0.218 0.627

Cyanobacteria 0.76 (0.552–1.039) 0.57 (0.412–0.776) 0.34 (0.245–0.462) 1.27 (0.927–1.746) 0.188 < 0.0001 0.576

Fibrobacteres 0.57 (0.377–0.851) 0.53 (0.351–0.792) 0.22 (0.144–0.324) 1.38 (0.921–2.080) 0.798 < 0.0001 0.512

Firmicutes 35.67 (32.431–39.233) 35.80 (32.551–39.378) 39.02 (35.480–42.921) 32.73 (29.754–35.994) 0.955 0.013 0.437

Proteobacteria 1.09 (0.797–1.499) 1.24 (0.901–1.695) 1.02 (0.741–1.394) 1.33 (0.969–1.822) 0.572 0.226 0.072

Tenericutes 1.79 (1.454–2.209) 1.49 (1.211–1.840) 1.56 (1.265–1.922) 1.72 (1.392–2.115) 0.212 0.508 0.728

F:Bd 0.65 (0.547–0.763) 0.65 (0.546–0.763) 0.73 (0.616–0.861) 0.57 (0.485–0.677) 1.000 0.047 0.509

P03

CO 95% CI (UL–LL) FO 95% CI (UL–LL) HQ 95% CI (UL–LL) LQ 95% CI (UL–LL) P-T1 P-T2 P-int

Actinobacteria 0.6 (0.460–0.776) 0.62 (0.475–0.801) 0.71 (0.550–0.926) 0.52 (0.398–0.670) 0.858 0.082 0.338

Bacteroidetes 54.27 (51.198–57.522) 53.1 (50.092–56.279) 53.19 (50.178–56.376) 54.17 (51.110–57.423) 0.586 0.646 0.289

Cyanobacteria 0.36 (0.266–0.495) 0.32 (0.235–0.438) 0.35 (0.260–0.484) 0.33 (0.241–0.449) 0.571 0.727 0.571

Fibrobacteres 1.01 (0.732–1.398) 1.1 (0.795–1.518) 1.04 (0.749–1.431) 1.07 (0.776–1.483) 0.712 0.873 0.686

Firmicutes 36.88 (34.191–39.787) 38.57 (35.756–41.608) 37.8 (35.042–40.778) 37.63 (34.887–40.597) 0.394 0.932 0.243

Proteobacteria 1.19 (0.978–1.458) 1.12 (0.916–1.365) 1.31 (1.076–1.605) 1.02 (0.832–1.241) 0.631 0.072 0.914

Tenericutes 2.27 (1.975–2.613) 2.02 (1.756–2.324) 2.19 (1.902–2.516) 2.1 (1.824–2.413) 0.23 0.663 0.882

F:Bd 0.68 (0.595–0.776) 0.73 (0.636–0.830) 0.72 (0.622–0.812) 0.69 (0.608–0.794) 0.469 0.803 0.259

aDietary treatments corresponded to phase 1 (P01) concentrate (CO) vs. pasture (FO) diets and phase 2 (P02) high-quality (HQ) vs. low-quality (LQ) pastures, with
measurements in P01 (9 weeks), P02 (19 weeks), and phase 3 (P03; 41 weeks) when all calves were offered a common pasture diet.
bMeasured effect corresponded to the seven most abundant ruminal bacterial phyla.
cDietary treatments in each phase were evaluated as follows: a one-way ANOVA in P01 to analyze FO vs. CO diets and a 2 × 2 factorial ANOVA in P02 and P03 to
evaluate FO vs. CO and HQ vs. LQ dietary treatment effects and their interactions.
dFirmicutes: Bacteroidetes ratio.

DISCUSSION

Ruminal microorganisms are required for the degradation of
plant components (Puniya et al., 2015; Huws et al., 2018;
Gruninger et al., 2019). The establishment of these microbes
in the rumen has been shown to be a dynamic progression
from birth to adulthood (Jami et al., 2013; Rey et al., 2014).
Recent studies have suggested that early interventions in life
might imprint the microbial community, with such interventions
having a persistent effect throughout the adult life of the animal
(Yáñez-Ruiz et al., 2015). In this study, we have shown that
feeding contrasting diets in early life (1 to 30 weeks) affects rumen
fermentation patterns and rumen microbiota composition at the
time of sampling; however, a permanent microbial or rumen
fermentation imprint was not achieved.

Animal Performance, Rumen Enteric
Emissions, and Fermentation Profiles
In pre-weaned ruminants, the intake of solid feed is affected
by milk management (e.g., amount of milk, age at weaning,
and weaning method) and both access to and the type of solid
feed offered (Khan et al., 2011; Abbas et al., 2017). The above
was observed in the present study in P01, where pre-weaning
milk management and type of solid diet access resulted in
differences in solid DMI. Despite the increased DMI in CO
calves, the greater daily milk allowance and duration of milk
feeding in FO calves resulted in heavier pre-weaning LW, as
reported in the wider cohort of animals from the parent study
(Burggraaf et al., 2020) and prior studies (Muir et al., 2002; Khan
et al., 2011). Differences in solid feed intake between groups
corresponded to differences in CH4 production between CO
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TABLE 4 | Effect of dietary treatmentsa on the abundant bacteria genusb during the three measurement phasesc.

