
Article

Model Structure Uncertainty in the Characterization and
Growth of Geographic Atrophy
Janan Arslan1,2, Kurt K. Benke3,4, Gihan Samarasinghe5, Arcot Sowmya5,
Robyn H. Guymer1,2, and Paul N. Baird2

1 Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye & Ear Hospital, East Melbourne, Victoria, Australia
2 Department of Surgery, Ophthalmology, University of Melbourne, Parkville, Victoria, Australia
3 School of Engineering, University of Melbourne, Parkville, Victoria, Australia
4 Centre for AgriBioscience, AgriBio, Bundoora, Victoria, Australia
5 School of Computer Science and Engineering, University of New South Wales, Kensington, NSW, Australia

Correspondence: Janan Arslan,
Centre for Eye Research Australia Ltd,
Level 7, 32 Gisborne St., East
Melbourne, VIC 3002, Australia.
e-mail: janan.arslan@unimelb.edu.au

Received: August 6, 2020
Accepted:March 10, 2021
Published:May 3, 2021

Keywords: age-related macular
degeneration; geographic atrophy;
linear model; model structure
uncertainty

Citation: Arslan J, Benke KK,
Samarasinghe G, Sowmya A, Guymer
RH, Baird PN. Model structure
uncertainty in the characterization
and growth of geographic atrophy.
Transl Vis Sci Technol. 2021;10(6):2,
https://doi.org/10.1167/tvst.10.6.2

Purpose: To identify the most suitable model for assessing the rate of growth of total
geographic atrophy (GA) by analysis of model structure uncertainty.

Methods:Model structure uncertainty refers to unexplained variability arising from the
choice of mathematical model and represents an example of epistemic uncertainty. In
this study, we quantified this uncertainty to help identify a model most representative
of GA progression. Fundus autofluorescence (FAF) images and GA progression data (i.e.,
total GA area estimation at each presentation)were acquired using Spectralis HRA+OCT
instrumentation and RegionFinder software. Six regression models were evaluated.
Models were compared using various statistical tests, [i.e., coefficient of determination
(r2), uncertainty metric (U), and test of significance for the correlation coefficient, r], as
well as adherence to expected physical and clinical assumptions of GA growth.

Results: Analysis was carried out for 81 GA-affected eyes, 531 FAF images (range: 3–17
images per eye), over median of 57 months (IQR: 42, 74), with a mean baseline lesion
size of 2.62 ± 4.49 mm2 (range: 0.11–20.69 mm2). The linear model proved to be the
most representative of total GA growth, with lowest average uncertainty (original scale:
U= 0.025, square root scale:U= 0.014), high average r2 (original scale: 0.92, square root
scale: 0.93), and applicability of the model was supported by a high correlation coeffi-
cient, r, with statistical significance (P = 0.01).

Conclusions: Statistical analysis of uncertainty suggests that the linear model provides
an effective and practical representation of the rate and progression of total GA growth
based on data from patient presentations in clinical settings.

Translational Relevance: Identification of correct model structure to characterize rate
of growth of total GA in the retina using FAF images provides an objective metric for
comparing interventions and charting GA progression in clinical presentations.

Introduction

Geographic atrophy (GA) is one of the two late
stages of the debilitating eye disease age-related
macular degeneration (AMD). The current estimate
for the number of affected patients globally is approx-
imately 5 million, with the number of GA cases
expected to increase to 9 to 10 million patients by
2040.1 The etiology of GA remains elusive, and no drug

therapies are available.2 GA is a progressive disease,
and visionwill continue to deteriorate with a possibility
of legal blindness. The deterioration in vision is associ-
ated with the growth of GA lesions. GA is defined as
dead retinal pigment epithelium (RPE) and photore-
ceptor cells with closure of the underlying choriocap-
illaris.2,3 They appear as sharply demarcated areas,
which are traditionally identified by retinal imaging.2
The appearance of GA lesions in the macular region
affects vision, and the severity of vision loss is linked
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Figure 1. RegionFinder annotation process. (A) Original image, (B) fovea and blood vessels restricted, and (C) final annotationwith region-
growing algorithm. Prior to annotation, the end-user must restrict nonlesion areas such as the fovea, optic disc, and blood vessels. This
preventative measure ensures the region-growing annotation does not “spill” into features similar in color intensity to that of lesions. The
lesions can then be annotated using the mouse cursor.

with the size and the location of the lesions in the
macula.4,5 The pattern of GA growth is not well under-
stood, and research publications to-date have often
described the trend in GA growth in qualitative terms
rather than quantitatively. It would be useful to have
an objective and quantitative metric for GA progres-
sion as a means of trend identification and to predict
the rate of growth of GA. A predictive model would
inform the patient and the clinician about disease
progress and inform on the validity of any future
interventions.

