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Abstract

Millions of bird observations have been entered on online portals in the past 20 years either

as checklists or arbitrary individual entries. While several hundred publications have been

written on a variety of topics based on bird checklists worldwide, unstructured non-checklist

observations have received little attention and praise by academia. In the present study we

tested the suitability of non-checklist data to estimate key figures of large-scale migration

phenology in four zones covering the whole of Finland. For that purpose, we analysed 10

years of ornithological non-checklist data including over 400 million. individuals of 115 bird

species. We discuss bird- and human-induced effects to be considered in handling non-

checklist data in this context and describe applied methodologies to address these effects.

We calculated 5%, 50% and 95% percentile dates of spring and autumn migration period for

all species in all four zones. For validation purposes we compared the temporal distributions

of 43 bird species with migration phenology from standardized long-term ringing data in

autumn of which 24 species (56%) showed similar medians. In a model approach, non-

checklist data successfully revealed latitudinal migration progression in spring and autumn.

Overall, non-checklist data proved to be well suited to determine descriptors of migration

phenology in Northern Europe which are challenging to attain by any other currently avail-

able means. The effort-to-yield ratio of data processing was commensurate to the out-

comes. The unprecedented spatiotemporal coverage makes non-checklist data a valuable

complement to current migration databases from bird observatories. The basic concept of

the present methodology is applicable to data from other bird portals, if combined with local

field ornithological knowledge and literature. Species-specific descriptors of migration phe-

nology can be potentially used in climate change studies and to support echo interpretation

in radar ornithology.

Introduction

Technological advances in the past 20 years have enabled the creation of online bird portals

dedicated to the collection of casual daily visual and acoustic field observations. Prominent
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examples of such online databases are the Ornitho, Observation and BirdTrack platforms in

Europe (for an overview see [1]) or the US-American eBird. The general idea of these portals is

to report sightings of birds, with species, number of birds and location as minimum informa-

tion required and optionally additional details, such as the birds’ age, sex, behaviour, observa-

tion time and so on. Through the widespread network of observers, millions of observational

reports accumulate across vast areas throughout the year, providing an unprecedented trove of

information. This wealth of observations could be potentially used for scientific research about

avifaunal dynamics, as a complement to traditional monitoring programs through bird surveys

and ringing by volunteers and scientists [2]. Despite more than 300 publications based on

eBird data (https://ebird.org/about/publications/), the use of such bird repositories other than

eBird, is still hesitant in the scientific community.

Hesitation to use these data portals is often linked to quality concerns and data availability

[3, 4], but probably also with unfamiliarity with and unawareness of the data portals. Quality

concerns relate mainly to variable observer expertise and heterogeneity in data collection, so-

called observer bias, which can lead to false positive or negative records [2, 5]. Observer bias is

a well-known issue in observational field data, also those collected by professionals, and can

originate from the observers’ level of ornithological knowledge and experience, species attrac-

tiveness (e.g. rare vs. abundant species, first appearance in spring), hearing and visual capacity,

motivation and dedication depending on environmental conditions and so on [6–8].

Theoretically, many of these observer biases can be controlled prior to data analysis by a

careful study design, preparation, and training of the samplers before the field work starts [9].

Various publications and manuals address potential and actual pitfalls of using citizen science

data in general, also outside ornithology, and instruct on how to obtain homogeneous data

and reliable results [10, 11]. However, in case of bird portals, where data is gathered continu-

ously and unawarely of some potential research interest, the researchers face the fait accompli

of the pool of both observations and data collectors with an unknown amount of bird-,

human- and weather-induced biases [5]. Automatic algorithms and filters can correct obvious

erroneous entries, e.g. outside typical dates of occurrence, observer variability or excessive bird

numbers [5, 12, 13]. Other genuine entries artificially boosting bird numbers, such as multiple

observations of the same birds (e.g. [13, 14]), survey data or exceptional movements caused by

disturbance, remain in the database and require manual processing, though. This is especially

relevant when dealing with absolute numbers. Accounts of handling and processing such data

entries, particularly outside eBird, is sparse in literature.

In Europe, many bird portals are originally focussed on single quantitative observations

(i.e. counts) and their qualitative content, not on checklists as eBird. The checklist feature is

becoming more common also in Europe and its use is encouraged, especially as it relieves the

problem of biased reporting through unknown presence or absence of common or unattrac-

tive species [2]. However, the checklist feature is missing in many current and most historical

data entries which comprise already hundreds of millions of sightings, also retrospectively

entered records covering about the last hundred years. Such historical data potentially repre-

sents a valuable treasure for studies in need of long-term data, e.g. related to climate change. It

would thus be useful to gather experience with unstructured non-checklist (NCL) datasets and

assess their features and challenges in data processing in a variety of research questions and

also identify potential advantages over checklists, if any. Challenges and benefits of unstruc-

tured NCL datasets for breeding bird monitoring purposes have been investigated e.g. in Swe-

den [2] and in Denmark [15] based on the respective national bird portals. Movement

research employing species occurrence (presence/absence) data from eBird checklists in the

