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enhancement of gene expression 
noise from transcription factor 
binding to genomic decoy sites
Supravat Dey1 ✉, Mohammad Soltani1 & Abhyudai Singh1,2,3,4 ✉

The genome contains several high-affinity non-functional binding sites for transcription factors (TFs) 
creating a hidden and unexplored layer of gene regulation. We investigate the role of such “decoy sites” 
in controlling noise (random fluctuations) in the level of a TF that is synthesized in stochastic bursts. 
prior studies have assumed that decoy-bound tfs are protected from degradation, and in this case 
decoys function to buffer noise. Relaxing this assumption to consider arbitrary degradation rates for 
both bound/unbound TF states, we find rich noise behaviors. For low-affinity decoys, noise in the level 
of unbound tf always monotonically decreases to the poisson limit with increasing decoy numbers. 
In contrast, for high-affinity decoys, noise levels first increase with increasing decoy numbers, before 
decreasing back to the poisson limit. interestingly, while protection of bound tfs from degradation 
slows the time-scale of fluctuations in the unbound TF levels, the decay of bound TFs leads to faster 
fluctuations and smaller noise propagation to downstream target proteins. In summary, our analysis 
reveals stochastic dynamics emerging from nonspecific binding of TFs and highlights the dual role of 
decoys as attenuators or amplifiers of gene expression noise depending on their binding affinity and 
stability of the bound tf.

The level of a gene product can show remarkable cell-to-cell differences within an isogenic cell population 
exposed to the same external environment1–9. This intercellular variation has been referred to as gene expression 
noise and is attributed to biochemical processes operating with low-copy number components, such as the num-
ber of the promoter, mRNA, and protein for a given gene. The noise in expression critically impacts the function-
ing of diverse cellular processes in both beneficial and detrimental ways. For example, on one hand the noise is 
detrimental for developing embryos7,10,11, organismal fitness12 and has been connected to disease phenotypes13,14. 
On the other hand, noisy expression drives phenotypic heterogeneity between otherwise genetically-identical 
cells, allowing them to hedge their bets against environmental uncertainties5,8,15–24. While there has been con-
siderable work uncovering the role of transcription/translation processes together with molecular feedbacks in 
driving expression noise25–28, how nonspecific binding of a protein shapes this noise remains poorly understood.

A fundamental step in gene regulation is the binding of a transcription factor (TF) to its target promoter29–31. 
Besides this specific binding, TFs also bind to other non-functional high-affinity sites spread across the genome. 
These spurious binding sites, known as transcription factor decoys, can be present in different abundances with 
various binding affinities32–35. The regularity role of decoys through molecular sequestration of TFs has been 
experimentally demonstrated via synthetic circuits in Escherichia coli36 and Saccharomyces cerevisiae37, and not 
surprisingly, the TF-inhibiting activity of decoys has tremendous therapeutic potential38–41. An immediate conse-
quence of TF sequestration by decoys is the modulation of TF’s stability. Depending on the context, decoy binding 
can either enhance or reduce the stability of the TFs42. For certain TFs, such as MyoD, the DNA binding provide 
increased stability against degradation43,44. On the other hand, for VP16 in Saccharomyces cerevisiae, the bound 
TFs become more prone to degradation by the ubiquitin-mediated proteolysis45. A key focus of this work is to 
investigate how the relative stability of bound vs. unbound TF affects both the extent and time-scale of fluctua-
tions in the level of a given TF.

Prior theoretical work on this topic has highlighted the role of decoys as noise buffers, in the sense that, 
the presence of decoys attenuates random fluctuations in number of freely (unbound) available copies of the 
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TF42,46–55. However, these results are based on the assumption that sequestration of TF at a decoy site protects the 
TF from degradation. Relaxing this assumption to consider an arbitrary decay rate of the bound TF, we uncover 
a novel role of decoys as both noise amplifiers and buffers. We systematically characterize the parameter regimes 
leading to these contrasting roles in terms of the bound vs. free-TF stability, number and affinity of decoy sites. 
Finally, we study noise transmission from the TF to a downstream target protein reporting counterintuitive effects 
in some cases, for example, decoys amplify noise in the level of a TF but reduces noise in the level of the TF’s 
downstream target protein.

Results
Model formulation. To study the role of decoy binding sites, we consider a TF that is synthesized in sto-
chastic bursts (Fig. 1). Such bursty expression of gene products has been experimentally observed in diverse cell 
types56–63, and corresponds to distinct mechanisms at the transcriptional and translation level. For example, a pro-
moter randomly switches from a transcriptionally inactive to an active state, and quickly turns off after producing 
a bursts of mRNAs59,64–66. Moreover, assuming short-lived mRNAs, each synthesized mRNA is rapidly degraded 
after translating a burst of proteins67–69. We phenomenologically model the combined effect of transcriptional and 
translational bursts by considering a Poisson arrival of burst events with rate kx, and each event creates Bx mole-
cules, where Bx is an independent and identically distributed non-negative random variable following an arbitrary 
distribution70–75. More specifically, Bx = i with probability αx(i) where i ∈ {0, 1, 2, …}. We consider a general form 
for the burst size distribution αx(i) throughout the paper, except for plotting and simulation purposes where αx(i) 
follows a geometrical distribution69,76–78.