Genus P01

CO 95% CI (UL–LL) FO 95% CI (UL–LL) P-val

Bacteroidales BS11 gut group 0.02 (0.014–0.041) 1.51 (0.875–2.592) <0.0001

Bacteroidales RF16 group 0.00 (0.002–0.004) 0.86 (0.584–1.277) <0.0001

Bacteroidales S24-7 group 0.25 (0.161–0.392) 1.48 (0.945–2.308) <0.0001

Prevotella 1 0.78 (0.321–1.893) 39.31 (16.199–95.412) <0.0001

Prevotella 7 18.38 (7.415–45.541) 0.35 (0.142–0.874) <0.0001

Prevotellaceae UCG-001 0.87 (0.443–1.701) 0.86 (0.440–1.686) 0.9852

Prevotellaceae UCG-003 0.00 (0.003–0.006) 1.17 (0.758–1.808) <0.0001

Rikenellaceae RC9 gut group 0.23 (0.162–0.319) 1.66 (1.185–2.331) <0.0001

Fibrobacter 0.01 (0.005–0.036) 0.40 (0.152–1.053) <0.0001

Christensenellaceae R-7 group 0.09 (0.056–0.142) 2.94 (1.836–4.697) <0.0001

Butyrivibrio 2 0.01 (0.006–0.012) 0.41 (0.277–0.595) <0.0001

Lachnospiraceae NK3A20 group 5.95 (3.206–11.04) 1.96 (1.054–3.630) 0.0150

Pseudobutyrivibrio 0.19 (0.114–0.302) 0.73 (0.451–1.196) 0.0004

Roseburia 6.59 (3.899–11.127) 0.67 (0.398–1.136) <0.0001

[Eubacterium] coprostanoligenes group 0.30 (0.220–0.408) 0.94 (0.690–1.281) <0.0001

Ruminiclostridium 9 0.00 (0.003–0.008) 2.71 (1.555–4.712) <0.0001

Ruminococcaceae NK4A214 group 0.07 (0.043–0.107) 1.89 (1.204–2.970) <0.0001

Ruminococcaceae UCG-014 1.27 (0.813–1.981) 0.97 (0.624–1.520) 0.3932

Ruminococcus 1 0.55 (0.308–0.985) 2.10 (1.176–3.767) 0.0027

Saccharofermentans 0.00 (0.002–0.006) 0.74 (0.410–1.321) <0.0001

Erysipelotrichaceae UCG-002 3.78 (0.824–17.337) 0.09 (0.020–0.421) 0.0017

Kandleria 0.00 (0.001–0.008) 1.82 (0.785–4.195) <0.0001

Succiniclasticum 2.21 (1.634–2.981) 0.95 (0.705–1.286) 0.0005

Selenomonas 1 0.01 (0.007–0.020) 0.89 (0.537–1.470) <0.0001

Mollicutes RF9 0.28 (0.160–0.490) 0.80 (0.459–1.411) 0.0114

P02

CO 95% CI (UL–LL) FO 95% CI (UL–LL) HQ 95% CI (UL–LL) LQ 95% CI (UL–LL) P-T1 P-T2 P-int

Bacteroidales BS11 gut group 2.59 (1.858–3.613) 3.28 (2.351–4.572) 1.72 (1.232–2.395) 4.9 (3.546–6.896) 0.309 0.000 0.692

Bacteroidales RF16 group 0.88 (0.526–1.488) 0.90 (0.538–1.522) 0.63 (0.376–1.064) 1.3 (0.752–2.129) 0.950 0.063 0.981

Bacteroidales S24-7 group 1.07 (0.716–1.597) 1.33 (0.892–1.989) 0.87 (0.582–1.298) 1.6 (1.098–2.447) 0.429 0.030 0.651

Prevotella 1 35.27 (30.002–41.453) 35.13 (29.884–41.291) 37.82 (32.174–44.455) 32.8 (27.867–38.504) 0.972 0.205 0.620

Prevotella 7 0.06 (0.034–0.093) 0.06 (0.039–0.106) 0.11 (0.069–0.189) 0.0 (0.019–0.053) 0.706 0.001 0.990

Prevotellaceae UCG-001 2.85 (1.997–4.065) 2.16 (1.512–3.078) 2.92 (2.045–4.162) 2.1 (1.477–3.007) 0.262 0.192 0.224

Prevotellaceae UCG-003 1.82 (1.312–2.511) 2.60 (1.883–3.602) 1.46 (1.053–2.014) 3.2 (2.347–4.491) 0.116 0.002 0.305

Rikenellaceae RC9 gut group 4.27 (3.432–5.324) 4.62 (3.707–5.751) 3.62 (2.904–4.505) 5.5 (4.381–6.796) 0.610 0.012 0.254

Fibrobacter 0.57 (0.377–0.851) 0.53 (0.351–0.792) 0.22 (0.144–0.324) 1.4 (0.921–2.080) 0.798 <0.0001 0.512

Christensenellaceae R-7 group 6.55 (5.607–7.656) 7.67 (6.562–8.961) 5.74 (4.913–6.709) 8.8 (7.489–10.225) 0.152 0.001 0.090

Butyrivibrio 2 0.92 (0.624–1.357) 0.93 (0.634–1.377) 1.41 (0.955–2.077) 0.6 (0.414–0.900) 0.955 0.005 0.636

Lachnospiraceae NK3A20 group 1.86 (1.449–2.382) 2.17 (1.696–2.789) 2.26 (1.763–2.897) 1.8 (1.395–2.293) 0.361 0.180 0.341

Pseudobutyrivibrio 1.13 (0.835–1.530) 1.05 (0.778–1.425) 1.61 (1.187–2.173) 0.7 (0.548–1.003) 0.734 0.001 0.454

Roseburia 0.34 (0.225–0.502) 0.27 (0.180–0.403) 0.72 (0.479–1.069) 0.1 (0.085–0.189) 0.431 <0.0001 0.561

[Eubacterium] coprostanoligenes group 1.07 (0.897–1.284) 1.16 (0.973–1.393) 1.00 (0.839–1.201) 1.2 (1.040–1.490) 0.511 0.093 0.036