US gives a first idea of the potential of this data source in this field (e.g. [14, 16, 17]).
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The few existing field ornithological publications derived from data from European bird

portals, whose number of observations exceeds those of eBird in Europe, deal with small-scale

questions related to distribution and occurrence during breeding or migration season [13, 18,

19]. Only the EuroBirdPortal website (www.eurobirdportal.org) shows large-scale migration

progression and phenology derived from a mixed pool of bird data, including portals, at a very

coarse resolution of eight zones for all of Europe. To the best of our knowledge there is no pub-

lication on large-scale bird movements based on NCL data only of any of the European bird

repositories, and potential issues (or advantages) inherent to data analysis. On a global level,

our understanding of broad-scale migrations on population level throughout the annual cycle

are scarce [17]. So far migration phenology has been mainly described by data from birds

either observed and/or ringed at specific bird observatories during determined periods of the

year (e.g. [20–22]). NCL data could help fill knowledge gaps in this field of research for wider

geographical areas and in the entire annual cycle. Especially in the context of climate change

and its impact on migration timing and eventually population dynamics and survival, it is

important to tap into new data sources to broaden our understanding of spatiotemporal

migration dynamics.

In this article we test the suitability of NCL observations to obtain key figures of species-

specific migration phenologies (onset, peak and end of migration, i.e. 5%, 50% and 95% per-

centiles, respectively), and migration progression in a latitudinal range of about 1000 km, and

how these key figures compare to long-term ringing data. For this purpose, we analyse and

process 10 years of NCL count data for all of Finland from the Finnish bird repository Tiira of

BirdLife Finland and 40 years of autumn ringing data from the Hanko Bird Observatory. We

hypothesise that unstructured NCL data is well suited to estimate the above-mentioned

descriptors of migration for a broad range of species across large spatial scales and to identify

latitudinal differences in migration timing, irrespective of inherent biases typically affecting

breeding bird monitoring studies by NCL data. We further expect these descriptors to match

well with ringing data for all common species regularly captured by standardized mist-netting

schemes, i.e. mainly passerines. We discuss bird- and human-induced factors to be considered

in handling NCL data from online portals and describe applied methodologies to address

potential biases in the context of bird migration phenology.

Material & methods

We analysed bird observations from the Finnish bird portal Tiira (https://www.tiira.fi/) for

115 common migrant species from 2010–2019 (see S1 Table). The database consisted of count

data (without presence-absence features) pooled in 73 five-day periods, hereafter pentads, as

introduced by [23] as a standard unit for migration studies, containing the species-specific

sums of the respective bird numbers during the 10 selected years. The database consisted of all

available observations of birds classified as migrating and stationary by observers, also poten-

tially multiple entries of the same individuals, overall 400,749,314 birds. The reason for includ-

ing both migratory and stationary birds was the difficulty of always telling birds’ behaviour

unequivocally apart in the field. Our assumption was that once migration begins, bird num-

bers will steeply increase on top of the local numbers of breeding birds, indicating thus the

onset of migration. This is particularly important also for quiet nocturnal migrants, whose

actual migration otherwise remains unnoticed during the day. Similarly, it is often hard to tell

whether some observation concerns the same or new birds, especially in case of common spe-

cies and during migration.

Data was pooled by the reporting area of the 27 regional bird clubs which were assigned to

one of four regions on a North-South axis (Fig 1). This should enable the detection of
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latitudinal shifts in migration timing representative of each zone at an appropriate scale, while

maintaining sufficiently large sample sizes for all species per area. The distances between the

centres of neighbouring zones (about 250–300 km) agree well with the migration distances of

about 200–400 km per flight bout of many bird species (e.g. [24, 25]). Depending on the scope

of a study, the resolution could be also defined differently, i.e. coarsened or refined. Latitudinal

shifts in migration timing might not be clearly discernible, though, if zones are too small. For

example, for arctic migrants, such as geese, we also tested an alternative with partly longitudi-

nal regions, as Siberian geese species could be expected to move on a SW-NE axis through Fin-

land rather than on a N-S axis. However, occurrence patterns were similar, so we maintained

Fig 1. Map of Finland with the zones 1–4 used in the NCL data analysis and boundaries of 27 bird clubs. The star

indicates the location of the Hanko Bird Observatory.

https://doi.org/10.1371/journal.pone.0246572.g001
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the N-S regions for all species. Zones at the edge of or outside a species’ breeding range, as

defined by the Finnish Breeding Bird Atlas [26], or regular migration flyway were excluded for

the respective species. This concerns mostly the northern parts (zone 3 and 4) where species

with rather southern distribution ranges (e.g. Eurasian blackbird Turdus merula and Blyth’s

reed warbler Acrocephalus dumetorum) do not regularly occur, not even on migration.