Past studies of GA growth are often based on local
growth of a single lesion, with “effective”radius plotted
against time (i.e., radial growth), rather than growth of
global or total GA.1,6 Past “qualitative” observations
have suggested a possible linear progression of GA
lesion area.1,5,7 Dreyhaupt et al.7 modeled the natural
course of GA using linear and exponential mixed-
effects models fitted to areas of atrophy computed
from fundus autofluorescence (FAF) images.7 They
found that the linear and exponential models were
similar in performance. The Age-Related Eye Disease
Study (AREDS) Report Number 26 suggested that, at
least for fundus photographs, a linear model growth
was superior to a quadratic model for different lesion
sizes. The AREDS study report suggested that a linear
relationship may in part be related to overlapping areas
of atrophy (rather than the expansion of a single lesion
over time).8 Despite anecdotal observations for individ-
ual lesions, there appears to be very little reported on
modeling total GA progression (i.e., global growth of
all lesions combined). The variability in many study
findings has been attributed to errors associated with
the accuracy and precision of assessment methods
and therefore epistemic uncertainty also needs to be
addressed in model development.6

Epistemic uncertainty is due to lack of knowl-
edge and refers to reducible errors, such as subjec-

tive uncertainty, measurement error, data entry error,
or using the wrong model.9–11 In the case of GA
assessment, the most relevant epistemic uncertainty
is “model structure uncertainty” (i.e., identifying the
correct model for disease progression). This uncer-
tainty can be due to limited availability of compre-
hensive datasets, incomplete knowledge of the disease
etiology and pathogenesis, and errors from measur-
ing equipment that can lead to the presence of impre-
cise and uncertain data (i.e., measurement error and
noisy data). This makes the process of developing an
appropriate model challenging. For example, although
the RegionFinder software provides a fast, consistent,
and semiautomated process for area segmentation, it
relies on human-user input for its function. A grader
relies on judgement and experience when annotating
GA lesions (Fig. 1). Methods available to assess struc-
tural problems include model checking (e.g., goodness-
of-fit tests, calibration test, residual error assessment)
and comparing tested predictions against independent
data.12,13 There appear to be no publications that have
quantified epistemic uncertainties inGAmeasurement.
Also, the authors are unaware of any publications that
have incorporated uncertainty analysis when modeling
the progression of GA.

The objective of this study was to address model
structure uncertainty (an epistemic uncertainty) by
investigating a suitable model for characterizing global
GA progression in FAF images in the context of
routine clinical presentations for monitoring GA
progression. The analysis required (1) a process for
statistical model selection, (2) application of an uncer-
tainty metric, (3) graphic evaluation to show that
growth patterns meet physical and clinical assumptions
consistent with current understanding of GA progres-
sion, and (4) an objectivemetric for quantifying the rate
of GA progression. Six statistical regression models
were evaluated using time-series FAF images of GA to
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find the most appropriate GA growth model for trend
analysis.

Methods

Data

The study was approved by the Human Research
Ethics Committee of the Royal Victorian Eye and Ear
Hospital (RVEEH). The study was conducted in accor-
dance with the International Conference on Harmo-
nization Guidelines for Good Clinical Practice and
tenets of the Declaration of Helsinki. Ethics approval
was provided by the Human Research Ethics Commit-
tee (HREC: Project No. 95/283H/15) by the RVEEH.
Written informed consent was obtained from all partic-
ipants.

Data for GA-affected eyes were collected retro-
spectively from the Centre for Eye Research Australia
Ltd (CERA) and a private ophthalmology clinic.
Data collection involved time-series FAF images
from a database of patient presentations in clinical
settings, and GA area estimation by the Spectralis
HRA+OCT instrumentation and the supplied Region-
Finder algorithm for area segmentation (Heidelberg
Engineering, Heidelberg, Germany). Inclusion criteria
included being older than the age of 50 years, having
a diagnosis of GA in either one of both eyes, and
having foveal-centered FAF images from at least three
clinical review visits and collected over a minimum
of 2 years. An optical coherence tomography (OCT)
image was taken at every visit, and the FAF image
was centered by the patient viewing a reference point
at the center of the image. Participants with neovas-
cular AMD (nAMD) were excluded, as were other
diseases that cause atrophy similar to GA, based on
the clinical appearance determined by a retinal special-
ist (RHG), as well as clinical history and multimodal
imaging with angiography performed to identify if
there was any indication that nAMDmight be present.
Given that progression over time was the objective, no
minimum lesion size was specified. Participants had no
prior history of treatment or treatment trial for their
condition. Records were anonymized to respect patient
privacy.