Consider N decoy binding sites in the genome, with the TF binding/unbinding to each decoy site with rates 
are kb and ku, respectively. As motivated earlier, we allow for both the free (unbound) and bound TF to decay with 
rates γf and γb, respectively. Let xf(t) denote the number of free TF molecules, and xb(t) the number of bound 
TFs at time t inside a single cell. Then, the stochastic evolution of xf(t) and xb(t) is governed by the following 
probabilities

α+ = + =x t dt x t i k i dtTF synthesis: Probability{ ( ) ( ) } ( ) , (1a)f f x x

+ = − + = +

= −

x t dt x t x t dt x t
k x t N x t dt

TF binding: Probability{ ( ) ( ) 1, ( ) ( ) 1}
( )( ( )) , (1b)

f f b b

b f b

+ = + + = − =x t dt x t x t dt x t k x t dtTF unbinding: Probability{ ( ) ( ) 1, ( ) ( ) 1} ( ) , (1c)f f b b u b

γ+ = − =x t dt x t x t dtFree TF degradation: Probability{ ( ) ( ) 1} ( ) , (1d)f f f f

γ+ = − = .x t dt x t x t dtBound TF degradation: Probability{ ( ) ( ) 1} ( ) (1e)b b b b

Each equation here defines a stochastic event that occurs with a certain probability in the small time interval 
(t, t + dt], and whenever the event occurs, the population counts change by discrete integer amounts. Based on 
the underlying stochastic chemical kinetics, these occurrence probabilities are either independent (as in 1a), or 
linearly/nonlinearly dependent on the molecular counts. For readers convenience, we provide a list of model 
parameters along with their description in Table 1. Expressing γb in terms of γf as γb = βγf, β = 0 corresponds to 
no decay of bound TF, and β = 1 corresponds to equal degradation rates for both the free and bound TF. The key 
focus of this work is to understand the stochastic dynamics of xf(t) in different regimes of β.

Figure 1. Model schematic for investigating the impact of nonspecific transcription factor binding on 
expression noise. A genome with several decoy binding sites where transcription factors (TFs) bind reversibly, 
is depicted. The synthesis of TFs occurs in stochastic bursts. Both the free and bound TFs are subject to 
degradation. The free TFs activate a target gene and regulate its bursty protein synthesis.
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Based on the above discrete-state continuous-time Markov model, one can write a corresponding Chemical 
Master Equation (CME) that provides the time evolution of the joint probability density function p(xf, xb, t), for 
observing xf free TF, and xb bound TF molecules at time t79,80
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As the CME is analytically intractable, it is typically solved numerically through either the Finite State 
Projection algorithm81–83 or various Monte Carlo simulation techniques84–88. Taking an alternative approach, we 
focus on the statistical moments of the molecular counts and use the well-known Linear Noise Approximation89–94 
to obtain closed-form formulas for the mean and noise levels.

In addition to the LNA, we assume that the binding/unbinding reactions are very fast compared to protein 
synthesis and degradations. This fast binding/unbinding limit, which is also known as quasi-static equilibrium 
or adiabatic limit, is common in the gene expression modelling29,95,96 and is supported by recent experiments97. 
This assumption simplifies our calculations to obtain the analytical expression for the Fano factors. As this limit 
implies negligible fluctuations due to binding kinetics, one may expect relaxing this limit can give rise to more 
variation in gene expression95,97. We have numerically verified that for our system, the qualitative behavior of 
results does not depend on this limit (see Fig. S1).

noise in free tf counts in the absence of decoy sites. When there are no decoys (N = 0), the moments 
of the free TF count can be solved exactly from the CME. In particular, the steady-state mean level xf ,0 , and the 
Fano factor Fx ,0f

 (variance/mean) of xf(t) are given by26,98,
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respectively, where 〈Bx〉 and Bx
2  are the first and second-order moments of the burst size Bx. Throughout the 

paper we use angular brackets  to denote the expected value operation, and  to represent the steady-state 
expected value. Note that the Fano factor is completely determined by the burst size distribution and is independ-
ent of the burst arrival rate and the protein decay rate. As expected, we recover the Poisson limit ( =F 1x ,0f

) for 
non-bursty production Bx = 1 with probability one, and noise is super-Poissonian ( >F 1x ,0f

) for bursty produc-
tion. In the special case where Bx follows a geometric distribution

α = − ∈ ...−i B B i( ) (1 1/ ) / for {1, 2, 3, }, (4)x x
i

x
1

the steady-state Fano factor = 〈 〉F Bx x,0f
 is equal to the mean burst size.

Bound tf’s degradation titrates the regulating activity of tf. In the presence of decoy (N > 0), exact 
solutions to the mean and noise levels are unavailable, and one has to resort to approximation techniques. Recall 
from (1), that the probability of the TF binding event is nonlinearly related to the molecular counts via the prod-
uct term xf(t)xb(t). This nonlinearity results in unclosed moment dynamics – the time evolution of lower-order 
moments depends on higher-order moments99,100. For example, the dynamics of the means 〈xf〉, 〈xb〉 depends on 
the second order moment 〈xfxb〉 (see SI, section 1). Typically approximate closure schemes are employed to solve 
for moments in such cases101–111. Here, we use the Linear Noise Approximation (LNA) method, where assuming 
small fluctuations in xf(t) and xb(t) around their respective mean values 〈xf〉 and 〈xb〉, the nonlinear term is lin-
earized as kbxfxb ≈ kb(xf〈xb〉 + 〈xf〉xb − 〈xb〉〈xf〉). Exploiting this linearization, the probability of all events in (1) 
become linear with respect to the molecular counts, resulting in closed moment dynamics (see SI, section 1). A 

Parameter Description Parameter Description

xf Free TF count xb Bound TF count

N Total decoy binding sites kx TF burst frequency

kb TF binding rate ku TF unbinding rate

γb Bound TF degradation rate γf Free TF degradation rate

β γb/γf kd Dissociation constant (ku/kb)

y Target protein count kyxf Target protein burst frequency

γy Target protein degradation rate αx (αy) Burst size distribution of X(Y)

( )B Bx y Average burst size for X (Y) ( )B Bx y
2 2 Second moment of burst size distribution for X (Y)

Table 1. Summary of notation used.
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direct result of using the LNA is that the time evolution of the means is identical to the deterministic chemical 
rate equations

γ
〈 〉
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dt
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Solving the above equations at steady state, and further considering fast binding/unbinding rates (kb → ∞, 
ku → ∞) for a given dissociation constant kd = ku/kb, yields the following mean levels for the unbound and bound 
TF
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respectively. Here, 〈 〉xf ,0  given by (3) is the mean TF count in the absence of decoy sites. When bound TFs are 
protected from degradation β = 0, the mean free TF count x x k B /f f x x f,0 γ〈 〉 = 〈 〉 = 〈 〉  becomes independent of 
decoy numbers42,52. In contrast, with bound TF degradation β > 0, the mean free TF count monotonically 
decreases with increasing decoy numbers, with the decrease being faster for stronger binding affinity (or lower 
dissociation constant). This point is exemplified in Fig. 2(A) where we plot 〈 〉xf  as a function of N for different 
dissociation constants. In the limit of a small number of decoys, (6) can be approximated as

