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Purpose: To compare the magnitude of bias due to unmeasured confounding estimated from 
various techniques in an applied example.
Patients and Methods: We examined the association between dibutyl phthalate (DBP) and 
incident estrogen receptor (ER)-positive breast cancer in a Danish nationwide cohort 
(N=1,122,042). Cox regression analyses were adjusted for age and active drug compounds 
contributing to DBP exposure. We estimated the hazard ratios (HRs) that would have been 
observed had one of the DBP sources been unmeasured and calculated the strength of 
confounding by comparing to the fully adjusted HR. We performed a quantitative bias 
analysis (QBA) of the “unmeasured” confounder, using external information to specify the 
bias parameters. Upper bounds on the bias were estimated and E-values were calculated.
Results: The adjusted HR for incident ER-positive breast cancer among women with high- 
level (≥10,000 cumulative milligrams) versus no DBP exposure was 2.12 (95% confidence 
interval 1.12 to 4.05). Removing each DBP source in isolation resulted in negligible change 
in the HR. The bias estimates from the QBA ranged from 1.00 to 1.01. The estimated 
maximum impact of unmeasured confounding ranged from 1.01 to 1.51. E-values ranged 
from 3.46 to 3.68.
Conclusion: The impact of bias due to simulated unmeasured confounding was negligible, 
in part, because the unmeasured variable was not independent of controlled variables. When 
a suspected confounder cannot be measured in the study data, our exercise suggests that 
QBA is the most informative method for assessing the impact. E-values may best be reserved 
for situations where uncontrolled confounding emanates from an unknown confounder.
Keywords: bias analysis, unmeasured confounding, the E-value

Introduction
Confounding occurs when the effect of an exposure on an outcome becomes mixed 
with the effect of another variable on the outcome and arises from the resulting lack 
of comparability between contrasted exposure groups.1 A confounder is a variable 
in a minimally sufficient set of variables that will leave no open backdoor path 
between the exposure and the outcome.2 Valid estimation of a causal effect of an 
exposure on an outcome requires that all confounding be controlled. When an 
investigator is aware of the identity of a potential confounder, but was unable to 
collect data on that variable, it is said to be an unmeasured confounder (as opposed 
to an unknown confounder, ie, a confounding variable about which the investigator 
is unaware). With unmeasured confounding, an investigator lacks the data 
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necessary to control for the effect of confounding in the 
analysis phase (ie, via restriction, stratification, standardi-
zation, or regression) and therefore the observed associa-
tion may be biased. The resulting bias may be in any 
direction and of any magnitude, making it particularly 
important to evaluate the potential impact of unmeasured 
confounding on study results.

There are few approaches available for assessing the 
impact of bias due to unmeasured confounding. The quan-
titative bias analysis approach for an unmeasured confoun-
der aims to adjust an observed association between 
a dichotomous exposure and a dichotomous outcome to 
reflect the results that would have been obtained had the 
uncontrolled variable been available for adjustment. This 
is often achieved through use of information from external 
sources.1,3 The methods of Ding and VanderWeele4 and 
Flanders and Khoury5 place bounds on the maximum 
magnitude of the potential bias due to unmeasured con-
founding under different assumptions. Finally, 
VanderWeele and Ding developed the E-value as 
a method to estimate the minimum strength of association 
an unmeasured confounder would need to have with both 
the exposure and outcome to make the observed associa-
tion null upon adjustment for the confounder.6 These 
approaches conventionally make a simplifying assumption 
that the unmeasured confounder is independent of con-
trolled confounders, which is seldom true in practice. It 
is more likely that an uncontrolled confounder is indir-
ectly, partially controlled for via the control of correlated, 
measured confounders in an analysis. Consequently, these 
methods may overestimate the impact of bias due to 
unmeasured confounding.