Ruminiclostridium 9 0.59 (0.336–1.022) 0.62 (0.356–1.083) 1.34 (0.767–2.333) 0.3 (0.156–0.474) 0.881 0.000 0.672

Ruminococcaceae NK4A214 group 1.93 (1.559–2.382) 2.09 (1.691–2.585) 2.41 (1.949–2.979) 1.7 (1.352–2.067) 0.577 0.019 0.946

Ruminococcaceae UCG-014 1.35 (1.048–1.727) 1.15 (0.896–1.476) 1.21 (0.939–1.547) 1.3 (1.000–1.647) 0.364 0.715 0.925

Ruminococcus 1 1.14 (0.943–1.371) 0.99 (0.822–1.194) 0.90 (0.750–1.090) 1.2 (1.033–1.502) 0.290 0.020 0.448

Saccharofermentans 0.78 (0.635–0.962) 0.68 (0.548–0.831) 0.59 (0.478–0.723) 0.9 (0.730–1.105) 0.309 0.007 0.136

Erysipelotrichaceae UCG-002 0.01 (0.005–0.018) 0.01 (0.007–0.024) 0.02 (0.012–0.040) 0.0 (0.003–0.011) 0.565 0.006 0.377

Kandleria 0.09 (0.039–0.196) 0.04 (0.017–0.082) 0.42 (0.189–0.943) 0.0 (0.003–0.017) 0.127 <0.0001 0.079

(Continued)
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TABLE 4 | (Continued)

Genus P01

CO 95% CI (UL–LL) FO 95% CI (UL–LL) P-val

Succiniclasticum 1.27 (0.959–1.682) 1.54 (1.159–2.034) 1.09 (0.824–1.445) 1.8 (1.350–2.367) 0.331 0.017 0.165

Selenomonas 1 0.00 (0.003–0.006) 0.01 (0.004–0.008) 0.01 (0.007–0.012) 0.0 (0.002–0.004) 0.269 <0.0001 0.228

Mollicutes RF9 0.01 (0.012–0.019) 0.01 (0.010–0.015) 0.01 (0.010–0.016) 0.0 (0.011–0.018) 0.213 0.607 0.782

P03

CO 95% CI (UL–LL) FO 95% CI (UL–LL) HQ 95% CI (UL–LL) LQ 95% CI (UL–LL) P-T1 P-T2 P-int

Bacteroidales BS11 gut group 3.66 (3.085–4.331) 3.77 (3.180–4.465) 3.71 (3.130–4.395) 3.71 (3.133–4.400) 0.795 0.993 0.198

Bacteroidales RF16 group 0.89 (0.644–1.218) 0.73 (0.532–1.006) 0.82 (0.594–1.123) 0.79 (0.577–1.091) 0.385 0.894 0.026

Bacteroidales S24-7 group 3.70 (3.034–4.510) 3.40 (2.789–4.146) 3.58 (2.937–4.366) 3.51 (2.881–4.282) 0.538 0.888 0.173

Prevotella 1 33.59 (29.770–37.902) 32.74 (29.019–36.945) 32.68 (28.966–36.879) 33.65 (29.824–37.971) 0.758 0.725 0.839

Prevotella 7 0.06 (0.040–0.093) 0.08 (0.052–0.120) 0.08 (0.050–0.116) 0.06 (0.042–0.097) 0.383 0.526 0.823

Prevotellaceae UCG-001 2.60 (2.148–3.141) 2.56 (2.116–3.093) 2.45 (2.028–2.965 2.71 (2.241–3.276) 0.907 0.447 0.154

Prevotellaceae UCG-003 2.64 (2.146–3.252) 2.42 (1.965–2.978) 2.63 (2.132–3.232) 2.43 (1.978–2.997) 0.539 0.599 0.598

Rikenellaceae RC9 gut group 3.71 (3.260–4.225) 3.69 (3.240–4.195) 3.64 (3.197–4.140) 3.76 (3.306–4.281) 0.937 0.706 0.754

Fibrobacter 1.01 (0.732–1.398) 1.10 (0.795–1.518) 1.04 (0.749–1.431) 1.07 (0.776–1.483) 0.712 0.873 0.686

Christensenellaceae R-7 group 7.26 (6.358–8.301) 9.17 (8.025–10.479) 8.74 (7.647–9.985) 7.62 (6.672–8.712) 0.018 0.147 0.404

Butyrivibrio 2 0.61 (0.466–0.796) 0.62 (0.471–0.804) 0.67 (0.509–0.869) 0.56 (0.431–0.736) 0.645 0.370 0.645

Lachnospiraceae NK3A20 group 0.69 (0.572–0.836) 0.86 (0.710–1.037) 0.73 (0.608–0.888) 0.81 (0.668–0.976) 0.109 0.472 0.607

Pseudobutyrivibrio 1.02 (0.826–1.271) 0.92 (0.738–1.136) 1.06 (0.852–1.311) 0.89 (0.715–1.101) 0.450 0.247 0.034

Roseburia 0.34 (0.283–0.418) 0.27 (0.222–0.327) 0.29 (0.237–0.349) 0.32 (0.266–0.392) 0.078 0.385 0.059

[Eubacterium] coprostanoligenes group 1.23 (1.009–1.494) 1.23 (1.013–1.501) 1.15 (0.943–1.397) 1.32 (1.084–1.605) 0.972 0.310 0.386

Ruminiclostridium 9 0.12 (0.066–0.204) 0.13 (0.071–0.220) 0.13 (0.075–0.234) 0.11 (0.062–0.192) 0.840 0.608 0.133

Ruminococcaceae NK4A214 group 2.87 (2.502–3.298) 2.98 (2.594–3.418) 3.07 (2.671–3.520) 2.79 (2.430–3.203) 0.705 0.325 0.810