β〈 〉 ≈ 〈 〉 −
〈 〉

〈 〉 +
x x

x
x k
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f

f d
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and the rate of decrease of 〈 〉xf  with increasing N is inversely proportional to kd. In the limit of large N and β > 0,

β
≈x

k x

N
,

(8)f
d f ,0

exhibiting a 1/N scaling of mean free TF levels with decoy abundance. Both these limits emphasize the point that 
when β > 0, increasing decoy numbers titrate away the TF, leading to reduced levels of the free TF. These results 
are consistent with experimental data in Saccharomyces cerevisiae showing reduced activity of the TF as a result 
of decoy binding37.

Figure 2. Degradation of bound TFs reduces the mean and drives non-monotonicity in the free TF noise level: 
The mean and the Fano factor for free TF counts are plotted against the total decoy binding sites N for different 
values of the dissociation constant (kd = 1, kd = 10 and kd = 100). Lines are plotted using the analytical formulas 
(6) and (9), and the results with symbols are obtained from stochastic simulations using Gillespie algorithm 
[112]. (A) When bound TFs are protected from degradation, the mean becomes independent of N and kd. In 
the presence of bound TF degradation (results are shown for β = 1), the mean free TF count decreases with N. 
This decay becomes faster for larger binding strengths. (B) If bound TFs are protected from the degradation, 
the Fano factor decreases monotonically with N, suggesting decoys role as a noise buffer. (C) For intermediate 
values of decoy sites, a large noise enhancement can be seen in the presence of bound TF degradation. This 
noise amplification becomes larger for smaller values of kd. The Fano factors for both cases (B,C) approach to 
the Poissonian limit (Fano factor = 1) for large N. The parameters used for this figure: 〈Bx〉 = 20, kx = 10 hr−1, 
and γf = 1.0 hr−1 per protein molecule. For simulations, kb = 50 hr−1 per pair of molecules.
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Bound tf’s degradation enhances noise in the free tf count. Next, LNA is used to derive Fx f
, the 

steady-state Fano factor of the free TF level in the presence of decoys. Assuming fast binding and unbinding of 
TFs to decoy sites (kb → ∞, ku → ∞, fixed kd = ku/kb) we obtain (see SI, section 1 for details)

F
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Here, Fx ,0f
 is the Fano factor in the absence of decoy binding sites (3), and f is the fraction of bound decoys. As 

expected, in the limit of no decoys (N → 0) or weakly binding decoys (kd → ∞), →F Fx x ,0f f
.

When bound TFs are protected from degradation (β = 0), then x xf f ,0〈 〉 = 〈 〉 and the fraction of bound decoy 
f becomes independent of N. In this scenario, (9) simplifies to
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As f is independent of N, it is clear from (10) that Fx f
 monotonically decreases from Fx ,0f

 to 1 with increasing 
N (Fig. 2(B)). Thus, when the bound TFs are protected from degradation, the decoy sites function as a noise buffer 
with <F Fx x ,0f f

52.
An interesting finding that emerges form (9) is that when β > 0, Fx f

 can vary non-monotonically with N. This 
point is illustrated in Fig. 2(C), where we plot Fx f

 as a function of decoy abundance for β = 1. While Fx f
 monoton-

ically decreases to 1 for weak binding affinities (similar to the case of β = 0), for strong binding affinities Fx f
 first 

increases with increasing N to reach a maxima, before decreasing back to the Poisson limit for large N. In essence, 
with degradation of bound TFs, decoys can function as a noise amplifier ( >F Fx x ,0f f

). Checking the sign of the 
derivative >dF dN/ 0x f

 in the limit N → 0 leads to an analytical condition for noise enhancement – if the dissoci-
ation constant is below a critical threshold
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then the Fano factor will increase starting from Fx ,0f
 as decoy sites are introduced. For 

F 1x ,0f
, the threshold 

value simplifies to β= 〈 〉k xd
th

f ,0 , independent of Fx ,0f
. It turns out that this condition for noise enhancement 

implies that the fraction of bound decoys β> +f 1/(1 ) when a small number of decoys are present. In spite of the 
noise amplification, it is important to point out that →F 1x f

 as N → ∞ irrespective of the value of β. Thus, 
strongly-binding decoys that function as a noise amplifier for small N, become a noise buffer for large N.

Overall these results suggest that decoys buffer noise in a variety of scenarios: β = 0 (irrespective of N and 
kd), or for a large number of decoys (irrespective of β and kd) or if decoys have sufficiently weak binding affinities 
(irrespective of β and N). In contrast, decoys function as a noise amplifier when β > 0 provided two other con-
ditions hold – decoys have sufficiently strong binding affinities as per (11) and are not present in large numbers.

To check the validity of the linearization and fast binding/unbinding approximations, we perform kinetic 
Monte Carlo simulations using the Gillespie algorithm112 to obtain numerically exact results. In Fig. 2, along 
with the analytical results (lines) we also plot the simulation results (symbols). The match between analytical and 
simulations results are quite well, especially for large and intermediate kd values. For small kd values with β ≠ 0, 
there is a clear deviation from the analytical results. In this regime, being fluctuations very large, the linearization 
approximation based on absence of large fluctuations may not be justified. However, as can be seen, the qualitative 
features do not depend on these approximations.