Through an applied example, we reproduced the ana-
lysis of a published pharmacoepidemiology study regard-
ing the association between exposure to dibutyl phthalate 
(DBP) and incident estrogen receptor (ER)-positive 
breast cancer in a Danish nationwide cohort of women 
followed from January 1, 2005 to December 31, 2015 
(N=1,122,042).7 Phthalates, which are endocrine disrup-
tors, have been hypothesized to be associated with breast 
cancer via ER signaling.8–13 Many, but not all, drugs 
within a given drug class contain DBP in the capsules 
for the purposes of achieving delayed or extended release 
properties (ie, receipt of a prescription for a medication 
that may be formulated with DBP is not deterministic of 
an individual’s cumulative DBP exposure).14 Among 
other results, Ahern et al reported the rate of incident 
ER-positive breast cancer among women with high-level 

DBP exposure (≥10,000 cumulative milligrams) to be 
nearly twice the rate among those unexposed after adjust-
ing for age, menopausal status, and drug classes contri-
buting to DBP exposure (hazard ratio [HR] 1.9, 95% 
confidence interval [CI] 1.1 to 3.5). Our approach fol-
lowed the same modeling procedures that yielded this 
observation but simulated the series of DBP-contributing 
medications as “unmeasured” confounders (ie, pretended 
that information on each DBP-contributing medication 
was unavailable in the study data).

The objective of this study was to compare the magni-
tude of bias due to unmeasured confounding estimated 
from various bias models with the true value of this 
magnitude calculated using the study population. We 
sought to evaluate whether conventional methods for mod-
eling bias from an unmeasured confounder overestimate 
the magnitude of bias, largely because they treat the 
unmeasured confounder as being independent of con-
trolled variables. We hypothesized that the observed 
strength of bias due to confounding by withholding indi-
vidual confounders from the model would be negligible, 
and that the various bias models would produce overesti-
mates of the strength of confounding.

Materials and Methods
This analysis used data from a published population-based 
study of the association between phthalate exposure and 
breast cancer incidence in a Danish nationwide cohort. 
The data sources have been described in detail 
elsewhere.7 Briefly, the population of all living female 
residents of Denmark without a recorded history of cancer 
or exposure to phthalate-contributing medications between 
January 1, 1995 and January 1, 2005 (ie, no exposure or 
outcome prior to cohort entry; N=1,122,042) was identi-
fied through a linkage of the Danish Civil Registration 
System, the Danish Cancer Registry, and the Danish 
National Prescription Registry.15 Cases of incident inva-
sive breast cancer was ascertained from the Danish Cancer 
Registry and ER status was retrieved from the Danish 
Breast Cancer Group Registry.16 Phthalate-containing 
oral medications were identified via query of drug product 
excipient data in the Danish Medicines Agency internal 
pharmaceutical database.

Incidence of ER-positive breast cancer was modeled by 
fitting cause-specific Cox regression models with a 1-year 
exposure lag.17 Exposure was defined as the number of 
cumulative milligrams (mg) of DBP contained in all pre-
scriptions filled by a patient (calculated as the mass of 
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phthalate per capsule multiplied by the fill quantity of each 
redeemed prescription) during each year of follow-up, 
beginning on January 1, 2005. For the present study, 
DBP exposure was modeled as time-varying, updated 
yearly, and dichotomized as 10,000 mg or more versus 
no exposure (ie, the two most extreme exposure categories 
from the original analysis. Patients with DBP exposure 
less than 10,000 mg were not included in the analysis). 
Follow-up was censored upon the occurrence of 
a competing event: diagnosis of a non-breast malignancy 
(except non-melanoma skin cancer), diagnosis of ER- 
negative breast cancer, death, emigration from Denmark, 
or reaching the end of follow-up on December 31, 2015.

The following variables were included in each regres-
sion model: age (defined at baseline); menopausal status, 
dichotomized as premenopausal (age younger than 55 
years) or postmenopausal (age 55 years or older); and 
drug substances (ie, active ingredients) contributing to 
phthalate exposure, characterized with annually updated 
indicator variables based on the fifth level of the 
Anatomic Therapeutic Chemical (ATC). The following 
drug substances (ATC codes) contributed to DBP expo-
sure: bisacodyl (A06AB02), budesonide (A07EA06), 
diclofenac (M01AB05), diclofenac combinations 
(M01AB55), lithium (N05AN01), mesalamine 
(A07EC02), and multi-enzymes (A09AA02). Importantly, 
both phthalate-containing and phthalate-free pharmaceuti-
cal products in Denmark represented each drug in this list 
during the study period. The original study had 
Institutional Review Board approval from the University 
of Vermont.