Ruminococcaceae UCG-014 0.67 (0.531–0.843) 0.61 (0.481–0.763) 0.62 (0.492–0.781) 0.65 (0.519–0.824) 0.530 0.738 0.901

Ruminococcus 1 1.97 (1.519–2.552) 1.75 (1.352–2.271) 1.64 (1.263–2.121) 2.11 (1.626–2.731) 0.515 0.166 0.053

Saccharofermentans 1.02 (0.887–1.167) 1.00 (0.871–1.147) 0.97 (0.846–1.113) 1.05 (0.914–1.202) 0.851 0.419 0.117

Erysipelotrichaceae UCG-002 0.00 (0.002–0.007) 0.00 (0.001–0.003) 0.01 (0.002–0.005) 0.00 (0.001–0.005) 0.061 0.794 0.336

Kandleria 0.12 (0.044–0.345) 0.10 (0.035–0.277) 0.11 (0.040–0.311) 0.11 (0.039–0.307) 0.757 0.986 0.122

Succiniclasticum 2.66 (2.152–3.297) 2.18 (1.761–2.698) 2.20 (1.776–2.721) 2.64 (2.133–3.269) 0.181 0.219 0.053

Selenomonas 1 0.85 (0.545–1.335) 0.71 (0.451–1.106) 0.71 (0.456–1.118) 0.84 (0.539–1.321) 0.543 0.590 0.133

Mollicutes RF9 1.46 (1.182–1.793) 1.33 (1.077–1.633) 1.36 (1.106–1.677) 1.42 (1.152–1.746) 0.517 0.776 0.870

aDietary treatments corresponded to phase 1 (P01) concentrate (CO) vs. pasture (FO) diets and phase 2 (P02) high-quality (HQ) vs. low-quality (LQ) pastures, with
measurements in P01 (9 weeks), P02 (19 weeks), and phase 3 (P03; 41 weeks) when all calves were offered a common pasture diet.
bMeasured effect corresponded to the 35 bacterial genera with a relative abundance > 0.50% across rumen samples.
cDietary treatments in each phase were evaluated as follows: a one-way ANOVA in P01 to analyze FO vs. CO diets and a 2 × 2 factorial ANOVA in P02 and P03 to
evaluate FO vs. CO and HQ vs. LQ dietary treatment effects and their interactions.

and FO calves, where greater DMI was associated with greater
CH4 production (Jonker et al., 2016; Bird-Gardiner et al., 2017).
However, CH4 production per kilogram of DMI (yCH4) was
lower in CO calves with higher energy content in grain-based
diets than in FO calves with a forage diets (Table 1), as previously
stated by Johnson and Johnson (1995). Differences in dietary
nutrient composition and its digestibility include changes in
ruminal pH and in cellulolytic activity and fiber degradation,
level of starch by-pass to the intestine, and percentage of
SCFA which all may influence methanogenesis (Benchaar et al.,
2001; Jentsch et al., 2007). Beauchemin and McGinn (2005)
indicated that feeding high-concentrate diets (47–58% of starch)
decreases methane yield and lowers the acetate:propionate ratio.
In the rumen, the fermentation of diets rich in structural

carbohydrates produces greater proportions of acetate with
the release of hydrogen, whereas the intake of diets rich in
starch contents results in greater propionate proportions without
hydrogen production (Ungerfeld, 2020). The propionate pathway
competes for hydrogen with hydrogenotrophic methanogens
(Janssen, 2010). Therefore, the high availability of starch in
the diet of CO calves resulted in a reduction of methane
yield in part due to an increased propionate production
(Sauvant et al., 2011; Williams et al., 2019). Moreover, the
rumen pH of grass-fed ruminants ranges between 6.0 and 7.0
under normal physiological conditions (Grünberg and Constable,
2009). However, the consumption of diets rich in grains results
in greater concentration of SCFA and production of lactic
acid that can build up in the rumen and reduce the ruminal
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TABLE 5 | Effect of dietary treatmentsa on the abundant archaea speciesb during the three measurement phasesc.

Species P01

CO 95% CI (UL–LL) FO 95% CI (UL–LL) P-val

Methanomassiliicoccales Group 10 sp. 0.15 (0.053–0.451) 0.61 (0.210–1.789) 0.073

Methanobrevibacter.boviskoreani.clade 64.03 (47.111–87.013) 0.05 (0.036–0.067) <0.001

Methanobrevibacter.gottschalkii.clade 2.53 (1.332–4.812) 57.40 (30.195–109.124) <0.001

Methanobrevibacter.ruminantium.clade 0.81 (0.272–2.416) 24.36 (8.177–72.556) <0.001

Methanosphaera sp. A4 8.58 (4.322–17.029) 0.05 (0.027–0.106) <0.001

Methanosphaera sp. Group 5 4.35 (2.719–6.954) 1.73 (1.084–2.772) 0.009

Methanosphaera sp. ISO3_F5 0.07 (0.032–0.144) 4.35 (2.062–9.194) <0.001

P02

Species CO 95% CI (UL–LL) FO 95% CI (UL–LL) HQ 95% CI (UL–LL) LQ 95% CI (UL–LL) P-T1 P-T2 P-int

Methanomassiliicoccales Group 10 sp. 1.69 (0.889–3.201) 1.48 (0.777–2.799) 0.56 (0.297–1.070) 4.41 (2.325–8.372) 0.761 <0.001 0.966

Methanobrevibacter boviskoreani.clade 0.06 (0.023–0.149) 0.03 (0.012–0.075) 0.04 (0.014–0.088) 0.05 (0.020–0.128) 0.294 0.564 0.586

Methanobrevibacter gottschalkii.clade 58.91 (51.408–67.507) 65.36 (57.035–74.896) 58.16 (50.750–66.643) 66.21 (57.775–75.867) 0.274 0.176 0.787