As illustrated in Fig. 2(A), bound TFs degradation reduces the number of available TFs with increasing decoy 
abundance. This naturally leads to the question: is the noise behavior reported in Fig. 2(C) also seen when the 
mean free TF count is held constant at given desired level? In Fig. 3, we plot the noise as a function N and kd for a 
given mean free TF count 〈 〉xf  by simultaneously enhancing the production rate kx as per (6). Our results show 
similar qualitative behaviors with decoys functioning as a noise buffer for β = 0 (Fig. 3(C)), becoming a noise 
amplifier when β = 1 for sufficiently small N and kd (Fig. 3(B)). Interestingly, the region of noise amplification is 
greatly enhanced when bound TFs become more unstable compared to their free counterparts (Fig. 3(A)).
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noise in free tf counts in a mixture of strong and weak decoy binding sites. Inside cells, TFs bind 
to various decoy sites with different affinities33. How do fluctuations in the TF count gets affected by a mixture of 
nonidentical decoys? To address this question, we study a system two decoy types D1 and D2 that are present in 
numbers N1 and N2, respectively. We assume that each free TF molecule can bind to both decoy types with the 
same (diffusion-limited) rate kb, but unbinds with different rates ku1 and ku2, respectively, leading to two different 
dissociation constants kd1 = ku1/kb and kd2 = ku2/kb. As before, TFs are synthesized in random bursts, the free 
and bound TFs decay with rates γf and γb (the decay rates of TFs bound to D1 and D2 are assumed to be equal). 
Together with (1a) and (1d), the stochastic model is now governed by the following probabilities representing 
jumps in the population counts in the infinitesimal time interval (t, t + dt]

x t dt

x t x t dt

x t

k x t N x t dt
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Figure 3. Decreasing stability of bound TFs expands the parameter space for decoy-mediated noise 
enhancement. The normalized Fano factors (F F/x x ,0f f

) for different degradation rates of bound TFs are plotted as 
a function of decoy numbers (N) and the dissociation constant (kd), for a constant mean free TF count. The 
color box represents the scale for the normalized Fano factor, and its value larger than one implies noise 
enhancement. For smaller values of kd and N, the decoy acts as a noise amplifier when bound TFs are unstable. 
The region of noise enhancement (demarcated by a dashed line representing =F Fx x ,0f f

) increases with 

increasing degradation rate of bound TFs. Parameters used: x 20f〈 〉 =  molecules, 〈Bx〉 = 20, and γf = 1 hr−1 per 
protein molecule. These plots are generated by using (9). While to keep xf〈 〉 constant, we change xf ,0〈 〉 
accordingly by varying kx and obeying (6).
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γ− + = − =x t dt x t x t dtD1 bound TF degradation: Probability{ ( ) ( ) 1} ( ) , (12e)b b b b1 1 1

γ− + = − = .x t dt x t x t dtD2 bound TF degradation: Probability{ ( ) ( ) 1} ( ) (12f)b b b b2 2 2

Here xb1 and xb2 denote the number TFs bound to decoys D1 and D2, respectively. We apply the linear noise 
approximation to obtain time evolution of statistical moments (presented in the SI, section 2), and solve the 
resulting moment equations at the steady to compute the Fano factor numerically as the analytical formula for the 
noise level becomes quite involved.

Noise in the free TF counts is investigated in two complementary ways. In Fig. 4A, we fix the number of decoys 
D1 and their binding affinity such that D1 itself functions as a noise amplifier. The noise in the free TF counts is 
then plotted as a function of the number of decoys D2 and its binding affinity. Recall that the dashed line repre-
sents =F Fx x ,0f f

, i.e., the noise with decoys is the same as the noise in the absence of decoys. Having a large num-
ber of decoys D2 makes the overall decoy mixture a noise buffer, with the dashed line showing how large of a pool 
N2 is needed as a function of kd2. In Fig. 4B we fix the binding affinity of both decoys and plot the noise level as a 
function of decoys abundances. Here the noise enhancement is only observed when both decoys are present at 
small numbers, and the decoy mixture is a noise buffer even if one of the decoys is present in sufficiently large 
numbers. It is interesting to note that in Fig. 4B, D1 by itself is a noise amplifier (gray line intersection with the 
x-axis), D2 by itself is a noise buffer (gray line intersection with the y-axis), but their combined presence (star on 
the dashed line) mitigates each other’s effect, and the noise level is similar to when there were no decoys.

Quantifying noise propagation from tf to downstream target proteins. Having quantified the 
magnitude of fluctuations in the free TFs counts, we next focus our attention on the time-scale of fluctuations. 
Given that the available TF pool activates downstream target proteins, the time scale at which fluctuations relax 
back to mean levels is key in understanding downstream noise propagation113,114. For example, for a given noise 
level, more prolonged fluctuations in the free TF counts will lead to higher noise in the expression of the target 
protein.

The time-scale of fluctuations is characterized using the autocorrelation function defined as,

τ
τ

=
〈 + 〉 − 〈 〉

〈 〉 − 〈 〉
R

x t x t x

x x
( )

( ) ( )
,

(13)

f f f

f f

2

2 2

where time t is sufficiently large for the system to reach the steady-state. In the absence of any decoy binding 
sites, the decay in the autocorrelation function is given by exp(−γfτ)52. Note that this function only depends on 
the decay rate and independent of bursting parameters. Thus, the magnitude and time-scale of fluctuations can 
be independently tuned using (3) and (13) via the burst size and the decay rate. In the presence of decoy binding 
sites, we compute R(τ) numerically from stochastic realizations of xf(t) obtained via kinetic Monte Carlo simula-
tions112. Figure 5 plots the decay of R(τ) as a function of lag-time τ, in the absence and presence of bound TF deg-
radation. When the bound TFs are protected from degradations, the autocorrelation function shifts to the right 
leading to slower and more prolonged fluctuations in the free TF count. In contrast, when bound TFs are unsta-
ble, R(τ) shifts to the left, resulting in faster fluctuations, and the shift is more pronounced for larger values of β.