Through histograms we then gained an overview over the yearly occurrence and spring and

autumn migration periods of all species. Based on our own field ornithological knowledge, we

expected spring and autumn migration to show as either symmetrical or asymmetrical curves

with typically one clear peak in each season, as opposed to very regular or irregular summer

and winter presence without any distinct peaks. During this first inspection, we identified

human- and bird-induced effects biasing the identification of migration periods which

required adjustments during the data processing (see S1 Appendix).

Data processing

Start and end of each migration period was visually determined as the pentad when bird num-

bers start to increase and form an outstanding peak for several pentads (more than three) after

prior constant presence or absence, or start to taper off after a rapid decrease, respectively.

Any non-migratory presence outside the identified migratory period was removed from the

data, i.e. pentads were set to zero. To second start and end pentads of migration periods we

consulted additionally existing literature on regional timing of Finnish migration periods (e.g.

[27, 28]), if available. In some cases the procedure of determining clean migration curves was

challenged by the human- and bird-induced effects described in S1 Appendix, so that the origi-

nal NCL data had to be slightly modified by the following adjustments A1-A4. (A1) Extrapola-

tion of existing unbiased pentad values to the zero level on either side of the true spring and

autumn migration peaks (e.g. to cut and level out secondary peaks from breeding bird counts).

We applied the following Eq (1) for extrapolation of 3–5 pentads in the total time series of the

observed amounts of birds n in each pentad k:

Ak ¼ nr jko� kj=jko� krj ð1Þ

where Ak is the adjusted number of birds in pentad k; nr is the observed number of birds in a

reference pentad kr of the same zone, where a clear trend in migration intensity can be

observed; ko is the number of the first (if the adjustment is at the beginning of migration sea-

son) or last (if the adjustment is at the end of migration season) pentad where we choose to set

Ako = 0, i.e. no migration occurs. The extrapolation method is very simple, semi-linear and

highly flexible.

(A2) Use of data from neighbouring zones if patterns were clearer there, e.g. start, peak

and/or end of migration period were adjusted based on the respective timings in neighbouring

zones and taking into account the interzonal migration speeds observed there (see also the

example of Common redstart in S1 Appendix and the corresponding S1A Fig in S1 Appendix).

In cases of severe data distortion, i.e. if migration peaks were absent (e.g as in Blyth’s reed war-

bler, S5A and S5B Fig in S1 Appendix), either part of or the entire migration period was

replaced by migration phenologies from (A3) ringing and migration counts from the Hanko

Bird Observatory (59˚49’N, 22˚54’E, https://haahka.halias.fi/) at the southwestern tip of Fin-

land (Fig 1), or from (A4) Estonian waterbird migration counts (https://www.eoy.ee). A3 and

A4 were used for zone 1 and 2 only. The adjustments A1-A4 concerned 39 (10%) of overall

382 species-zone combinations, specified in S1 Table.

After the adjustments, if any, we computed the running mean of three (rm3) or in highly

irregular cases five (rm5) subsequent pentad counts of the respective season to smooth out
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short-term random fluctuations and highlight overall migration progression. For that purpose,

three (or five) pentads were summed, i.e. (pentadk-2 +) pentadk-1 + pentadk + pentadk+1 (+ pen-

tadk+2), and divided by three (or five, respectively). In some cases, no smoothing was required

in spring and/or autumn, as e.g. in the Dunlin (S4A and S4B Fig in S1 Appendix) which only

required averaging over five pentads in autumn to even the irregular pattern. The start and

end pentad of each species-specific migration period was chosen such that smoothing did not

expand the duration of the respective migration period. The adjustment and smoothing proce-

dures implemented for each species and zone are detailed in S1 Table with the respective keys

A1-A4, rm3 and rm5, as well as the type of bias present. Overall, we aimed to conserve natural

patterns, e.g. dynamics from different age groups or sexes as typically found in waders.

In a next step, the absolute count data of each pentad was converted into relative values (%)

to facilitate comparison irrespective of absolute counts (see S1-S5 Figs in S1 Appendix). The

5%, 50% (median) and 95% percentile dates of spring and autumn migration were calculated

for all species based on [29] to define the start, peak and end days of spring and autumn migra-

tion and to obtain figures comparable to literature findings (e.g. [30–33]). By doing so, the

time unit of our analysis is days and not pentads. We found that smoothing time series may

postpone or prepone median days by about one day. However, when checking for interannual

variability of medians, annual medians varied by 0–14 days because of natural annual fluctua-

tions in migration timing, so we considered the effect of smoothing as insignificant for median

accuracy in the 10-year dataset. All analyses and visualizations were performed and generated

in the program R [34].