Instrumentation

FAF is a recognized tool used to measure GA size
and growth rate in longitudinal experiments requiring
a high degree of reproducibility.14 First described by
Delori et al.,15 the FAF (excitation wavelength 488 nm,
emission>500 nm) is an ophthalmic imaging technique

designed to captureGAas hypoautofluorescent (black)
areas with sharp borders that delineate GA lesions, and
hyperautofluorescent areas (bright areas that show the
main fluorophore lipofuscin, but other fluorophores
exist as well) that provide insight into the health and
functionality of the RPE.15–18 The FAF images were
acquired on the Spectralis HRA+OCT instrument.
Pupils were dilated at every visit before image acqui-
sition. FAF images with 30° × 30° field of view were
captured. The dataset consisted of images in both high
speed (768 × 768 pixels), and high resolution (1536 ×
1536 pixels) formats. The Automatic Real-Time Track-
ing (ART) was also recorded for each image.

Estimation of GA Area

The image analysis for area estimation was
performed using the semiautomated software
algorithm RegionFinder for image segmentation
of lesions. The software enables graders to annotate
GA lesions, extract measurements of lesions, and
records changes in longitudinal time-series images.19–22
Published evaluations confirm that the RegionFinder
algorithm is accurate, reproducible, and time-efficient
for identification and quantification of lesions.19,21,22 It
is currently incorporated into the Spectralis instrument
and used in clinical practice.

Square Root Transformation

In the past, application of the square root transfor-
mation of GA area for assessment of GA growth rate
has been associated with a number of benefits, such as
(1) it reduces test–retest variability, (2) it creates unifor-
mity in intergrader differences across a range of lesion
sizes, and (3) it reduces baseline GA size dependency
from theGA growth rate. Furthermore, the square root
transformation is not affected by zeroes and extremely
small values.

Yehoshua et al.23 investigated the reproducibility of
GA area measurements and enlargement rate of GA,
including usefulness of the square root transforma-
tion. They found that it eliminated GA baseline size
dependency from the GA growth rate. The correla-
tion between lesion size and test–retest standard devia-
tions was significant with respect to original GA area
(Pearson’s r = 0.60, P < 0.001; Spearman’s ρ = 0.73,
P < 0.001). However, when a square root transforma-
tion of the lesion area measurements was performed
prior to test–retest standard deviation calculations, the
correlation between baseline lesion size and test–retest
standard deviations was no longer apparent (Pearson’s
r = 0.07, P = 0.72; Spearman’s ρ = 0.12, P = 0.51).
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Pfau et al.24 quantified lesion progression using
a linear mixed-effects model with two-level random
effects (i.e., eye- and patient-specific effects) and
shape-descriptive factors. The authors normalized the
variables for the lesion area, perimeter, and circu-
larity using the square root transformation.24 Monés
and Biarnés25 assessed the progression of GA and its
baseline using the square root transformation, with
both Pearson’s r and Spearman’s ρ in the assessment.
They plotted the relationships using linear regression
with locally weighted scatterplot smoothing curves;
one plot comparedGAarea growth (mm2/year) against
baseline GA area (mm2), whereas the other plotted
radial growth (mm/year) against the square root trans-
formed baseline. They found the correlation between
radial growth and square root–transformed baseline
area was negative (Pearson’s r = –0.30, P = 0.0005;
Spearman’s ρ = –0.25, P = 0.0042), which suggests
that as lesions grow larger, the progression rate starts
decreasing.25 Domalpally et al.26 studied a parameter—
theGeographic AtrophyCircularity Index (GACI)—in
the assessment of GA progression. They used regres-
sion analysis to assess the relationship between baseline
characteristics and annual progression rates of GA.
Similar toMonés andBiarnés,25 they found statistically
significant correlations between GACI and growth
rate in mm2 (r = –0.31, P < 0.001) and GACI and
square root–transformed measurements (r = –0.39, P
< 0.001).