To understand how fluctuations in the free TF propagate downstream, we consider a case where the stochastic 
synthesis of target protein Y is activated by available TFs (see Fig. 1). Instead of incorporating the direct binding 

Figure 4. Noise-buffering decoys can mitigate the effects of noise-amplifying decoys. (A) The density plots of 
normalized Fano factor against N2 and kd2 for N1 = 200 and kd1 = 1. (B) The normalized Fano factor against N1 
and N2 for kd1 = 1 and kd2 = 100. The noise enhancement region is separated from noise buffer region with 
dashed lines (correspond to =F F/ 1x x ,0f f

). While individual decoy types act oppositely on free TF noise, 
presence of both can cancel this effect and maintain the same noise level as in the absence of any decoys. The 
point marked by the star is such a representative point. Parameter used: 〈Bx〉 = 20, γf = γb = 1 hr−1 per molecule, 
kx = 10 hr−1, and kb = 1000 hr−1.
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of TFs to the promoter of the target gene, we model the activation via a linear dose-response by the TF — the 
synthesis rate of Y is proportional to the number of available TF. We note that this linearity assumption is more 
appropriate when the binding affinity of TFs to the target gene is relatively small. This limit provides a theoret-
ical understanding of noise propagation in the target protein as the mathematical formula for the noise can be 
derived.

The target protein is assumed to be produced in bursts By with an arbitrary burst size distribution

α= =B i iProbability{ } ( ), (14)y y

and burst frequency xfky that increases linearly with the free TF count. The probabilistic events governing the 
production and decay of target proteins are given by

α+ = + =y t dt y t i k x i dtProbability{ ( ) ( ) } ( ) , (15a)y f y

γ+ = − =y t dt y t y t dtProbability{ ( ) ( ) 1} ( ) , (15b)y

where y(t) is the population count of protein Y at time t. Applying LNA to the stochastic model (1) and (15) yields 
the following expression for the steady-state Fano factor of y(t) in the limit of fast binding/unbinding (kb → ∞, 
ku → ∞ with kd = ku/kb being finite),

γ

β γ β γ
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where γ〈 〉 = 〈 〉 〈 〉y x k B /f y y y is the steady-state mean level of the target protein, 〈By〉 is the average burst size, and 
By

2  is the second-order moment of the burst size. Note that this noise level is made up of two components – the 
first component on the right-hand-side of (16) represents the noise from bursting of the target protein, and the 
second component is the noise in Y due to upstream fluctuations in the free TF count. In the absence of any decoy, 
(16) reduces to

γ γ
=

〈 〉 + 〈 〉

〈 〉
+
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+
.F
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2 (17)
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y y
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Figure 5. Bound TFs degradation leads to faster fluctuations in the free TF counts reducing noise propagation 
to downstream proteins. The simulation results of autocorrelation function R(τ) of the free TF count given by 
(13) for (A) Bound TFs are protected from degradation, and (B) Bound TFs are subject to degradation. The 
addition of decoy binding sites makes the autocorrelation decay slower in (A) but faster in (B). (C) Noise 
propagation from the free TF to the downstream target protein is measured by the ratio of the Fano factors 
F F/y x f

. Lines are the plotted using the analytical formula of Fy and Fx f
, given by (16) and (9) respectively. Symbols 

represent corresponding results with simulations. Noise propagation is enhanced when β = 0 consistent with 
the shift in the autocorrelation function to the right in Fig. 5A. In contrast, noise propagation is reduced when 
β > 0. Parameters used: =x 20f  molecules, 〈Bx〉 = 20, kd = 1, 〈By〉 = 1, ky = 10 hr−1, and γf = γy = 1 hr−1 per 
protein molecule. For simulations, kb = 50 per pair of molecules. To keep xf  constant, we change xf ,0  
accordingly by varying kx and obeying (6).
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Our analysis shows that when bound TFs are stable (β → 0), the second noise component in Fy monotonically 
decreases to zero with increasing decoy numbers. For β > 0, similar to the free TF count, noise enhancement in 
the target protein occurs for a small number of high-affinity decoys (see Fig. S2). However, both the magnitude 
(Fy/Fy,0)and the region of the noise enhancement are smaller compared to that of the free TF count (see Fig. S2 
and compare with Fig. 3).

Noise propagation can be measured by the ratio of the target protein noise to the free TF noise, F F/y x f
. 

Figure 5C shows the noise propagation as a function of decoy numbers for different decay rates of bound TF. Here 
the y-axis intercept quantifies noise propagation in the absence of decoys. When the bound TFs are protected 
from degradation, noise propagation is first enhanced as expected from the right-shift of the autocorrelation 
function (Fig. 5A), but them sharply decreases at higher decoy abundances. Note that the increase in noise prop-
agation seen at intermediate decoy numbers does not imply an increase in the target protein noise level, as at the 
same time the free TF noise level decreases with increasing N for β = 0 (Fig. 3). When bound TFs are unstable, 
noise propagation is reduced (Fig. 5C) due to faster time-scale of fluctuations of the free TF count (Fig. 5B). This 
implies that the noise increase seen in the free TF level when β > 0 (Fig. 3) is buffered by a decreased noise prop-
agation, and hence, the region of noise enhancement for the target protein is reduced compared to that of the free 
TF count. The qualitative feature of noise propagation agrees with the stochastic simulations results. However, the 
quantitative match between stochastic simulations and the LNA results is poor for β > 0 (Fig. 5C).

Discussion
The sequestration of transcription factors by genomic decoy sites can either protect it from degradation43,44 or 
make it more facile for degradation45. Here, we have systematically investigated how the magnitude and time-scale 
of TF copy-number fluctuations are impacted by the stability of the bound TF, the number and affinity of decoy 
sites. While this contribution focuses on TFs binding to genomic decoy sites, these results are applicable to other 
classes of proteins, for example, RNA-binding proteins binding to sites on RNA115–118.

Our results show that the degradation of decoy-bound TFs critically impacts both the mean and noise levels 
of the free TF pool. More specifically, while the average number of free (available) TFs monotonically decreases 
with increasing decoy abundance, the noise levels can sharply increase at low/intermediate decoy numbers before 
attenuating to Poisson levels as N → ∞ (Fig. 2). This behavior can be contrasted to when bound TFs are protected 
from degradation, in which case the mean free TF count becomes invariant of N, and decoys always buffer noise 
(Figs. 2 and 3). When β > 0, high-affinity decoys can transition from being noise amplifiers to noise buffers as 
their numbers are increased (Fig. 2). This point is exemplified in Fig. 6 where high-affinity low-abundance decoys 
and low-affinity high-abundance decoys result in the same average number of freely available TFs, but with much 
higher noise in the former case. Moreover, a mixture of both decoy types can mitigate each other’s effect leading 
to no noise enhancement or buffer (Fig. 4).