Statistical analysis

We used generalized linear mixed effects models with Gaussian error distribution to test for

latitudinal migration progression in spring and autumn. The response variable was median

migration date (50% percentile in Julian dates 1 Jan = 1) of species in a given zone and the

analyses were conducted separately for spring and autumn migration. Our explanatory vari-

ables were zones (ordinal variable with four levels: zones 1–4) and species-specific mean spring

or autumn median of all areas (continuous variable) as explanatory variables in the spring and

autumn analysis, respectively. The latter was used to check for different dynamics in the pro-

gression of early and late migrant species through the zones. Both response variables were cen-

tred before the analyses. Species were included as random effects. We took the phylogeny of

the species into account in the random structure of the model, as closely related species may

have similar responses because of common ancestry. We downloaded a phylogeny set of the

study species (source of trees: Ericson All Species: a set of 1000 trees with 9993 operational tax-

onomic units each) from www.birdtree.org [35]. The model included both main effects and

interactions of the explanatory variables. The analysis was performed using the R package

MCMCglmm [36]. We used 13000 iterations with thinning set to 10 in the analyses, i.e. the

first 3000 iterations were discarded (burn-in period).

Comparison of NCL data with ringing data

As an independent reference for our results, NCL medians of zone 1 were compared to medi-

ans derived from ringing data of the Hanko Bird Observatory in zone 1 from 1979–2019. Even

though visual migration counts are executed alongside ringing at the observatory, we chose

not to include this data, as it is partly entered into the Tiira bird portal and is hence part of the

NCL archive. So, the ringing database was the most representative and comprehensive inde-

pendent data available for the area both as to species and temporal range. 43 of 115 NCL spe-

cies whose migration phenology was not replaced or supplemented by secondary data (i.e.
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potentially from Hanko) were included in this analysis. The selection included only landbirds,

predominantly passerines, for which more than 50 ringing records were available (see S1

Table). Waders and raptors were excluded from the datasets as standardised mist-netting does

not yield representative captures for these bird species. Following [31–33], the beginning of

autumn migration season was set to 15 July, with some later dates for species breeding in the

surroundings of the ringing station to reduce biases by resident birds (see ibid.). Like for the

NCL data, ringing data was pooled in pentads and smoothed by running means of three pen-

tads, i.e. by summing pentadk-1 + pentadk + pentadk+1 and dividing their sum by three. To

reduce outliers, we considered only species counts in the range of 5–95% of the migration sea-

son. To test for potential temporal shifts in medians through climate change, we conducted the

analysis with data from 2000–2019 and 1979–2019. As we could not find better accordance

with NCL data in the 20 years dataset, we used 40 years, especially also because this improved

sample sizes considerably. We computed the Pearson correlation to check for correlations

between number of captures and difference in median to detect potential biases originating

from sample size. We generated boxplots for all species with 25 and 75 percentiles, medians

and 5–95% limits, to compare temporal species occurrence in both data sources.

Results

NCL data

5%, 50% (medians) and 95% percentiles were obtained for 115 species in spring and autumn

migration in Finland using NCL data (S1 Table). Smoothing or other processing was not

required in 105 of 382 bird-zone combinations in spring (27%) and 36 of 382 combinations in

autumn (9%). Smoothing by running means of three pentads only was required in 240 (63%)

and 259 (68%) of 382 combinations in spring and autumn, respectively, and by running means

of five pentads only in 18 (5%) and 67 (18%) of 382 combinations in spring and autumn,

respectively. Migration patterns were adjusted by the methods A1-A4 in 19 bird-zone combi-

nations in spring (5%, of which 14 and one required also smoothing by running mean of three

and five pentads, respectively) in 10 species and in 20 combinations in autumn (5%, of which

two and three combinations were smoothed by running mean of three and five pentads,

respectively) in 13 species by using secondary data sources. A1, A2, A3 and A4 were applied

19, 1, 1 and 0 times in spring, respectively, and in autumn 4, 5, 12 and 3 times, respectively.

The model showed that spring migration medians were later with increasing latitude, but

this effect weakened with the advancement of the season, i.e. the difference between latitudes

was greatest in early spring migrants (Table 1). In autumn, medians were earlier in Northern

regions, but there was no significant interaction between zones and mean migration timing

and thus the migration progressed at a similar speed in early and late migratory species

(Table 2).

Table 1. Parameter estimates (posterior mean including min-max values) and p-value based on the generalized

linear mixed effects model explaining latitudinal migration progression in spring.

Variable post.mean [min, max] p-value

Intercept 124.07 [123.67, 124.49] <0.001

Zone 3.87 [3.55, 4.26] <0.001

Spring median 1.00 [0.98, 1.03] <0.001

Zone:Spring median -0.10 [-0.12, -0.07] <0.001

Zone is zone 1–4 and spring median is the mean spring median date of the species.

https://doi.org/10.1371/journal.pone.0246572.t001
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Generally, the progression of migration on a N-S axis was more pronounced in spring than

in autumn (examples are shown in Fig 2).