Methanobrevibacter.ruminantium.clade 10.25 (5.966–17.622) 10.35 (6.020–17.782) 10.61 (6.172–18.229) 10.00 (5.820–17.191) 0.981 0.875 0.847

Methanosphaera sp. A4 0.08 (0.034–0.184) 0.06 (0.024–0.133) 0.13 (0.055–0.299) 0.04 (0.015–0.082) 0.577 0.036 0.327

Methanosphaera sp. Group 5 9.03 (5.219–15.626) 5.76 (3.327–9.960) 14.94 (8.636–25.853) 3.48 (2.011–6.020) 0.240 <0.001 0.373

Methanosphaera sp. ISO3_F5 3.34 (1.885–5.9226) 3.36 (1.894–5.948) 6.13 (3.460–10.870) 1.83 (1.032–3.241) 0.991 0.005 0.323

Species P03

CO 95% CI (UL–LL) FO 95% CI (UL–LL) HQ 95% CI (UL–LL) LQ 95% CI (UL–LL) P-T1 P-T2 P-int

Methanomassiliicoccales Group 10 sp. 4.65 (3.189–6.787) 4.60 (3.154–6.712) 3.55 (2.433–5.179) 6.03 (4.133–8.797) 0.966 0.052 0.882

Methanobrevibacter.boviskoreani.clade 0.04 (0.025–0.066) 0.03 (0.021–0.056) 0.05 (0.030–0.080) 0.03 (0.018–0.046) 0.628 0.113 0.016

Methanobrevibacter.gottschalkii.clade 64.56 (60.961–68.375) 64.22 (60.635–68.008) 62.89 (59.380–66.602) 65.93 (62.249–69.819) 0.892 0.239 0.937

Methanobrevibacter.ruminantium.clade 11.94 (9.892–14.405) 11.99 (9.933–14.464) 15.35 (12.719–18.521) 9.32 (7.725–11.250) 0.975 <0.001 0.833

Methanosphaera sp. A4 0.04 (0.009–0.133) 0.04 (0.009–0.130) 0.04 (0.010–0.143) 0.03 (0.009–0.121) 0.982 0.860 0.674

Methanosphaera sp. Group 5 3.01 (2.116–4.283) 2.44 (1.717–3.476) 2.40 (1.689–3.420) 3.06 (2.151–4.354) 0.393 0.324 0.200

Methanosphaera sp. ISO3_F5 6.92 (5.061–9.453) 10.27 (7.517–14.042) 8.93 (6.531–12.200) 7.96 (5.825–10.881) 0.077 0.595 0.668

aDietary treatments corresponded to phase 1 (P01) concentrate (CO) vs. pasture (FO) diets and phase 2 (P02) high-quality (HQ) vs. low-quality (LQ) pastures, with
measurements in P01 (9 weeks), P02 (19 weeks), and phase 3 (P03; 41 weeks) when all calves were offered a common pasture diet.
bMeasured effect corresponded to the seven archaeal species with a relative abundance > 1.00% across rumen samples.
cDietary treatments in each phase were evaluated as follows: a one-way ANOVA in P01 to analyze FO vs. CO diets and a 2 × 2 factorial ANOVA in P02 and P03 to
evaluate FO vs. CO and HQ vs. LQ dietary treatment effects and their interactions.

pH below 6.0 (Dijkstra et al., 2012). Ruminal pH was not
measured in the current study, but it can be speculated that
CO calves with higher SCFA concentrations and less fiber
contents in the diet had a lower ruminal pH than the grazing
groups (Hook et al., 2011). Reduction in ruminal pH may
affect methanogenic microbes and further decrease CH4 yield
(Van Kessel and Russell, 1996).

During P02, results from the parent production trial
(Burggraaf et al., 2020) showed no compensatory growth in
CO calves reared on restricted milk, which correspond to
observations in previous studies (Wardrop, 1966). Conversely,
no growth checks were observed in FO calves, which indicated
that an adequate rumen development was achieved, despite the
high volume of milk fed, consistent with prior studies (Khan
et al., 2011). Forage quality in this feeding phase was critical
for lifetime performance of post-weaned calves, where calves fed
HQ forages resulted in heavier LW when compared with calves
fed LQ forages. This agrees with de Clifford et al. (2014), who

showed that improved growth of calves is achieved when fed
forages with higher metabolizable energy, metabolizable protein,
and digestibility. The differences in methane production during
P01 did not persist when these group of calves were allocated
into different forage treatment diets in P02. During this P02,
the intake of low-quality pastures with high fiber contents
lowered DMI, resulting in low CH4 production (g/day). These
observations corresponded to those reported in growing heifers,
where DMI was reduced in forage diets with low-quality and
high NDF content (Pino et al., 2018). The lack of difference
in methane yield (g/kg of DM) between calves grazed in high-
or low-quality pasture is likely a result of the effects that the
diet had on daily methane output and DMI; this lack of a
response of methane yield to pasture quality has been also
shown in adult cattle (Jonker et al., 2016) and sheep (Muetzel
and Clark, 2015). Conversely, the intake of grasses with high
protein and low fiber content increased the total concentration
of SCFA and decreased the acetate to propionate ratio, i.e.,
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HQ calves, characteristic of the intake of grasses with high
organic matter digestibility (Owens and Basalan, 2016; Pino
et al., 2018). On the other hand, reduced proportions of protein
degradation products, i.e., isobutyrate and isovalerate, in LQ
calves reflected the low crude protein content in the pasture
(Brinkhaus et al., 2017).