Closed-form formulas for the noise levels derived using the Linear Noise Approximation led to precise con-
ditions for noise enhancement – the number of decoys is not large, and their binding affinity is strong enough 
such that the fraction of bound decoys is higher than 1/(β +1 ). For example, β = 1 for a stable TF whose turnover 
is primarily governed by dilution from cell growth, and this condition implies that more than 50% decoy sites 
must be occupied. The decoy-mediated noise enhancement is higher for large values of β and for more “sticky” 
or higher affinity decoys (Fig. 3). It is interesting to point out that the peak noise enhancement generally occurs 
when the number of decoy sites is comparable to the TF counts when both bound and free TFs decay with the 
same rate. For example, in Fig. 2C there is an average of 200 TF molecules in the absence of decoys and the noise 
peak is also seen around N ≈ 200. Note that our results are restricted to TF production in stochastic bursts, and 
it remains to be seen if these results generalize to other noise mechanisms in gene expression, such as, extrinsic 
noise that arises from intercellular differences in cell size and the abundance of expression machinery98,119–122.

The speed of fluctuation in free TF counts also shows distinct features in the presence and absence of bound 
TF degradation. While the fluctuations become faster in the presence of bound TF degradation, as indicated by 
the left-shift of the autocorrelation function (Fig. 5), we see an opposite result when bound TFs do not degrade. 
These results have important implications on how noise propagates from the TF to downstream target proteins. 
For example, when β > 0 decoys can amplify noise in the free TF levels, while at the same time make fluctuations 
in TF counts relax back faster attenuating downstream noise transmission. As a result of these two opposing 
forces, the noise in the target protein may not increase even though the noise in the free TF level has increased. 
This can be seen for β = 5 in Fig. 3 where for N = 100 and kd = 10 the decoy is a noise amplifier, but as seen in 
Fig. S2, for the exact same parameter values the noise in the target protein has reduced compared to the no-decoy 
case.

The analytical formulas for the noise give theoretical insights into the role decoys on the noise enhancement. 
These are derived by linearizing the propensity for the binding event assuming small copy number fluctuations 
around the statistical mean and then taking fast bind/binding limit. Using numerical exact stochastic simulations, 
we have shown that the main results are good agreement with the theory. The quantitative match between theory 
and simulations can be poor where the fluctuations are large. This happens for higher decoy binding affinities and 
degradation rates for bound TFs. We numerically have found that results are not much sensitive to fast binding/
unbinding limit (Fig. S1). The objective of obtaining more accurate theoretical results is a matter of future work.

Our novel finding of the dual role of decoys as noise amplifiers/buffers encourages more investigation into 
the regulatory function of decoys in complex gene networks. In our study, we have considered target gene 
dose-response is linear. In future, we want to investigate the role of decoy sites in gene networks that contain non-
linearity. For example, in genetic/signalling circuits with oscillatory dynamics decoys can tune the oscillation fre-
quency48, enhance coherence47, and it will be interesting to see if decoys can make biological clocks more robust 
to molecular noise. An exciting avenue of experimental research is to use decoys as manipulations of phenotypic 
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heterogeneity. For example, aberrant expression of resistance markers in individual melanoma cells have been 
shown to be a driver of cancer drug resistance5, and decoy-mediated noise buffering can play a therapeutic role 
in reducing such outlier cells. In the context of the Human Immunodeficiency Virus (HIV), noisy expression of a 
key viral protein, Tat, controls the cell-fate outcome between active viral replication and latency16,123–126. Latency 
is a dormant state of the virus and considered the biggest challenge in eradicating the virus from a patient since 
latent cells are long-lived and resistant to drug therapy127. Recently, small-molecule compounds have been iden-
tified that enhance noise in Tat expression for efficient reactivation of latent cells128, and here the role of decoys as 
noise amplifiers may allow for a Tat-specific compound-free approach for latency reversal.

Received: 24 December 2019; Accepted: 8 May 2020;
Published: xx xx xxxx

References
 1. McAdams, H. H. & Arkin, A. It’s a noisy business! Genetic regulation at the nanomolar scale. Trends in genetics 15, 65–9 (1999).
 2. Arkin, A. P., Ross, J. & McAdams, H. H. Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected 

Escherichia coli cells. Genetics 149, 1633–1648 (1998).
 3. Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002).
 4. Losick, R. & Desplan, C. Stochasticity and cell fate. Science 320, 65–68 (2008).
 5. Shaffer, S. M. et al. Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature 546, 431–435 

(2017).
 6. Billman, M., Rueda, D. & Bangham, C. Single-cell heterogeneity and cell-cycle-related viral gene bursts in the human leukaemia 

virus htlv-1. Wellcome Open Research 2, 87 (2017).
 7. Keskin, S. et al. Noise in the vertebrate segmentation clock is boosted by time delays but tamed by notch signaling. Cell Rep 23, 

2175–2185 (2018).
 8. Urban, E. A. & Johnston, R. J. Buffering and amplifying transcriptional noise during cell fate specification. Frontiers in Genetics 9, 

591 (2018).
 9. Raj, A. & van Oudenaarden, A. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135, 216–226 

(2008).
 10. von Dassow, G., Meir, E., Munro, E. M. & Odell, G. M. The segment polarity network is a robust developmental module. Nature 

406, 188 (2000).
 11. Queitsch, C., Sangster, T. A. & Lindquist, S. Hsp90 as a capacitor of phenotypic variation. Nature 417, 618 (2002).
 12. Schmiedel, J. M., Carey, L. B. & Lehner, B. Empirical mean-noise fitness landscapes reveal the fitness impact of gene expression 

noise. Nature Communications 10, 3180 (2019).
 13. Kemkemer, R., Schrank, S., Vogel, W., Gruler, H. & Kaufmann, D. Increased noise as an effect of haploinsufficiency of the tumor-

suppressor gene neurofibromatosis type 1 in vitro. Proceedings of the National Academy of Sciences 99, 13783–13788 (2002).
 14. Bahar, R. et al. Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature 441, 1011–1014 (2006).
 15. Kussell, E. & Leibler, S. Phenotypic diversity, population growth, and information in fluctuating environments. Science 309, 