In spring, only 14% (16 of 115 species) did not show a clear gradual progression from south

to north. This concerned mainly waterfowl (Black-throated diver (Gavia arctica), Red-throated

diver (Gavia stellata), Brent Goose (Branta bernicla), Velvet scoter (Melanitta fusca), Common

scoter (Melanitta nigra), Common eider (Somateria mollissima)) and waders (Dunlin (Calidris
alpina), Broad-billed sandpiper (Calidris falcinellus), Curlew sandpiper (Calidris ferruginea),
Common ringed plover (Charadrius hiaticula), Little stint (Calidris minuta), Bar-tailed Godwit

(Limosa lapponica), Whimbrel (Numenius arquata)). Many of these are late spring migrants to

Russian arctic and boreal breeding grounds and migration occurs more simultaneously in all

areas. Non-gradual progression further occurred in one raptor (Common kestrel (Falco tin-
nunculus)), one non-passerine landbird (Common swift (Apus apus)) and one passerine spe-

cies (Rustic bunting (Emberiza rustica), Fig 2). In contrast in autumn, 70% (80 of 115) of the

species did not exhibit a gradual progression from north to south. Gradual and non-gradual

patterns were found in both passerines and non-passerines.

Comparison ringing data vs. NCL data

Ringing and NCL medians differed between 0 and 28 days (Fig 3) with a mean difference of

-0.64 days, i.e. the ringing median is later than the NCL median. 13 bird species exhibited a dif-

ference in median of |0–2| days, 11 of |3–4| days, 12 between |5–10| days and 7 between |11–

28| days.

Largest differences were found in Wood pigeon (Columbus palumbus) (-12), White wagtail

(Motacilla alba) (28), Barn swallow (Hirundo rustica) (12), Wheatear (Oenanthe oenanthe)
(20), Brambling (Fringilla montifringilla) (-14), Siskin (Carduelis spinus) (-14) and Starling

(Sturnus vulgaris) (27). We consider a difference of |0–4| days as equivalent medians (24 of 43

species) because of natural annual fluctuation of migration timing observed in the data, and in

the discussion special attention will be paid to causes for differences >10 days. There was no

correlation between sample size and difference in median (Pearson correlation coefficient r =

-0.02), i.e. small two-digit sample sizes did not necessarily lead to large differences.

Discussion

NCL data

The analysis of the 10-year unstructured NCL dataset enabled the determination of species-

specific migration phenology (start, median and end of migration) and latitudinal differences

in migration timing for 115 bird species whose populations constitute the vast majority of the

migration flow in four geographical regions in Finland. Phenological descriptors from ringing

data largely supported the outcomes for a selection of the species. One benefit of the present

Table 2. Parameter estimates (posterior mean including min-max values) and p-value based on the generalized

linear mixed effects model explaining latitudinal migration progression in autumn.

Variable post.mean [min, max] p-value

Intercept 247.22 [246.70, 247.86] <0.001

Zone -2.47 [-2.99, -1.98] <0.001

Autumn median 1.00 [0.98, 1.02] <0.001

Zone:Autumn median -0.01 [-0.03, 0.00] 0.138

Zone is zone 1–4 and autumn median is the mean autumn median date of species.

https://doi.org/10.1371/journal.pone.0246572.t002
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methodology is that it is possible to estimate what proportion (percentiles) of each migrant

species had already passed at any chosen day in the migration season. This is a clear step for-

ward compared to available historical information in literature which typically just provided

start and end dates of migration, rarely some medians and otherwise local examples of high

migration counts, but no complete seasonal distributions (e.g. [27, 28, 37]). The percentiles

further represent a more quantitative option in a relative sense compared to approaches based

on presence-absence data from checklists (sensu [38]). Checklists provide probabilities of

occurrence—also available from the present dataset—though no percentiles showing what

proportion has migrated or is yet to pass. Even though these descriptors of migration phenol-

ogy are basically already available from local bird observatory data (e.g. [26, 31–33]), another

benefit of NCL data pools is the faster accumulation of a much higher number of observations

with superior coverage. As to data processing, we estimate the effort of cleaning and preparing

data to be comparable to data from standardized schemes of bird observatories based on meth-

odologies described in literature (ibid).

The use of relative quantities helped obtain a more balanced view, also in cases of extreme

differences between numbers of spring and autumn migrants. As to the use of pentads, it has

been argued that pentads would falsify the progression and dynamics of migration, i.e. pentads

may divide migration events into two different pentads [17, 30]. In this study, we find that

there is a negligible effect of pentads on medians, if any, because we are dealing with median

days, not median pentads. Furthermore, there is natural interannual variation in migration

timing that may shift not only annual medians, but also start and end of migration by far more

than some few days. So, we argue that the use of pentads did not significantly affect the repre-

sentativeness of our results. Our approach could be also used with daily observations, but they

might require some additional smoothing because of more daily fluctuations.