Data Analysis
We separately used each drug in the set of drug substances 
contributing to DBP exposure (bisacodyl, budesonide, 
diclofenac, diclofenac combinations, lithium, mesalamine, 
and multi-enzyme) as the simulated unmeasured confoun-
ders (Ci, where i=bisacodyl, budesonide, diclofenac, diclo-
fenac combinations, lithium, mesalamine, multi-enzymes). 
It is implausible that age would be unavailable in most 
analyses. Therefore, age was controlled in the models and 
was not modeled as an unmeasured confounder. Although 
menopausal status was included in multivariable models in 
the original analysis, it was not included in the present 
analysis because age (which was used as a proxy to clas-
sify menopausal status) likely effectively controls for any 
potential confounding of the association between phthalate 
exposure and incident breast cancer due to menopausal 

status. For each Ci, we employed various methods to 
quantify the impact of Ci being “unmeasured”: estimating 
the actual magnitude of confounding, performing 
a quantitative bias analysis to estimate the impact of the 
uncontrolled Ci,1 estimating limits for the maximum effect 
of Ci,

4,5 and calculating the E-value associated with Ci.6

The Strength of Confounding
The true magnitude of confounding for each Ci was 
directly estimated via analysis of the original dataset, in 
which all variables Ci are available. A series of hazard 
ratios were computed using Cox regression models for 
incident ER-positive breast cancer among women with 
high-level DBP exposure (≥10,000 mg) versus women 
unexposed to DBP: (1) The crude hazard ratio (HRcrude); 
(2) the hazard ratios with an added adjustment variable for 
each Ci alone (HRci;crude); (3) the hazard ratios with added 
adjustment variables for all confounders except Ci (ie, age 
and the remaining six DBP-contributing drug substances; 
(HRci;adjusted); (4) the hazard ratio with added adjustment 
variables for age and all seven DBP-contributing drug 
substances (HRadjusted). The magnitude of confounding 
was estimated by the relative risk due to confounding, 
which was calculated using two methods. First, to estimate 
the magnitude of bias due to confounding by Ci that is 
present in the crude model (B̂Ci;crude), we computed the 
ratio of HRcrude to HRci;crude. Second, we computed the 
ratio of HRci;adjusted to HRadjusted to estimate the magnitude 
of bias due to confounding by Ci that remains when all 
other confounders were adjusted (B̂Ci;adjusted).

Quantitative Bias Analysis
We performed a quantitative bias analysis to estimate the 
magnitude of bias due to each Ci when viewed as the 
“unmeasured” confounder.1 This process required specifi-
cation of the following bias parameters: the odds ratio for 
the association between the confounder and DBP exposure 
(ORCi;DBPÞ, the odds ratio for the association between the 
confounder and incident ER-positive breast cancer among 
those who were not exposed (ORCi;BrCa), and the preva-
lence of the confounder among those with neither expo-
sure nor disease (pi). This information is not readily 
available, as is typical in bias analyses of unmeasured 
confounders. We therefore sought suitable surrogate infor-
mation, as is standard practice.

The association between each DBP-contributing medi-
cation class and DBP exposure (ORCi;DBP) was estimated 
based on data from the United States National Health and 
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Nutrition Examination Survey (NHANES) program.18 The 
following NHANES files from 1999 to 2014 were used: 
Demographic Variables and Sample Weights, Prescription 
Medications, Phthalates – Urine, and Body Measures. Our 
analysis was restricted to the subset of female NHANES 
participants for whom urinary phthalate laboratory data 
were available. We followed published methods to esti-
mate exposure to DBP (in mg per kilogram per day) from 
the urinary concentrations of monobutyl phthalate (MBP), 
the main DBP metabolite, recorded in NHANES.19,20 This 
value was then converted into an estimate of annual DBP 
exposure and dichotomized into those with high-level 
annual DBP exposure (women with annual DBP exposure 
at or above the 99th percentile, emulating the proportion of 
women with high-level exposure achievement in Ahern 
et al7) versus those unexposed to DBP (women with 
annual DBP exposure below the threshold of assumed 
environmental exposure, calculated as the 90th percentile 
of exposure among women unexposed to any medication 
classes containing DBP21). Women with mid-level DBP 
exposure (ie, those with annual DBP exposure levels 
above the threshold for unexposure but below the thresh-
old for high-level exposure) were excluded from this ana-
lysis. Women were considered exposed to each medication 
class if they reported having taken the medication (identi-
fied based on the NHANES standardized generic prescrip-
tion medication names), accompanied by a prescription, in 
the month preceding the NHANES exam (and otherwise 
were considered to be unexposed). All medications of 
interest are available as both phthalate-containing and 
phthalate-free products (ie, a woman could be using 
a phthalate-free formulation of the medication of interest 
and therefore remain unexposed to DBP). Participants 
were able to report up to 23 medications. ORCi;DBP was 
calculated as the crude odds ratio for the association 
between each medication and high-level DBP exposure, 
using weighted frequencies produced from sampling 
weights provided by NHANES. For all medications with 
zero participants in any of the medication use and DBP 
exposure combinations, the odds ratio was calculated by 
pooling the data across all medications.