2075–2078 (2005).
 16. Weinberger, L. S., Burnett, J., Toettcher, J., Arkin, A. & Schaffer, D. Stochastic gene expression in a lentiviral positive-feedback loop: 

HIV-1 Tat fluctuations drive phenotypic diversity. Cell 122, 169–182 (2005).
 17. Kærn, M., Elston, T. C., Blake, W. J. & Collins, J. J. Stochasticity in gene expression: from theories to phenotypes. Nature Reviews 

Genetics 6, 451–464 (2005).
 18. Blake, W. J. et al. Phenotypic consequences of promoter-mediated transcriptional noise. Molecular Cell 24, 853–865 (2006).
 19. Davidson, C. J. & Surette, M. G. Individuality in bacteria. Annual Review of Genetics 42, 253–268 (2008).
 20. Fraser, D. & Kaern, M. A chance at survival: gene expression noise and phenotypic diversification strategies. Mol Microbiol 71, 

1333–1340 (2009).

Figure 6. High-affinity low-abundance decoys, and low-affinity high-abundance decoys result in the same 
mean free TF counts with contrasting fluctuation dynamics. Stochastic realizations of the number of free TFs 
for high-affinity low-abundance decoys (red), and low-affinity high-abundance decoys (blue) when β = 1, along 
with their corresponding probability distributions on the right. Both scenarios yield the same average number 
of free TF molecules, but high-affinity decoys drive significantly enhanced noise levels. The instability of the 
bound TF leads to faster time-scale of fluctuations as illustrated by the left-shift of the autocorrelation function 
(inset). For comparison, the free TF count distribution and the autocorrelation function for the no-decoy case 
are also shown with grey lines. The parameters used are as follows: 〈Bx〉 = 20, kx = 10 hr−1, γf = γb = 1.0 hr−1 per 
protein molecule and kb = 50 hr−1 per pair of molecules. For high affinity decoy kd = 1 and N = 245, and low 
affinity decoy kd = 100 and N = 1400. This choice produces the same mean TF count for both the cases, 

〈 〉x 15f . For the no-decoy case: kx = 0.75 hr−1 to keep 
〈 〉x 15f .

https://doi.org/10.1038/s41598-020-65750-2


1 1Scientific RepoRtS |         (2020) 10:9126  | https://doi.org/10.1038/s41598-020-65750-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

 21. Rotem, E. et al. Regulation of phenotypic variability by a threshold-based mechanism underlies bacterial persistence. Proceedings 
of the National Academy of Sciences 107, 12541–12546 (2010).

 22. Schreiber, F. et al. Phenotypic heterogeneity driven by nutrient limitation promotes growth in fluctuating environments. Nature 
Microbiology 1, 16055 (2016).

 23. Maamar, H., Raj, A. & Dubnau, D. Noise in gene expression determines cell fate in bacillus subtilis. Science 317, 526–529 (2007).
 24. Balázsi, G., van Oudenaarden, A. & Collins, J. J. Cellular decision making and biological noise: From microbes to mammals. Cell 

144, 910–925 (2014).
 25. Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D. & van Oudenaarden, A. Regulation of noise in the expression of a single 

gene. Nature Genetics 31, 69–73 (2002).
 26. Singh, A. & Hespanha, J. P. Optimal feedback strength for noise suppression in autoregulatory gene networks. Biophysical Journal 

96, 4013–4023 (2009).
 27. Dublanche, Y., Michalodimitrakis, K., Kummerer, N., Foglierini, M. & Serrano, L. Noise in transcription negative feedback loops: 

simulation and experimental analysis. Molecular Systems Biology 2, 41 (2006).
 28. Blake, W. J., Kaern, M., Cantor, C. R. & Collins, J. J. Noise in eukaryotic gene expression. Nature 422, 633–637 (2003).
 29. Alon, U. An Introduction to Systems Biology: Design Principles of Biological Circuits (Chapman and Hall/CRC, New York, 2011).
 30. Bintu, L. et al. Transcriptional regulation by the numbers: applications. Current Opinion in Genetics & Development 15, 125–135 

(2005).
 31. Sánchez, Á. & Kondev, J. Transcriptional control of noise in gene expression. Proceedings of the National Academy of Sciences 105, 

5081–5086 (2008).
 32. Wunderlich, Z. & Mirny, L. A. Different gene regulation strategies revealed by analysis of binding motifs. Trends in genetics 25, 

434–440 (2009).
 33. Kemme, C. A., Nguyen, D., Chattopadhyay, A. & Iwahara, J. Regulation of transcription factors via natural decoys in genomic dna. 

Transcription 7, 115–120 (2016).
 34. Esadze, A., Kemme, C. A., Kolomeisky, A. B. & Iwahara, J. Positive and negative impacts of nonspecific sites during target location 

by a sequence-specific dna-binding protein: origin of the optimal search at physiological ionic strength. Nucleic Acids Research 42, 
7039–7046 (2014).

 35. Kemme, C. A., Esadze, A. & Iwahara, J. Influence of quasi-specific sites on kinetics of target dna search by a sequence-specific dna-
binding protein. Biochemistry 54, 6684–6691 (2015).