In this study, we investigated six regression models
against two outcomes: (1) the original scaled, untrans-
formed total GA area (with a unit of mm2/year); and
(2) the square root–transformed GA area (with a unit
of mm/year). We used the following criteria to deter-
mine the strength of the square root transformation
for the cohort: (1) whether the square root transfor-
mation normalized the distribution of residuals from
the regression models tested; (2) if the transforma-
tion linearized the growth rates, as would be expected
from this type of transformation; and (3) if the trans-
formation significantly improved the fit of the model
as compared with its untransformed, original-scaled
counterpart. It is important to note that, in regres-
sion analysis, the assumption of normality applies to
the residuals only. The distribution of independent and
dependent variables can be skewed if the residuals of
the regression model are normally distributed.

Modeling and Statistical Analysis

Total GA area in the image was computed for
each eye and was recorded as a time-series. Total GA
area was used as one output. The second output for

comparisonwas the square root transformed results for
GA area. We calibrated 6 × 2 regression models for
each patient (i.e., 6 for original-scaled GA area, and
6 for square root–transformed area). These regression
models were linear, logarithmic, exponential, power,
a standard quadratic (Q1), and quadratic without a
linear term (Q2) (refer to Appendix).

The models were assessed as follows: (1) graphical
evaluation of whether the model gradient is consis-
tent with physical and clinical assumptions of growth
(i.e., comparing all models on a graph for each eye);
(2) computing the coefficient of determination, r2, for
each model for each eye (where r is the correlation
coefficient), and then placing the model r2 values into a
matrix (model type × patient ID) for comparison; (3)
quantifying the uncertainty metric, U, for each model;
(4) when models had fractional differences in terms of
trends, r2 and U, we compared the models using both
Spearman’s ρ and Pearson’s r rank correlation coeffi-
cients to see if the growth trends between the models
were similar or significantly different; (5) themodel that
satisfied steps 1–3 was selected as the best fittingmodel,
based on the principle of Occam’s razor (i.e., the most
simple model for explaining the results is the preferred
model); (6) we used the test of significance for the
correlation coefficient, r, to test whether sample data
were sufficient to model the relationship in this cohort
correctly for every model tested for every subject; and
(7) for the best fit model, we compared the normality of
residuals of the model with the original GA area scale
(i.e., mm2/year) to that of the square root transformed
GA area scale (i.e., mm/year) to see if they satisfied the
assumptions of normality for the residuals.

The graphical interpretation demonstrated howwell
each model fitted the data and whether the fits were
in-line with anticipated clinical progression (e.g., GA
lesions will continue to grow over time). Models that
did not follow the physical and clinical assumptions
of growth were eliminated from further considera-
tion. These assumptions included (1) the model should
illustrate continued GA growth, not GA regression,
irrespective of the speed of progress; and (2) noting
that because of the limited space within the retina, the
growth has an upper limit.

Once a model met the required assumptions, the r2
values for all models were computed. These values were
placed in the r2 matrix for comparison. For example, in
the linear model, r2 is the proportion of the variance in
the dependent variable, Y, that is predictable from the
independent variable, X.

For each patient, the best model was chosen based
on the highest r2 value. The frequency of the best
model occurrence was quantified and tabulated. For
the best model chosen for each patient, the uncertainty
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metric U (Appendix, Eq. 10) was calculated. Note
that r2 is the variability accounted for by the regres-
sion model itself, whereas the value U for uncertainty
is the variability not accounted for by the regression
model.

The average uncertainties for each model type were
pooled to determine the model type that had the lowest
uncertainty on average. The model with high average
r2 and low average U, that met clinical assumptions
of progression, was deemed the most practical model
for GA progression. We then assessed the residuals of
the selected regression model (both with and without
square root transformation) to see how the residu-
als of the model behaved and whether transformation
improved the normality of residuals.

A statistical test of significance for the correlation
coefficient, r, can be used to determine whether r2 and
U for each model fitted is significant, where the test is
adjusted for sample size (see Appendix). In addition
to this, with respect to the population of GA area
measurements, the Central Limit Theorem and sample
size calculations can be used to support sufficiency of
sample size (i.e., the sampling distribution of the mean
values tends toward a normal distribution, for n > 30).