The association between each DBP-contributing med-
ication and incident ER-positive breast cancer among 
those who were not exposed to DBP (ORCi;BrCa) could 
not be directly estimated due to the lack of previous 
literature and available databases containing these vari-
ables. Instead, the primary medical indication for the 

drug, as determined by the ATC code therapeutic sub-
group, was used as a proxy for each medication. These 
primary indications were then matched to a comorbid 
disease category as described by Ording et al22 as fol-
lows: bisacodyl: other diseases of the digestive system; 
budesonide: Crohn’s disease and ulcerative colitis; diclo-
fenac: osteoporosis with and without fracture, rheumatoid 
arthritis and other inflammatory polyarthropathies; diclo-
fenac combinations: osteoporosis with and without frac-
ture, rheumatoid arthritis and other inflammatory 
polyarthropathies; lithium: schizophrenia, schizotypal, 
and delusional disorders; mesalamine: Crohn’s disease 
and ulcerative colitis; multi-enzyme: acute pancreatitis 
and other diseases of the pancreas. The corresponding 
odds ratio estimates for the associations between each 
comorbid disease category and incident breast cancer 
reported by Ording et al22 were used for ORCi;BrCa. For 
medications with more than one primary indication, 
inverse variance weighting was used to pool the appro-
priate odds ratio estimates.

The prevalence of each DBP-contributing medication 
(pi) was estimated via publicly available, aggregated 
Finnish drug consumption statistics from 2015 from the 
Fimea database.23 Although the equivalent Danish data 
are publicly available, to be consistent with the use of 
external sources for the other bias parameters we decided 
to estimate this parameter using data from another Nordic 
country. Drug consumption in defined daily doses per 
1,000 inhabitants per day, based on medicine sales 
(according to ATC codes) by drug wholesalers to phar-
macies and hospitals, was used to estimate the proportion 
of daily users in the population. It was not possible to 
stratify the drug consumption data based on DBP expo-
sure status or ER-positive breast cancer status (ie, to 
compute the prevalence of DBP-contributing medication 
among those unexposed and non-diseased). However, for 
the purposes of this exercise, we felt that the available 
overall prevalence value provided a sufficient bias para-
meter estimate.

Using these values for the bias parameters, the bias due 
to uncontrolled confounding by Ci was estimated accord-
ing to the following quantitative bias analysis (QBA) 
formula:1 bBCi;QBA= ORCi ;BrCaORCi ;DBPpiþ1� pi

ðORCi ;BrCapiþ1� piÞðORCi ;DBPpiþ1� piÞ
. It is 

worth noting that if pi =1 or pi=0, then B̂Ci;QBA=1, as 
there is no bias due to confounding by a particular variable 
when there is no variation in its value in a population.
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As a supplementary analysis, this bias estimate was 
used to calculate the bias-adjusted hazard ratio accounting 
for adjustment of the “unmeasured” confounder.

Bounds on the Strength of Confounding
The methods of Ding and VanderWeele were used to 
calculate the upper limits of the bias due to unmeasured 
confounding by Ci using the values of the bias parameters 
specified above according to the 
formula:4 B̂Ci �

ORCi ;DBPORCi ;BrCa

ORCi ;DBPþORCi ;BrCa� 1 .
The methods of Flanders and Khoury were used to 

calculate such limits as the minimum of the following 
factors:5 (1) ORCi;DBP; (2) ORCi;BrCa; (3) 1

pi
; (4) 

ORCi ;BrCa

1� piþORCi ;BrCapi
; (5) ORCi ;DBP

1� piþORCi ;DBPpi
.