The detection, recognition, and handling of biases in NCL data require good field ornitho-

logical understanding to assess whether some issue was natural or not, as well as familiarity

with relevant local to national human activities that affected the number of entries, e.g. surveys

or hunting periods. Natural or real ecological variation in bird migration is due to environ-

mental factors, i.e. weather conditions that cause fluctuations in bird numbers. These varia-

tions are also present in our data. However, we argue that “true” migration timing is an

average over many years of variable annual timings influenced by environmental conditions.

So, we believe, the 10-year dataset levelled out this environmental impact. A detailed analysis

of weather impact on yearly migration patterns was beyond the scope of this study, though.

On the other hand, migration is probably observed imperfectly because of locally variable

human- and bird-induced biases. Sampling effort is likely to vary in the course of the year, e.g.

depending on weather conditions. The present analysis probably benefited overall from the

fact that migration is a highly popular phenomenon attracting innumerous observers. Certain

observers report very avidly practically every day, even in adverse weather conditions, and

their presence or absence has a major impact on bird records. The risk of multiple entries of

the same birds is particularly high at strongly frequented birding sites. However, we do not

think that variability in human observation effort falsifies the massive numbers of migrating

birds in such a systematic and persistent way that migration patterns (onset, peak and end)

would disappear in our approach because sample sizes are typically very high (several thou-

sands to millions of birds). Human observation effort and its variation can be assumed to be

Fig 2. Progression of migration in spring and autumn across the zones 1–4. Meadow pipit (Anthus Pratensis), Rustic

bunting (Emberiza rustica) and Common snipe (Gallinago gallinago) are shown as examples of gradual vs. random progression

in spring and autumn in the zones 1–4 (z1, z2, z3, z4). The boxplots consist of lower and upper limits at 5% and 95%,

respectively, the plot hinges at 25% and 75%, and the median.

https://doi.org/10.1371/journal.pone.0246572.g002
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an approximately constant bias throughout a year and between years. We also expect that the

pooling of 10 years of data reduces the impact of a potential observer effort bias and we think

it did thus not bear any significance in our study, because we were looking for migration phe-

nology (start, peak, end of migration) as relative distributions, rather than accurate counts.

These biases can have a positive or negative impact on data quality, sometimes opposite to the

impact on data for breeding bird monitoring. That is, for instance, observer preference for

attractive or uncommon species leads to false absences undesired in breeding bird monitoring

studies [2]. However, in the context of the present study, data of some common species

benefited from this effect, as breeding records were few or absent and migration peaks better

visible (e.g. as in the Blackbird, S3A Fig in S1 Appendix) because of lack of observers’ interest.

At the same time, if such a common species is resident or partial migrant with a considerable

proportion staying in the breeding area in winter, low avifaunal diversity (and thus boredom

in birdwatchers) and many birds’ tendency to approach settlements (e.g. visits at feeders or

flocking) increase winter records, which then can obscure the onset and end of migration, as

e.g. in the Yellowhammer (Emberiza citrinella). Species attractiveness has certainly a lower sig-

nificance in spring migration, when people are still thirsty for the first arrival of both common

and less common bird species and report them eagerly. More problematic than continuous

biases is the presence of short-term events, such as surveys or hunting, which increase bird

numbers in 1–3 subsequent pentads. In these cases, awareness and knowledge of local and

national ornithological monitoring schemes and other events are necessary to separate

human-induced increases from potential (unknown) natural phenomena. To avoid biases

from surveys, it would be handy to be able to mark surveys by a dedicated field to be able to

identify them as such and filter them out easily.

Contrary to the benefits observed in using bird checklists in breeding bird monitoring [2],

the feature of mere presence/absence records, which is considered an improvement over

unstructured quantitative NCL data, does not fully respond to the needs in migration studies,

if quantitative count data is missing. Provided a species is an obligate migrant, presence/

absence will then only indicate the beginning and end of the species’ presence in an area in the

annual cycle, just like historical accounts in the pre-digital era (e.g. [28]), but no migration dis-

tributions over time (peaks or any fluctuations in between). In partial migrants or resident spe-

cies, suitability of the data can be expected to be even lower. Ideally, observers should thus be

encouraged to record numbers also on checklists whenever feasible and not retreat to the pres-

ence/absence feature. Admittedly, detectability and thus counting is strongly affected by a

bird’s vocal activity [39], which is likely one of the reasons for the higher number of zones

requiring adjustments in autumn. Similarly, staging and stopover behaviour affect detectability

and observability. If species do not land, or travel at night, especially small birds are hard to

detect, if they do not call. Waders may have enough fat reserves in spring to return to their

breeding grounds without stopovers [40]. So, the spring migration occurrence in many wader

species is shorter and less numerous than in autumn migration, which was also observed in

the NCL database. To support adequate interpretation and data processing, it is reasonable to

consult migration data collected by other methods, which might work better for certain spe-

cies, such as ringing for elusive passerines (see below). Complementary data from ringing or

in a future also from tagged birds could also help determine which populations pass a certain