Results

Segmentation Data

A total of 81 eyes from 45 patients were included
in the study. A total of 36 patients had bilateral GA
and 9 patients had unilateral GA. From these 81 eyes,
a time-series of clinical presentations resulted in 531
FAF images (range: 3–17 images per eye, median:
6 [interquartile range {IQR}: 4, 7]) were used for
GA segmentation by RegionFinder and subsequent
analysis. The length of time in which patients were
monitored was a median of 57 months (IQR: 42, 74).
The mean baseline GA area was 2.62 ± 4.49 mm2

(range: 0.11–20.69 mm2). The average change from last
GA measurement to baseline GA area was 6.07 ± 4.99
mm2. The mean age at baseline was 76.84 ± 8.60 years
(range: 55–96 years). The cohort was generally a diverse
representation of GA progression, with a mixture of
slow and fast progressors. The median ART was 35
(IQR: 25, 75; range: 5–100).

Graphical Data Modeling

Illustrative examples of regression models fitted
to GA time-series data are depicted in Figures 2A
and 2B, and Figure 3. In Figure 2A, the central line
is the linear approximation, which is overlaid with the

logarithmic and Q2 models—showing minimal differ-
ences. The curved plot represents power, exponential,
and Q1 quadratic model (with the Q1 fit requiring an
extra parameter, limiting its use for small datasets),
with the curvature attempting to accommodate outliers
and violating clinical assumptions on GA growth. The
correlation coefficients suggest that the linear approx-
imation is the most effective and minimalist model. A
similar pattern is evident over the full set of 81 eyes
tested. In Figure 2B, another example shows that the
linear approximation is simple and suited to estima-
tionwith small datasets, matching other two-parameter
nonlinear regression models. In Figure 3, the limita-
tions of the Q1 model for both interpolation and
extrapolation are exhibited, even with the extra degree
of freedom for fitting. The growth pattern, in a “J”
curve, show both decreasing then increasing patterns,
which violates the clinical assumptions of GA growth.
The Q1 model was eliminated from further consider-
ation as it did not accurately represent the expected
pattern of growth.

A square root transformation is expected to improve
results for the growth curve by linearizing the plot.
In Figure 4, we applied the square root transfor-
mation to the “J” curve in Figure 3. The square
root transformation showed a flattening effect, as
expected, producing a slight improvement, but did
not linearize the trajectory of the Q1 curve. This
was also evident in some other cases (see following
section). The trajectories for the linear and logarithmic
models remained similar, with and without square root
transformation.

Model Ranking by r2

Following the elimination of Q1, the five remain-
ing models (i.e., linear, exponential, power, logarith-
mic, and Q2) were evaluated by comparison of results
in the r2 matrix. That is, the models were assessed
with and without transformation, with dimensions
of the matrix being 2 (outcomes) × 5 (models) ×
81 (eyes) with 810 × r2 values. The average r2 values
for each eye were calculated for the five models (Table
1). The linear, logarithmic, and Q2 models were the
best candidates for GA growth modeling based on
average r2. Further examination of the logarithmic,
linear, and Q2 models graphically revealed that the
gradients were indistinguishable. To illustrate further,
consider the case illustrated in Figure 2B. For this
case, the linear and logarithmic models both had a
coefficient of determination of r2 = 0.9995, whereas
the Q2 model had r2 = 0.9994. A paired t-test of
comparison for the 81 eyes showed that there was
no statistically significant difference between the linear
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Figure 2. (A) Example of six regressionmodels fitted to GA data for a single patient. The central line is a linear approximation overlaid with
logarithmic and quadratic without linear term (Q2) models, showingminimal differences. Curved plot includes the exponential, power, and
quadratic model (Q1) with concave upward curvature. (B) Another example shows how the linear model matches other overlaid models. It
is well suited to estimation with small datasets and for extrapolation.

and logarithmic models (level of significance: P <

0.05). The correlation coefficients, Spearman’s ρ and
Pearson’s r, were used to compare the slopes of the
models, resulting in ρ = 1 and r = 0.9999. There were
small differences in the coefficient of determination and
the patterns of progression were similar. The linear
model was deemed preferable, as it was similar to the

logarithmic and Q2 models with respect to average r2,
and it displayed the lowest average U. Implementa-
tion and interpretation of the linear model is simple,
and the linear gradient is a direct measure of rate
of GA progression. The parameters of the logarith-
mic and Q2 models do not have straightforward
interpretations.
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Figure 3. Illustrative example of anomalous fitting with the Q1 quadratic model. Even with three parameters, for more accurate fitting, the
trendline is biologically implausible and violates assumptions on GA growth. The linear, logarithmic, and quadratic without linear term (Q2)
model trendlines are indistinguishable.