The E-Value
The E-value was calculated for each Ci using the original 
dataset to assess the minimum strength of association that Ci 

would need to have with high-level DBP exposure and with 
incident ER-positive breast cancer to fully explain away the 
observed association, conditional on the other covariates and 
assuming no other source of unmeasured confounding. The 
formula in VanderWeele and Ding was used to compute the 
E-value (for an HR with a rare outcome), using HRci;adjusted as 
our observed HR when Ci is “unmeasured” as follows:6 

E � value ¼ HRci;adjusted

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

HRci;adjusted � HRci;adjusted � 1
� �q

This formula is derived from the Ding and VanderWeele 
upper bound by setting the bound on the bias equal to the 
observed effect and setting the two parameters, ORCi;BrCa 

and ORCi;DBP, equal to each other and solving for this 
combined effect (the E-value).4 For the purposes of this 
example, we assumed age and all of the DBP-contributing 
medications to be sufficient to control for confounding of 
the association between DBP and ER-positive breast can-
cer. Each E-value therefore corresponds to the impact of Ci 

alone, rather than the impact of a hypothetical set of 
unmeasured confounders.

Results
As previously described,7 the cohort consisted of 
1,122,042 women. In total, 20,180 cases of ER-positive 
breast cancer were diagnosed during 10,077,043 person- 
years of follow-up (cumulative incidence=2.00 cases per 
1,000 person-years).

The Strength of Confounding
The crude hazard ratio (HRcrude) for incident ER-positive 
breast cancer among women with high-level DBP expo-
sure (≥10,000 mg) versus women unexposed to DBP was 
1.85 (95% CI 1.02 to 3.34). Following adjustment only for 
Ci in isolation, the magnitude of the hazard ratio changed 
very little. The estimated bias due to confounding 
(B̂ci;crude) ranged from 0.94 to 1.00, indicating that little 
to no bias would be expected were any of the Ci unmea-
sured (see Table 1).

After adjusting for all confounders, the hazard ratio 
(HRadjusted) for incident ER-positive breast cancer among 
women with high-level DBP exposure versus women 
unexposed to DBP was 2.12 (95% CI 1.12 to 4.05). This 
differs from the estimate obtained in the original analysis 
(1.9, 95% CI 1.1 to 3.5) due to the omission of menopau-
sal status as a confounder in the present analysis. 
Removing each Ci in isolation resulted in negligible 
change of the hazard ratio. The estimated bias due to 
confounding (B̂ci;adjusted) ranged from 0.95 to 1.00, sug-
gesting the magnitude of bias due to unmeasured con-
founding by any of the Ci would have been small (see 
Table 1).

Quantitative Bias Analysis
The values of the bias parameters specified for each Ci are 
displayed in Table 1.

Of 82,091 studied NHANES participants, 21,003 had 
laboratory urinary phthalate data available. Of these partici-
pants, 10,660 were females. Cumulative annual DBP expo-
sure could not be estimated for 100 female participants due 
to missing information on body weight (n=99) or creatinine 
(n=1). Among females with an estimated cumulative annual 
DBP value, 105 were considered to be exposed to high-level 
DBP (1%) and 9,493 (90%) were considered unexposed to 
DBP. The remaining 962 women with mid-level DBP expo-
sure were excluded from analysis. Exposure to at least one 
of the DBP-contributing medications of interest was 
reported by 99 females. One female participant reported 
use of bisacodyl; 43 reported use of budesonide; 29 reported 
use of diclofenac; 5 reported use of diclofenac combination; 
15 reported use of lithium; 8 reported use of mesalamine; 
and 0 reported use of multi-enzymes. We were only able to 
directly calculate a crude odds ratio for the association 
between lithium and high-level DBP exposure 
(ORCi;DBP=3.63) and the association between mesalamine 
and high-level DBP exposure (ORCi;DBP=218.44). All other 

Clinical Epidemiology 2021:13                                                                                                      https://doi.org/10.2147/CLEP.S313613                                                                                                                                                                                                                       

DovePress                                                                                                                         
631

Dovepress                                                                                                                                                        Barberio et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


medications had no females who were both exposed to the 
medication and exposed to DBP; the ORCi;DBP for these 
medications was therefore calculated from the pooled data 
across all 7 medications (ORCi;DBP=4.63).

For estimating ORCi;BrCa, the DBP-contributing medi-
cations were matched to comorbid disease categories as 
a proxy. The corresponding odds ratio estimates for the 
associations between each comorbid disease category and 
incident breast cancer as reported by Ording et al22 are 
displayed in Table 1.

Using aggregated publicly available Finnish registry 
data on drug consumption in 2015, the overall prevalence 
of each Ci was calculated as displayed in Table 1.