Fig 3. Comparison of medians from ringing (Hanko) and NCL data (NCL). Differences of medians between ringing

(dark grey) and NCL data (light grey) are indicated as number of days (Δd). Negative differences mean the ringing

median is later than the NCL median and vice versa for positive differences. For abbreviation keys see S1 Table.

https://doi.org/10.1371/journal.pone.0246572.g003
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area, so that potential blurring or shifting of migration peaks through overlapping timing can

be resolved.

Fluctuations and latitudinal differences in migration schedules, however, is mostly due to

climatological or meteorological factors (e.g. vegetation, snow or ice cover) both at the breed-

ing ground and en route [41], which are impossible to control for. Late or early onset of spring

or winter or other unfavourable weather conditions can force birds to halt or accelerate depar-

ture or arrival, which again leads to more variation in the start, peak and end of migration

[21]. This is probably the underlying reason for the clearer latitudinal effect observed by the

model in spring, i.e. environmental conditions far north in early spring may slow down or

speed up migration progression northwards. In autumn, however, the meteorological condi-

tions seem less decisive, probably also because most birds leave already before conditions

become really adverse. In any case, as observed in the dataset, annual start, peak and end of

migration might vary as much as 1–2 weeks depending on environmental conditions. Our

medians and migration periods are therefore to be considered average or climatological

descriptors of migration phenology, rather than exact dates for a specific year.

Besides, the dominance of gradual migration progression from south to north in spring can

be explained by the pressure to reach the breeding grounds as quickly as possible [42]. The

cases of non-gradual progression concerned mostly waders and waterfowl. The reason for that

could be that waders and waterfowl are enduring flyers which can easily cover long distances

in one flight bout (e.g. [43]), highly likely across one or more zones established in this paper.

Thus, migration advances more rapidly and the first birds appear at different latitudes practi-

cally simultaneously. A methodological bias can be excluded especially as the waders typically

exhibit very nice observational data in each zone separately because of their high visibility at

stopover sites. Another reason for non-gradual appearance in waterfowl could be a migration

axis along SW-NE for the arctic populations, even though initial checking did not show any

such effect. Similarly, species with an eastern migration route like Rustic bunting (Fig 2)

would enter Finland on a broad north-south front from the east and thus the north-south

approach of our zone system would not show major differences. However, this pattern was

only evident in spring for Rustic Bunting and not observed in other migrants heading east, e.g.

Bluethroat (Luscinia svecica) and Blyth’s reed warbler. In autumn, birds tend to linger longer

[44], which results in a more heterogeneous migration progression. Variation in weather con-

ditions, as described above, may contribute to the dominance of arbitrary patterns in autumn.

Comparison Hanko ringing data vs. NCL data

It is well known that different surveying methods and equipment yield different outcomes of

bird numbers and composition (e.g. [45–47]). Such is also the case when comparing ringing

with visual and acoustic observations [48], and thus also in the present study with ringing and

NCL data. Ringing data is, however, the only independent long-term database available in the

area and it is important to become aware of its benefits and shortcomings to potentially com-

plement NCL data.

In the present analysis, largest differences (>10 days) concerned mainly diurnal migrants

(6 out of 7), while smaller or no differences were found in both nocturnal and diurnal long-

and short-distance migrants. We suggest that the large differences result from varying habitat

preferences, migratory and sedentary behaviour, age, size and arrival of wintering birds. The

observatory is situated in coastal habitat, at the tip of an elongated peninsula, in a mixture of

scrub and forest, with some reed beds as well as open and rocky shores. Species of open or

semi-open landscapes such as the Barn swallow might fly by but will not settle in the vegetation

and thus will not be caught. The same applies to Wheatear, which prefer rocky or open
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landscape, Brambling and Starling, which do form large flocks but stay in open areas. They

nest only rarely in the surroundings of the observatory. Some species form large pre-migratory

flocks or are otherwise gregarious, such as Starlings and Siskins, so high numbers do not nec-

essarily indicate migration. Wood pigeon is typically easily observed, especially also in large

flocks during autumn migration. Even though the highest daily migration counts at Hanko

Bird Observatory exceed 10 000 birds every year, the Wood pigeon is only rarely captured by

mist-netting because of its size and habits. Of 135 captured birds, only one was an adult. So

captured individuals are most likely inexperienced juvenile birds which still linger in the forest

or bushes and they do not reflect migration patterns of the main population. The ringed White

Wagtails originated mostly from captures by wader cages, which were employed only irregu-

larly for short time periods [32].