When the animals were on the same diet in P03, treatment
differences in LW were sustained due to the lack of compensatory
growth following the dietary intervention in P01 and P02.
Results from the present study and the parent production
study (Burggraaf et al., 2020) showed that extended nutritional
restrictions imposed during the first 7 months of age limited
the capacity of cattle to exhibit compensatory growth. This
agrees with similar studies where severe pre- and post-
weaning nutritional restrictions limit the capacity of cattle
to exhibit compensatory growth and achieve equivalent
weight for age in later life (Ryan, 1990; Hearnshaw, 1997;
Shamay et al., 2005). No differences of DMI, CH4 emissions,
and SCFA profiles were observed between the two groups.
Similar results were observed in lambs fed high and low
fiber diets in early life with no effect on rumen metabolites
after 16 to 20 weeks of treatment cessation (Yáñez-Ruiz
et al., 2010). Our results indicate that dietary composition
at the time of measurement is the major driver for DMI,
rumen fermentation pathways, and methane production
independently of the previous feeding regimes, thus showing
that at the metabolic level no imprint of pre- and post-weaning
treatments had occurred.

Bacterial Composition in the Rumen
The bacterial diversity in the rumen is host specific; however,
variations in the composition of the ingested diet result in
diversity changes of the prokaryotic domains harbored in the
rumen (Henderson et al., 2015). In the present study, differences
in bacterial diversity observed between treatments in the different
dietary phases were consistent with those reported in young
and adult ruminants, suggesting that the degradation of more
structural diets is a complex process which requires a more
diverse consortium of microbes working together (Kim et al.,
2016; Belanche et al., 2019).

In young ruminants, the bacteria present in the rumen is
largely represented by the phyla Bacteroidetes, Firmicutes, and
Proteobacteria, whose changes in relative abundance have been
associated with animal growth and diet (Li et al., 2012; Jami
et al., 2013; Rey et al., 2014). Previously, reports in calves
showed that the fiber content of the diet led to an increased
Firmicutes:Bacteroidetes ratio (F:B ratio) (Kim et al., 2016), but
no such difference was observed in P01 of the present experiment
despite the differences in structural contents between diets. It
cannot be elucidated whether restriction in forage intake by
the allowance of high-milk volumes might affect the F:B ratio
as observed in FO calves from the present study. However, in
P02, the intake of low-quality pastures increased F:B ratio as
previously stated. The intake of diets rich in fiber, e.g., FO in
P01 and LQ in P02, resulted in increased proportion of cellulose-
degrading microorganism such as Fibrobacteres (Ransom-Jones
et al., 2012). The lack of any differences in P03 confirms that diet

at the time is the major driver of the microbial community at
the phylum level and that changes observed by differences in diet
composition pre- and post-weaning do not lead to a permanent
change of the rumen microbiota.

Prevotella is one of the most abundant ruminal bacterial
groups and plays a key role in the degradation and utilization
of a large variety of carbohydrates and proteins entering the
rumen (Cotta, 1992; Kim et al., 2016; Solden et al., 2016). In the
present study, Prevotella was the dominant genus in the rumen
of calves independent of age and diet, as observed previously in
young and adult ruminants (Rey et al., 2014; Henderson et al.,
2015). However, our results indicate that the differences between
Prevotella 7 and Prevotella 1 are driven by dietary composition.
The dominance of Prevotella 7 was only observed in CO calves
in accordance to sheep fed 95% concentrates (McLoughlin et al.,
2020), while Prevotella 1 prevailed in FO and all the other
groups of grazing calves similar to reports in sheep fed high
forage diets (Xie et al., 2019). Prevotella 1 group includes the
species P. ruminicola, P. brevis, and P. bryantii (Henderson
et al., 2019) that produce mainly acetate and succinate (Avguštin
et al., 1997), rather than propionate (Avguštin et al., 1997;
Seshadri et al., 2018). Prevotella 1 species possess extensive
repertoires of polysaccharide utilization loci and carbohydrate
active enzymes targeting various plant polysaccharides (Accetto
and Avguštin, 2019). Prevotella 7 includes species like P. albensis
(Henderson et al., 2019) that mostly produce acetate, succinate,
and propionate (Avguštin et al., 1997; Seshadri et al., 2018).
Annotation of de novo assembled contigs from metagenomic
data not only identified sequences encoding for α-amylase
enzymes in uncharacterized strains of P. albensis but also revealed
the potential to metabolize xylan as an alternative substrate
(Bandarupalli and St-Pierre, 2020). The higher proportion of
propionate in the rumen of concentrate-fed calves was at least
partially due to the differences in these two dominant rumen
bacterial genera.

The intake of concentrates in CO calves increased the
relative abundance of bacteria from the genera Roseburia,
Lachnospiraceae NK3A20 group, and Erysipelotrichaceae UCG-
002, which have a high affinity for utilizing highly degradable
mono- and polysaccharides (Stanton et al., 2009; Huo et al.,
2014). Increases of these soluble carbohydrate-utilizing genera
have been observed in the rumen contents of cattle and sheep fed
greater ratios of dietary concentrates (McLoughlin et al., 2020).
Roseburia and Lachnospiraceae NK3A20 are butyrate-producing
microorganisms (Duncan et al., 2002). However, even though the
principal fermentation product of these organisms is butyrate, no
effect on the proportion or concentrations (CO = 11.3 mM vs.
FO = 8.4 mM, SED = 1.62; P = 0.09) of this SCFA between the
two groups was observed. This may be because Roseburia and
Lachnospiraceae NK3A20 made up only 6.6% and 6.0% of the
community, respectively. Likewise, the family Erysipelotrichaceae
ferments a wide range of sugars to produce mainly lactic acid
(Deusch et al., 2017). Studies in low methane-emitting sheep
have shown that high proportions of Erysipelotrichaceae are
associated with increases in lactic acid production, resulting in
less hydrogen and methane formation (Kamke et al., 2016). In
the present study, the relative abundance of Erysipelotrichaceae
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UCG-002 in the CO group may have favored the production
of propionate by lactate-utilizing bacteria, i.e., Megasphaera
(CO = 0.33% vs. FO = 0.00%, SED = 0.086; P < 0.01) (Kamke
et al., 2016). Reductions in methane formation are attributed
to the H2 utilization for propionate formation, which competes
with the most common hydrogenotrophic methanogens (Liu
and Whitman, 2008; Ungerfeld, 2020). Therefore, increases
in the intake of starch favored the proportions of amylolytic
microorganisms, whose metabolism increased the proportions
of propionate during ruminal fermentation but reduced the
production of hydrogen and ultimately its availability to be used
by methanogens. However, although the amylolytic bacterial
microbiota dominated during the pre-weaning rearing phase in
concentrate-fed calves, it did not persist into the post-weaning
phases of grazing calves.