Using these values for the bias parameters and the 
QBA method, the bias due to uncontrolled confounding 
by Ci (Bci;QBA) was estimated to range between 1.00 and 
1.01 for the DBP-contributing medications (see Table 1). 
The subsequent bias-adjusted hazard ratios accounting for 
adjustment of Ci are displayed in Supplementary Table 1.

Bounds on the Strength of Confounding
The upper limit of bias due to unmeasured confounding by 
each Ci, calculated using the specified bias parameters, 

was found to range from 1.01 to 1.32 according to the 
methods of Ding and VanderWeele4 and from 1.01 to 1.51 
according to the methods of Flanders and Khoury5 (see 
Table 1).

The E-Value
Using Cox regression models, which included all confoun-
ders except Ci (HRci;adjusted), we estimated that the mini-
mum association that the simulated unmeasured 
confounder Ci would need to have with both DBP expo-
sure and incident ER-positive breast cancer to explain 
away the full DBP-breast cancer association to range 
from 3.46 to 3.68 (see Table 1).

Discussion
In this applied example, we conducted analyses in which 
known, measured confounders were simulated as “unmea-
sured” and compared the magnitude of bias due to unmea-
sured confounding estimated from various bias models 
with the true value calculated from the study population. 
Removing each “unmeasured” DBP-contributing medica-
tion variable in isolation resulted in negligible changes in 
the HR of the association between DBP exposure and 

Table 1 Comparison of the Strength of Confounding of the Association Between Exposure to Dibutyl Phthalate (DBP) and Incident 
Estrogen Receptor (ER)-Positive Breast Cancer Due to Medications Contributing to DBP Exposure According to Various Bias Models. 
(Hazard Ratio Fully Adjusted for Age and All DBP-Contributing Medications: 2.12 [95% Confidence Interval 1.12 to 4.05])

Medication Exposures 
Contributing to DBP 
Exposure (Ci)a

The True Strength 
of Confounding by 
Ci

Quantitative Bias Analysis for the 
“Unmeasured” Confounder Ci

b

Upper Bounds on the 
Strength of Confounding 
Due to the 
“Unmeasured” Ci

The 
E-valuec

B̂ci ;crude
d B̂ci ;adjusted

e ORCi ;DBP
f ORCi ;BrCa

g pi
h Bci ;QBA

i Ding and 
VanderWeelej

Flanders 
and 
Khouryk

Bisacodyl 1.00 1.00 4.63 1.08 0.0012 1.00 1.06 1.08 3.68
Budesonide 1.00 1.00 4.63 1.01 0.0002 1.00 1.01 1.01 3.68

Diclofenac 1.00 1.00 4.63 1.14 0.0043 1.00 1.11 1.14 3.66

Diclofenac, combinations 1.00 1.00 4.63 1.14 0.0001 1.00 1.11 1.14 3.67
Lithium 0.97 0.95 3.63 1.51 0.0010 1.00 1.32 1.51 3.46

Mesalamine 0.94 0.96 218.44 1.01 0.0061 1.01 1.01 1.01 3.50

Multi-enzyme 1.00 1.00 4.63 1.05 0.0008 1.00 1.04 1.05 3.65

Notes: aDichotomous. Classified on the basis of the fifth level of the ATC code; bLash TL, Fink AK, Fox MP. Unmeasured and unknown confounders. In: Applying 
Quantitative Bias Analysis to Epidemiologic Data. Springer; 2009:59–78.; cVanderWeele TJ, Ding P. Sensitivity analysis in observational research: introducing the E-value. Ann 
Intern Med. 2017;167(4):268–274; dThe estimated magnitude of bias due to confounding by Ci that is present in the crude model, computed as the ratio of the crude hazard 
ratio to the hazard ratios adjusted only for each Ci in isolation; eThe estimated magnitude of bias due to confounding by Ci that is present in the crude model, computed as 
the ratio of the hazard ratios adjusted for age and the remaining six DBP-contributing drug substances to the hazard ratio fully adjusted for age and all seven DBP- 
contributing drug substance; fThe estimated odds ratio for the association between the confounder Ci and DBP exposure. Based on the United States National Health and 
Nutrition Examination Survey; gThe estimated odds ratio for the association between the confounder Ci and incidence ER-positive breast cancer. Based on literature; hThe 
estimated prevalence of the confounder Ci. Based on Finnish statistics; iThe estimated magnitude of bias due to confounding by Ci, estimated using the quantitative bias 
analysis (QBA) method; jDing P, VanderWeele TJ. Sensitivity Analysis Without Assumptions. Epidemiology. 2016;27(3):368–377; kFlanders WD, Khoury MJ. Indirect 
assessment of confounding: graphic description and limits on effect of adjusting for covariates. Epidemiology. 1990;1(3):239–246.
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incident ER-positive breast cancer (ie, relative bias due to 
confounding ranged from 0.95 to 1.00). We believe this 
was partially due to a lack of independence between the 
unmeasured variable and the other controlled variables. 
Additionally, it is also important to note that there is no 
strong evidence that links the DBP-contributing medica-
tions or their indications to incidence of breast cancer, 
therefore these variables are not expected to be strong 
confounders of the association between DBP exposure 
and incident ER-positive breast cancer. Comparing the 
HR adjusted only for age (1.94, 95% CI 1.07 to 3.50) to 
the HR for adjusted for age plus all DBP-contributing 
medications (2.12, 95% CI 1.12 to 4.05), the relative bias 
due to this set of confounders is estimated to be only 0.91.