Figure 4. (A) (i.e., left image) and (B) (i.e., right image) directly in the image (i.e., similar to Fig. 2). Comparison between regression models
with andwithout the square root transformation: (A) original scaledGA area plots, and (B) square root transformedGA area plots. The square
root transformation tends to flatten but not linearize all nonlinear plots. Patterns of progression were similar in this comparison.

Quantifying Uncertainty

The metricU shows more explicitly the unexplained
variability associated with the regression model, that
is, uncertainty that is the sum of statistical variabil-
ity and model structure uncertainty. Quantification
and ranking of average uncertainty for each regression
model tested revealed the linear model had the lowest
averageU value, with the lowest average uncertainty of
0.025 (Table 2).

Sample Size

The hypothesis test for the significance of the corre-
lation coefficients, r, showed statistical significance (P
= 0.01) for the GA original scale and the square root–
transformed scale, providing support for the tabulated
regression models. The problem of small sample size
often encountered in ophthalmology has been a contin-
uing issue because of the wide range of eye condi-
tions that may often be rare in occurrence. Studies have
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Table 1. Average r2 for GA Area Growth Models

Model Original Scale Average r2 Square-Root Transformed Average r2

Linear 0.9205 0.9299
Logarithmic 0.9196 0.9302
Quadratic (Q2) 0.9213 0.9295
Power 0.9048 0.9043
Exponential 0.9036 0.9033

Table 2. Average U for GA Area Growth Models

Model Original Scale Average Uncertainty U Square-Root Transformed Average Uncertainty U

Linear 0.025 0.014
Logarithmic 0.054 0.054
Quadratic (Q2) 0.028 0.026
Power 0.061 0.091
Exponential 0.135 0.135

shown that the length of the statistical confidence inter-
val for a regressionmodel outcome varies inversely with
sample size, with the relationship flattening out for n
> 30.27,28 For n > 30, the sampling distribution of
the mean values tends toward a normal distribution
according to the Central Limit Theorem. In the current
study, there were n = 81 eyes, each having its own time-
series plots of GA data, for a total of n = 531 for GA
data, stratified so that the individual models are fitted
separately to each eye.

Evaluation of Residuals

We compared the residuals of linear models using
the original GA scale to that of linear models using a
square root–transformed GA area. This can be investi-
gated using a Q-Q plot (in which residuals are normally
distributed, with a good-fit model having residuals
closely following a 45° line, see Fig. 5), and also a
histogram of residuals (i.e., checking variance and
symmetry for assumption of a normal distribution).
An illustrative case for the linear model is provided for
patient 4 in Figure 5. It is apparent that using the origi-
nal scale produces similar residuals when compared
with the square root transformation.

Discussion

General Comments

The lack of knowledge regarding etiology, patho-
genesis, and pattern of GA growth explains in part
the paucity in treatment options. Retrospective evalu-

ation of growth over consecutive patient presentations
is possible using the Spectralis HRA+OCT instru-
mentation and associated RegionFinder segmentation
software. A missing factor is the lack of an effective
model to characterize the trend in GA growth that
would provide an objective metric for progression that
can be used to evaluate interventions and identify fast
and slow progressors.

Uncertainties affecting GA-related measurements
and clinical results are statistical variability and
epistemic uncertainty—defined as the uncertainties
due to incomplete knowledge of the system or process.
Epistemic uncertainties are reducible because identify-
ing process limitations can lead to error minimization
(e.g., upgrading instrumentation or improving opera-
tor training).29 This study investigated the epistemic
uncertainty referred to as “model structure uncer-
tainty”associated with modeling GA trend and growth
in patient data.

Constraints on model selection include the need
for model output to be monotonically increasing with
time, and to be physically plausible. Any model fitted
by regression methods must pass tests including statis-
tical significance. Six regression models were tested
for characterization of the trend using the record of
patient presentations. Themodels were linear, exponen-
tial, power, logarithmic, Q1 (original quadratic), and
Q2 (quadratic without the linear term) in structure
(see Appendix). All were characterized by two parame-
ters, except for the Q1 model, which had three parame-
ters and therefore an extra degree of freedom. Among
these, the linear model was found to be the preferable
model for GA progression based on simplicity and the
selection criteria.
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Figure 5. AQ-Q plot of residuals for the linearmodel for (A) original scaled GA area, and (B) square root transformedGA area. As evidenced
by clustering about the 45° line, the assumption of normality in residuals appears to hold in both cases.