Interestingly, Kandleria, which degrades different sugars,
including D-galactose and lactose (lactate producer) (Kumar
et al., 2018), was found in high proportions in calves from the FO
group. The genus Kandleria has been isolated from the rumen
of young calves fed on only milk diets (Salvetti et al., 2011).
Therefore, the observed relative abundance of this genus in FO
calves may be associated with the degradation of milk sugars
leaking into the rumen. This can be confirmed by the low relative
abundance of Kandleria in FO calves when transitioning into P02
and P03 despite the soluble sugars from fresh mixed sward of
ryegrass and white clover.

Bacteria from the genus Ruminococcus and
Fibrobacter are considered major cellulolytic degraders
(Koike and Kobayashi, 2001; Ransom-Jones et al., 2012; Abdul
Rahman et al., 2016). The proportion of Fibrobacter in P01
and P02 was higher in calves consuming diets with the highest
fiber contents within each dietary phase. Such association of
high relative abundance of Fibrobacter has been shown in
heifers (Petri et al., 2013) and sheep (Belanche et al., 2019) fed
forage diets. Similar effects have also been observed for the
various genera in the Ruminococcaceae, but their proportional
increases with the increase in fiber content of the diets was not as
pronounced as for Fibrobacter, which may be due to the fact that
Ruminococcaceae have a much wider spectrum of metabolizable
substrates compared with Fibrobacter (Thurston et al., 1994).

Besides the known fiber degraders, some unclassified
Bacteroidetes genera such as Rikenellaceae RC9, Bacteroidales,
and Prevotellaceae UCG-003 and the Firmicutes genus
Christensenellaceae R-7 were increased in calves fed diets
rich in fiber, i.e., LQ calves. The genus Rikenellaceae RC9,
with no as yet defined metabolic function, is one of the most
prevalent microbes in the rumen microbiota (Henderson
et al., 2015; De Mulder et al., 2017) and abundant in rich
fibrous diets (Petri et al., 2013; Schären et al., 2017). We found
similar results with increased proportions of Rikenellaceae in
the high fiber treatments in P01 and P02. Correspondingly,
hemicellulose and monomeric sugar (xylose, fucose, mannose,
and rhamnose) degraders (Ormerod et al., 2016; Solden et al.,
2017) from Bacteroidales, such as the genera BS11 gut group
and S24-7 group, were increased in calves with high fiber
intakes. In the present study, Christensenellaceae R-7 was the
second most abundant bacteria genus in the rumen of grazing

calves. These also appear to be related to fiber degradation
as their levels were increased in the high fiber treatments in
the first two phases. These findings agreed with reports in
dairy cows, where increases of fiber in the diet resulted in an
increase of this genus (Lima et al., 2015). Our data suggest that
not only are the well-described families like Fibrobacteracea
and Ruminococcaceae involved in plant fiber degradation but
also members of the Rikenellaceae RC9, Bacteroidales BS11,
Bacteroidales S24-7, and Christensenellaceae R-7. However,
further studies of these genera are required to investigate their
growth, ecology, and metabolism when ruminants are fed
diets rich in fiber.

The ingestion of high-quality forage diets, i.e., HQ calves,
with less NDF and ADF content favored the growth of bacteria
from the Firmicutes genera such as Ruminococcaceae NK4A214,
Butyrivibrio 2, Ruminiclostridium 9, and Pseudobutyrivibrio
(Rainey, 1996; Ravachol et al., 2016). In post-weaned calves,
Butyrivibrio and Pseudobutyrivibrio were found in greater
proportion when transitioning into forages with lower contents
of hemicellulose. Species belonging to the genus Butyrivibrio
and Pseudobutyrivibrio are important degraders of plant
polysaccharides, i.e., hemicelluloses (arabinoxylans) and pectin
(Palevich et al., 2019b). However, some species of Butyrivibrio
are unable to grow on structural plant components, and their
role in the rumen appears to be as a utilizer of monosaccharides,
disaccharides, and oligosaccharides made available by the
degradative activities of other bacterial species (Palevich et al.,
2017; Palevich et al., 2019a). Correspondingly, bacterial species
from the genus Pseudobutyrivibrio are metabolically versatile
and capable of growing on a range of simple mono- or
oligosaccharides derived from complex plant polysaccharides
such as pectins, mannans, starch, and hemicelluloses (Palevich
et al., 2020). These findings may explain the increased relative
abundance of Butyrivibrio and Pseudobutyrivibrio in high-
quality forages.