Bias parameters, specified based on external informa-
tion, were used to conduct a quantitative bias analysis and 
to bound the magnitude of bias due to the “unmeasured” 
confounder. The relative bias due to uncontrolled con-
founding based on the quantitative bias analysis was esti-
mated to be near null (ie, ranged from 1.00 to 1.01), which 
accurately represents our conclusions based on the data 
from the study population. These bias estimates did not 
appear to overestimate the true magnitude of the bias as 
was expected, which is likely attributable to the low pre-
valence of the “unmeasured” variables (ie, all DBP-con-
tributing medications had an estimated prevalence of less 
than 0.5%).

The estimated maximum impact of bias due to unmea-
sured confounding ranged from 1.01 to 1.32 according to 
methods of Ding and VanderWeele4 and from 1.01 to 1.51 
according to methods of Flanders and Khoury.5 These 
estimated bounds, which are quite similar, suggest the 
impact of bias due to confounding by the “unmeasured” 
variable to be small. While these values do provide an 
overestimate of the magnitude of the bias, they are meant 
to serve as an indication of the maximum relative bias and 
therefore this is expected. Overall, the conclusions from 
these bounds are aligned with the reference values from 
the study population.

Finally, the computed E-values (for HRs with a rare 
outcome) indicated that the strength of association 
between an “unmeasured” confounder and DBP, and with 
incident ER-positive breast cancer, would need to be in the 
range of 3.46 to 3.68 or larger to explain away the 
observed DBP-breast cancer associations. It is apparent 
that these large E-values, in contrast with the near-null 
estimates of confounding bias from the quantitative bias 
analysis and the bounding factors, are uninformative 

regarding the actual relative bias due to uncontrolled con-
founding observed in this example. This is due, impor-
tantly, to the different purpose served by the E-values as 
compared to the quantitative bias analysis and bounding 
factors. While the quantitative bias analysis and bounding 
techniques used in this example estimate the magnitude of 
the bias by making assumptions about the strength of 
association between the confounder and exposure and the 
confounder and outcome, the E-value instead focuses on 
the strength of the unmeasured confounder necessary to 
reduce the observed association to the null (assuming the 
confounder has the same association with the exposure and 
outcome). That is, the relatively large E-values in this 
example only indicate that if the confounder had the 
same effect on the exposure and the outcome, this shared 
magnitude of association would have to be relatively large 
to completely explain away the observed association. It 
does not tell us how the observed association would 
change if the confounder had a different magnitude of 
effect for the exposure and outcome, or if the shared effect 
were less than the E-value. Both of these are likely true in 
this example, and the quantitative bias analysis approach 
we implemented directly answers this question: the con-
founder adjusted effect would not differ much from the 
unadjusted effect.

Overall, in this applied example, we observed the esti-
mated bias due to unmeasured confounding from the quan-
titative bias analysis and bounding techniques to be the 
most informative regarding the true magnitude of the near- 
null bias. The large E-values, however, were not particu-
larly useful. There are extreme assumptions behind the 
E-value that diminish its utility in this example. The 
E-value assumes the effect of the confounder on the expo-
sure (cORCi;DBPÞ and the effect of the confounder on the 

outcome (cORCi;BrCaÞ to be equal. In this example, however, 
these confounder associations were very different: the 

values estimated for cORCi;BrCa ranged between 1.01 and 

1.51 while the values estimates for cORCi;DBP ranged 
between 3.32 and 218.44. Additionally, the E-value does 
not require specification of the prevalence of the unmea-
sured confounders; instead, the bound is obtained by 
assuming a worst case scenario. Namely, that the preva-
lence of the confounder among the exposed could be as 
high as 100%. A confounder with a prevalence this high is 
typically implausible. In this example, we estimated the 
prevalence of the unmeasured confounders to all be less 
than 0.5%. Were such a low prevalence used, we would 
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find that an even more extreme confounder (with a larger 
shared confounder-exposure and confounder-disease asso-
ciation) would be required to reduce the observe effect to 
the null.