The linear progression model had a high average r2
(0.9205) over 81 eyes, and the lowest average uncer-
tainty (U= 0.025). These findings were consistent, even
when the total GA area outcomewas square root trans-
formed (r2 = 0.9299, U = 0.014). The models that
displayed a nearly identical trend to the linear model
were the logarithmic and Q2 models. When superim-
posing the trendlines, it was difficult to distinguish
one from the other. A marginal difference was found
between the average r2 produced for linear, logarithmic,
and Q2 models. However, not only did the logarithmic
and Q2 models have higher average uncertainty, when
compared with the linear model, there were problems
associated with interpretation and application.

The Q1 model can produce a high coefficient of
determination because of the extra parameter relative
to the other two-parameter models. However, the
concave upward growth (with trend initially decreas-
ing to a minimum for a time then increasing again
later) violated physical assumptions on the nature
of GA growth over time (Fig. 3). The remain-
ing models, exponential and power law, performed
poorly, having highest average uncertainties and

graphically poor fitting around the progression data
points.

The linear model appeared to be best suited for
GA progression because of the advantages of (1)
lowest average uncertainty, (2) realistic representation
of the GA growth observed over the limited number
of patient presentations, (3) ease in interpretation and
extrapolation, (4) simple implementation, (5) applica-
bility to very small datasets, and (6) simple parameters
for providing rate of progression and onset estimates.

The Linear Model

Based on the analysis of patient data from the
history of clinical presentations, the most statisti-
cally significant model for the rate of growth of GA
was found to be the linear approximation, which is
expressed more formally in the following representa-
tion:

A = gt + t0
where A is the total area of the hypoautofluores-
cence as derived from the RegionFinder segmentation
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Figure 6. A linear regression is consistent with clinical assumptions of GA progression in the sense that it provides an estimate of the
gradient in a growth model. The gradient is an objective metric for monitoring and comparing interventions involving the typically limited
number of clinical presentations by patients.

algorithm, t is the date/time of the patient presentation,
g is the gradient representing the rate of growth of GA,
and t0 is the upper bound on the date of onset. The key
parameters g and t0 are obtained from regression analy-
sis of the history of patient presentations. The gradi-
ent parameter is an easily understood metric for GA
growth for patient presentations in a clinical setting. It
can be computed for small datasets and is readily incor-
porated into software for onscreen analytics of data
recorded by the instrumentation.

The key parameter is the gradient, g, which quanti-
fies the rate of GA progression. The value of g is
an objective metric that quantifies the impact of the
clinical intervention. A high value of g identifies a
fast progressor, and a low value of g identifies a slow
progressor. An intervention will change the gradient of
the line from the time it is applied (requiring a second
linear regression model from the start of the interven-
tion). The gradient is therefore a figure of merit for
response to the intervention.

Previous qualitative observations of GA growth
have resulted in speculation that, in the case of multi-
ple lesions, expansion in growth leads to overlapping
areas, which slows down the growth of total GA.7,8
Although this proposed mechanism weakens the case
for a Q1 model for growth in comparison to the alter-
native linear model, even a linear approximation would
eventually be challenged by the finite area of the retina

or limited field-of-view of imaging techniques. From
a clinician’s perspective, total GA cannot grow indef-
initely, as the size of the retina provides a physical limit
in area. The assumption is that eventually themeasured
growth rate will stop due to termination of patient
presentations as the result of patient mortality, or no
further change in visual acuity tests, or it will taper-off
significantly as progression decreases asymptotically.

It may be that the observed linearity in the rate of
growth is range-bound because of the small number
of patient visits, and applies to the slope in a nonlin-
ear growth model. One such possible nonlinear growth
model is the power law function, but this was ruled out
by the results of the current investigation. The other
possible candidate for a nonlinear growth model is a
logistic or sigmoidal function, especially in the case of
a single lesion, but possibly also for multifocal lesions
and total GA (Fig. 6). The data from clinical presen-
tations are typically limited, however, and fail to show
either a toe or shoulder region in the scatterplot.