Archaea Composition in the Rumen
Rumen archaea are much less diverse than rumen bacteria,
which likely reflects the narrow range of substrates they use
(Janssen, 2010; Seedorf et al., 2014). Variations in the dietary
composition have been shown to alter the archaeal community
(Henderson et al., 2015) due to changes in fermentation patterns
that affect the proportion of their substrates and metabolic
activity (Lana et al., 1998; Ungerfeld, 2020). In the current study,
the archaeal microbiota of grazing calves, across all treatments,
was dominated by Mbb. gottschalkii and Mbb. ruminantium,
which was in agreement with observations from adult ruminants
fed diets with high fiber contents (Henderson et al., 2015; Seedorf
et al., 2015). Conversely, the group of calves fed high proportions
of concentrate in the diet showed increases of Mbb. boviskoreani,
an organism that has been previously found and isolated from
cattle fed diets rich in concentrates (Lee et al., 2013; Snelling et al.,
2019). Therefore, these results indicate that the fermentation of
diets with high contents in structural carbohydrates favored the
prevalence of hydrogenotrophic archaea such as Mbb. gottschalkii
and Mbb. ruminantium. Additionally, as previously discussed,
rumen pH was likely to be lower in CO calves, which may
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decrease the relative abundance of abundant archaea species such
as Mbb. gottschalkii and Mbb. Ruminantium in these calves. The
metabolic activity of these methanogen species, however, begins
to be inhibited when the pH drops below their optimum pH
of 7.0–7.2 for growing (Miller and Lin, 2002; Janssen, 2010). In
contrast, Mbb. boviskoreani growth is supported at a ruminal
pH of 5.5, whereas its optimum pH is between 6.0 and 7.0 (Lee
et al., 2013). Another observation is the low relative abundance of
Methanomassiliicoccus (Mmc.) Group 10 sp. and Methanosphaera
(Mph.) ISO3_F5 in the CO group. Our results agreed with the
low proportions of Mmc. reported in heifers fed diets rich in
concentrate (Zhang et al., 2017). However, it is not clear whether
the low abundance of Mmc. observed in concentrate-fed calves is
due to a reduction in ruminal pH or a competition for substrates,
e.g., methanol, with methylotrophic archaea such as Mph, as
further discussed.

The intake of highly digestible diets, i.e., CO and
HQ treatments, showed high proportions of the genera
Methanosphaera (Mph). These methanogens reduce methanol
(Fricke et al., 2006; Kelly et al., 2019). Methanol in the rumen
is derived from the demethoxylation of dietary pectins and
other methylated plant polysaccharides via pectin methylesterase
activity (Dehority, 1969; Kelly et al., 2019). Additionally,
methanol production is negatively affected by pasture maturity
that has lower pectin degradation (Dehority et al., 1962). Clover
and other non-grass pasture species usually contain higher
proportion of pectins than grasses (Thomson, 1984; Hammond
et al., 2011). In cows, the intake of diets rich in clover can
favor the relative abundance of Mph. sp. Group 5 and Mph. sp.
ISO3_F5 in the rumen (Bowen et al., 2018; Smith et al., 2020).
In the present study, calves consuming high-quality sward with
35.5% of white clover (DM basis) may have produced more
methanol, favoring the increase of Mph. sp. Group 5 and Mph.
sp. ISO3_F5 when compared with the intake of non-irrigated
low-quality pastures with 4.0% of white clover and more fibrous
contents (Burggraaf et al., 2020). Conversely, Mph. sp. A4 was
found in high proportions in CO diets similar to that observed
in pre-weaned calves by Dias et al. (2017), who indicated that
the pectins present in the starter concentrate may contribute
to the formation of methanol and increases in the relative
abundance of this archaea species. However, further studies
are required to elucidate that the production of methanol, and
a hypothetical reduction in ruminal pH, in concentrate-fed
calves may correspond to the increasing proportion of Mph. sp.
A4 in the rumen.

In the present study, calves consuming diets rich in fiber
showed increases in Mmc. This order is a methylotrophic
methanogen that utilizes compounds like methanol,
methylamines, dimethylamine, and trimethylamine (Borrel
et al., 2012; Poulsen et al., 2013). Plant-derived glycine,
betaine, and choline are rapidly metabolized by ruminal
bacteria using choline trimethylamine lyase (Kelly et al.,
2019). Fiber-rich diets, where fermentation results in
high ratios of acetate to propionate, are associated with a
greater concentration of methylamine, dimethylamine, and
trimethylamine compared with highly digestible diets such
as corn silage (Deusch et al., 2017). In our study, the fiber

content in the diets and the acetate to propionate ratios
were higher in calves consuming greater fiber contents in
the diet, which might have resulted in greater production
of methylamines. Morgavi et al. (2015) showed that Mph.
and Mmc. occupy similar trophic niches; however, the more
versatile use of substrates by Mmc. explained their higher
relative abundance in the rumen of lambs after receiving an
inoculum of rumen fluid obtained from wethers fed a hay
diet. Therefore, the intake of swards rich in fiber with low
white clover content may produce high concentrations of
methylamines in the rumen, offering a competitive advantage
to low abundant methylotrophic methanogens from the order
Methanomassiliicoccales over the genus Methanosphaera, whose
growth is limited by the availability of methanol in the rumen
(Kelly et al., 2019). Our results indicate that the apparent
methanogen structure community, specifically the low abundant
archaea, is affected by changes in the chemical composition of
the diet consumed.

CONCLUSION

In conclusion, our results showed that the rumen microbial
community in the growing calf is diet dependent, with early life
differences having only negligible effects on the microbiota of
the growing ruminant. Different dietary regimes, pre- and post-
weaning, were unable to leave a microbial imprint in the rumen of
calves when the animals were fed a common diet. These findings
showed that interventions after feeding colostrum to calves did
not leave a permanent effect in the early microbial colonization
and function in the rumen. Further studies should target earlier
microbial interventions, during microbial colonization of the
rumen milieu, in an attempt to imprint the ruminal microbiota.
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