There are several strengths of our approach. First, our 
use of several techniques for quantifying the impact of 
bias due to an unmeasured confounder allowed for 
a side-by-side comparison of the results. Furthermore, 
through use of a data source in which information on the 
“unmeasured” variables was available, we were able to 
calculate the strength of confounding directly by compar-
ing HRs before and after exclusion of the “unmeasured” 
variable from the regression. This approach facilitated 
a comparison of results from various techniques for quan-
tifying the impact of bias due to an unmeasured confoun-
der to a reference value of the true strength of 
confounding.

Our approach, however, is not without limitations. The 
use of external information for the bias parameters may 
have produced imperfect bias-adjusted estimates. Despite 
having information available on each of these bias para-
meters in the study population, we chose to treat this exer-
cise as authentically as possible and therefore presumed that 
data on each “unmeasured” variable was unavailable in our 
data source. We sought external sources that provided the 
best estimates of these bias parameters, but some of our bias 
parameters (eg, the use of primary medical indication as 
a proxy for the DBP-contributing drugs) may be inaccurate. 
This highlights the nuances of the quantitative bias analysis 
approach. Additionally, while we observed negligible 
impact of bias due to unmeasured confounding, this may 
be attributable to either the low prevalence of the “unmea-
sured” variables or the modest associations of the “unmea-
sured” variable with ER-positive breast cancer. 
Furthermore, it is important to note that, while our analyses 
have addressed unmeasured confounding due to DBP-con-
tributing substances, there may still remain unmeasured 
confounding in the association between DBP and ER-posi-
tive breast cancer due to other unmeasured variables (eg, 
socioeconomic status, comorbidities, medication use his-
tory). We made a simplifying assumption for the purposes 
of this analysis that age and the DBP-contributing sub-
stances were sufficient to control for confounding, thus 
lending meaningful interpretation of the E-value as 
a measure of the impact of each individual unmeasured 
confounder. In the situation where additional unmeasured 
confounders exist, however, the E-value would instead be 
capturing the impact of the set of unmeasured confounders. 

Next, we estimated the true strength of confounding, which 
served as a reference point for the estimates obtained from 
the bias models, by removing each DBP-contributing med-
ication from the Cox regression models in isolation and 
estimating the HRs in the presence of this “unmeasured” 
confounding. These estimates therefore depend on the cor-
rect classification and specification of the DBP-contributing 
medications, the failure of which may have resulted in 
residual confounding. Finally, our analyses are the result 
of analyzing one specific dataset and while the results are 
instructive, in other datasets with alternative correlation 
structures results would be expected to differ.

Conclusion
Overall, in this example, the true impact of bias due to 
unmeasured confounding as estimated using the study popu-
lation was negligible. This was accurately reflected by the 
results of the quantitative bias analysis1 and the bounds on 
the maximum strength of confounding according to Ding 
and VanderWeele4 and Flanders and Khoury.5 The E-values 
were far less informative about the practical implication of 
uncontrolled confounding. The computation of the E-value 
only required input of the observed HRs, whereas the other 
methods used external information specific to the unmea-
sured confounder of interest. It appears that the addition of 
such external information, despite being imperfectly esti-
mated, allowed us to more successfully estimate the near- 
null impact of the uncontrolled confounders. This suggests 
that when an investigator recognizes the identity of an 
unmeasured confounder and wants to quantify its potential 
impact on the observed association, it is beneficial to go 
through the quantitative bias analysis process and estimate 
the nature of the unmeasured confounder rather than making 
no assumptions about the confounder and calculating the 
E-value. We suggest that when knowledge about a potential 
unmeasured confounder is available, quantitative bias ana-
lysis is the most informative technique to investigate the 
impact from an uncontrolled confounder. E-values may 
best be reserved for situations in which the identity of an 
unmeasured confounder is truly unknown.
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