It is plausible that the toe-end of the sigmoidal
function could be missing because of the late presen-
tations of patients (i.e., in which vision loss as a result
of GA is not apparent at first and patients delay clini-
cal consultations).3,30 The shoulder-end of a hypothet-
ical sigmoidal function may also be missing because
of the late age and mortality of the patients (i.e., GA
does not reach the physical limit of the retina area
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or when growth tapers asymptotically). These assump-
tions are consistent with clinical observations that there
is an absence of data at the start and end of the GA
data time-series that may indicate the presence of a
sigmoidal function. In practice, there are usually only
a small number of patient visits and the linear approx-
imation may provide a reliable estimate of trend and
a metric for GA progression. The key parameter is
the gradient, g, where a high value represents a fast
progressor and a low gradient a slow progressor.

Regression models constructed using paired eyes
from the same population may have results affected
by intereye correlation if treated as a single probabil-
ity distribution for drawing inferences. Ying et al.31
reported methods for addressing this problem for a
limited sample based on using left or right eye data
only, or random eye selection from each pair, but this
reduces sample size. Ying et al.31 also suggested the
application of mixed-effects models, but with increased
computational expense or processing. It was noted
that, if there is intereye correlation present and it is
ignored, the estimators of the regression coefficients
are unbiased, but the variances of the estimators are
not correct.31 This means that the model average is not
affected, but the variance is likely to be smaller than
otherwise. The impact of intereye correlation in the
current study was expected to be marginal, however,
because the regression models developed for each eye
in the comparison were derived independently for each
eye (not from the total eye population). The regression
coefficients were based only on the GA area progres-
sion scatter plot for each eye separately. After repeat-
ing the process for all eyes, the performance metric
was the average value of the r2 values of the set of
models, not the variance. The median of the r2 values
for the models was also computed for the best-fit three
models (linear, logarithmic, and quadratic Q2), reveal-
ing similar results to the average, with no change to the
conclusions (significant because the median involves a
ranking of model outputs).

Finally, further subanalysis on left eye data only for
paired-eyed patients revealed similar results to Tables
1 and 2. That is, of the best of the three models, none
was better than the linear model with respect to average
r2, and the linear model was still lowest with respect to
average U for all models.

Future Extensions

In the current study, there was no evidence found
that any of the alternative models tested was better
than the linearmodel for representing totalGAgrowth.
The square root transformation showed only marginal
differences when compared with untransformed GA

patterns of growth. The models of overall growth for
segmented lesions used the total data available, but it
is possible that there are subgroups of lesions that may
be more appropriately described by different models.
For example, recent publications reported that subreti-
nal drusenoid deposits (SDD) may enhance the risk
of developing GA, as well as accelerate GA growth.
Future investigations could include GA subgroup
analysis (such as SDD presence/absence) and the effect
on GA growth.32,33 Extensions could include further
study of the square root transformation applied to GA
subgroups using the best three regression models in the
comparison (linear, logarithmic, and Q2 models).

Conclusions

Epistemic uncertainty relates to the lack of infor-
mation on error sources affecting GA measurements
that are not associated with statistical variability or
replications. An example of an important epistemic
uncertainty is “model structure uncertainty” for repre-
senting the growth of total GA. A case study on
correct model structure was undertaken to compare
linear and nonlinear models for representing the trend
in GA progression (cf. linear, exponential, logarith-
mic, quadratic, and power models). Clinical data used
in this study consisted of FAF images segmented by
the Spectralis HRA+OCT instrument and the Region-
Finder algorithm.

The study found no evidence that any other model
tested in the comparison was better than using the
linear model for describing growth of total GA in the
retina. The linear model provides a simple, reliable,
and easily interpreted model for charting the trend
of GA progression within the range of measurements
encountered in clinical practice. The model is compati-
ble with the typically small number of patient visits and
time-series data available in clinical presentations. The
model was shown to be a balance between statistical
significance and clinical assumptions for describing the
growth of total GA.

The gradient parameter of the linear model can be
interpreted as the rate of GA progression and is an
objective metric to evaluate proposed interventions. A
low value of the gradient identifies a slow progressor,
and a high value identifies a fast progressor. Follow-
ing an intervention, a new regression model is applied
to compute the new gradient. It is suggested that the
gradient of the linear model may be the slope of
a growth model, such as a sigmoidal function. For
different reasons, the toe and shoulder regions are not
captured in the time-series data in clinical settings. A
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discussion is provided on how the results for the linear
approximation reconcile statistical performance with
growth assumptions from clinicians.
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