We rule out climate change as the main reason for median differences of more than 10

days, even though recent studies amongst others involving Finnish data point out to shifts in

migration timing of about one week in the past 50 years [26]. Shifts stated in literature are

much shorter than the observed large differences of up to 28 days and cannot fully explain the

divergence. Also, when contrasting the outcomes of analysing 20 years (2000–2019) with 40

years of ringing data, we could not find any difference in patterns, i.e. the data from 20 years

did not yield a closer match to the NCL medians than the 40-years dataset, rather the opposite,

but that was most likely due to small sample sizes in the 20-years dataset.

So, overall, if we disregard the seven species with extreme differences in medians originat-

ing from capture biases in ringing, two thirds of the species (24 of 36) showed an agreement of

0–4 days in medians and one third (12 of 36) an agreement of 5–10 days. We interpret this out-

come as support for the validity of the medians obtained from NCL data.

Conclusions

Even though a minor proportion of species and zones was heavily affected by human- and

bird-induced effects, overall processing effort was commensurate to the outcomes and data

quality did not discourage the use of this data to describe migration phenologies. The model

outcomes and ringing analysis support the credibility of the descriptors of migration phenol-

ogy. We are confident that the basic concept of the present methodology can be applied to

NCL data of all bird portals in phenological migration studies on species and population level,

provided the availability of sufficient records (at best>100 per species per season) and as the

case may be complementary local reference data for adjustments e.g. from ringing or literature.

Our approach involved very basic information (bird species and numbers, and location—in

our case pooled by bird clubs) of bird portal data, which is by default collected by any such

platform. Only the reference data used for the adjustments would need to be chosen locally.

Besides, knowledgeable field ornithologists are found in all European countries where compa-

rable bird portals exist, which can be consulted for the ornithological interpretation of the

data, if needed. Technical challenges are not to be expected as bird data can be readily handled

by software commonly used for data analyses, such as R or similar. The broad spatial coverage

of NCL data makes it an attractive complement to existing more sparsely scattered observa-

tional and ringing data from bird observatories. Even though the existence of online bird por-

tals is still relatively short compared to ringing or observational archives of bird observatories,

databases hold large amounts of data older than the portals, i.e. often more than 20 years. It

could be worth trying out long-term analyses e.g. related to migration timing and climate

change, for which currently data from standardized schemes is used. Besides, NCL data could

be used as a complement by the growing community of radar ornithologists typically dealing

with large-scale movements without access to species-specific information [49]. The data

PLOS ONE Migration phenology from unstructured citizen science data

PLOS ONE | https://doi.org/10.1371/journal.pone.0246572 February 4, 2021 14 / 17

https://doi.org/10.1371/journal.pone.0246572


resolution of the present study fits well with weather radar density in Finland and can be

adapted to other countries as required. We hope that the present study inspires more research

based on NCL data.

Supporting information

S1 Appendix. The S1 Appendix details human- and bird-induced biases encountered and

describes the data processing and respective adjustments in the example of the common

redstart (Phoenicurus phoenicurus).
(PDF)

S1 Table. The table contains the 115 species included in the study and respective percen-

tiles, implemented processing and sample sizes in each zone. The information is presented

in columns as follows: species: English and scientific species names and respective six-letter

acronyms; zone: one of four zones used in the study region; Spr 5%, Spr 50%, Spr 95%: 5%,

50% and 95% percentiles for spring migration; Aut 5%, Aut 50%, Aut 95%: 5%, 50% and 95%

percentiles for autumn migration; Proc Spr: adjustment procedures used in spring distribu-

tions; Proc Aut: adjustment procedures used in autumn distributions; n NCL Spr: sample sizes

of spring; n NCL Aut: sample sizes of autumn of NCL data (and ringing data). Processing and

adjustments in the respective columns contain the following abbreviations: rm3: running

mean of three pentads; rm5: running mean of five pentads; adjustments, if any, implemented

according to the five options (A1) linear extrapolation, (A2) neighbouring zones (A3) replace-

ment by Hanko data (A4) replacement by Estonian waterbird migration counts; and underly-

ing bird-induced (B) or human-induced (H) effects.

(PDF)
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Koistinen.

PLOS ONE Migration phenology from unstructured citizen science data

PLOS ONE | https://doi.org/10.1371/journal.pone.0246572 February 4, 2021 15 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0246572.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0246572.s002
https://doi.org/10.1371/journal.pone.0246572


References
1. Weisshaupt N, Lehtiniemi T, Koistinen J. Combining citizen science and weather radar data to study

large-scale bird movements. Ibis. 2020; https://doi.org/10.1111/ibi.12906
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