 36. Bakk, A. & Metzler, R. In vivo non-specific binding of λ ci and cro repressors is significant. FEBS Letters 563, 66–68 (2004).
 37. Lee, T. & Maheshri, N. A regulatory role for repeated decoy transcription factor binding sites in target gene expression. Molecular 

systems biology 8, 576 (2012).
 38. Morishita, R. et al. A gene therapy strategy using a transcription factor decoy of the e2f binding site inhibits smooth muscle 

proliferation in vivo. Proceedings of the National Academy of Sciences 92, 5855–5859 (1995).
 39. Mann, M. J. Transcription factor decoys: A new model for disease intervention. Annals of the New York Academy of Sciences 1058, 

128–139 (2005).
 40. Hecker, M. & Wagner, A. H. Transcription factor decoy technology: A therapeutic update. Biochemical Pharmacology 144, 29–34 

(2017).
 41. Francois, M., Donovan, P. & Fontaine, F. Modulating transcription factor activity: Interfering with protein-protein interaction 

networks. Seminars in Cell and Developmental Biology (2018).
 42. Burger, A., Walczak, A. M. & Wolynes, P. G. Abduction and asylum in the lives of transcription factors. Proceedings of the National 

Academy of Sciences 107, 4016–4021 (2010).
 43. Abu Hatoum, O. et al. Degradation of myogenic transcription factor myod by the ubiquitin pathway in vivo and in vitro: Regulation 

by specific dna binding. Molecular and Cellular Biology 18, 5670–5677 (1998).
 44. Molinari, E., Gilman, M. & Natesan, S. Proteasome-mediated degradation of transcriptional activators correlates with activation 

domain potency in vivo. EMBO J 18, 6439–6447 (1999).
 45. Thomas, D. & Tyers, M. Transcriptional regulation: Kamikaze activators. Current Biology 10, R341–R343 (2000).
 46. Burger, A., Walczak, A. M. & Wolynes, P. G. Influence of decoys on the noise and dynamics of gene expression. Physical Review E 

86, 041920 (2012).
 47. Wang, Z., Potoyan, D. A. & Wolynes, P. G. Molecular stripping, targets and decoys as modulators of oscillations in the nf-kb/ikb α/

dna genetic network. Journal of The Royal Society Interface 13, 20160606 (2016).
 48. Jayanthi, S. & Del Vecchio, D. Tuning genetic clocks employing DNA binding sites. PLOS ONE 7, e41019 (2012).
 49. Jayanthi, S., Nilgiriwala, K. S. & Del Vecchio, D. Retroactivity controls the temporal dynamics of gene transcription. ACS Synthetic 

Biology 2, 431–441 (2013).
 50. Ricci, F., Vallée-Bélisle, A. & Plaxco, K. W. High-precision, in vitro validation of the sequestration mechanism for generating 

ultrasensitive dose-response curves in regulatory networks. PLOS Computational Biology 7, e1002171 (2011).
 51. Jones, D. L., Brewster, R. C. & Phillips, R. Promoter architecture dictates cell-to-cell variability in gene expression. Science 346, 

1533–1537 (2014).
 52. Soltani, M., Bokes, P., Fox, Z. & Singh, A. Nonspecific transcription factor binding can reduce noise in the expression of 

downstream proteins. Physical Biology 12, 055002 (2015).
 53. Bokes, P. & Singh, A. Protein copy number distributions for a self-regulating gene in the presence of decoy binding sites. PLOS 

ONE 10, e0120555 (2015).
 54. Das, D., Dey, S., Brewster, R. C. & Choube, S. Effect of transcription factor resource sharing on gene expression noise. PLoS Comput 

Biol 13, e1005491 (2017).
 55. Razo-Mejia, M. et al. Tuning transcriptional regulation through signaling: A predictive theory of allosteric induction. Cell Systems 

6, 456–469 (2018).
 56. Suter, D. M. et al. Mammalian genes are transcribed with widely different bursting kinetics. Science 332, 472–474 (2011).
 57. Dar, R. D. et al. Transcriptional burst frequency and burst size are equally modulated across the human genome. Proceedings of the 

National Academy of Sciences 109, 17454–17459 (2012).
 58. Fukaya, T., Lim, B. & Levine, M. Enhancer control of transcriptional bursting. Cell 166, 358–368 (2015).
 59. Bartman, C. R., Hsu, S. C., Hsiung, C. C.-S., Raj, A. & Blobel, G. A. Enhancer regulation of transcriptional bursting parameters 

revealed by forced chromatin looping. Molecular Cell 62, 237–247 (2016).
 60. Corrigan, A. M., Tunnacliffe, E., Cannon, D. & Chubb, J. R. A continuum model of transcriptional bursting. eLife 5, e13051 (2016).
 61. Chong, S., Chen, C., Ge, H. & Xie, X. S. Mechanism of transcriptional bursting in bacteria. Cell 158, 314–326 (2014).
 62. Singh, A., Razooky, B., Cox, C. D., Simpson, M. L. & Weinberger, L. S. Transcriptional bursting from the HIV-1 promoter is a 

significant source of stochastic noise in HIV-1 gene expression. Biophysical Journal 98, L32–L34 (2010).
 63. Dar, R. D. et al. Transcriptional bursting explains the noise–versus–mean relationship in mRNA and protein levels. PLOS ONE 11, 

e0158298 (2016).
 64. Golding, I., Paulsson, J., Zawilski, S. & Cox, E. Real-time kinetics of gene activity in individual bacteria. Cell 123, 1025–1036 

(2005).
 65. Raj, A., Peskin, C., Tranchina, D., Vargas, D. & Tyagi, S. Stochastic mRNA synthesis in mammalian cells. PLOS Biology 4, e309 

(2006).

https://doi.org/10.1038/s41598-020-65750-2


1 2Scientific RepoRtS |         (2020) 10:9126  | https://doi.org/10.1038/s41598-020-65750-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

 66. Singh, A., Razooky, B. S., Dar, R. D. & Weinberger, L. S. Dynamics of protein noise can distinguish between alternate sources of 
gene-expression variability. Molecular Systems Biology 8, 607 (2012).

 67. Thattai, M. & van Oudenaarden, A. Intrinsic noise in gene regulatory networks. Proceedings of the National Academy of Sciences 98, 
8614–8619 (2001).

 68. Friedman, N., Cai, L. & Xie, X. Linking stochastic dynamics to population distribution: an analytical framework of gene expression. 
Physical Review Letters 97, 168302 (2006).

 69. Shahrezaei, V. & Swain, P. S. Analytical distributions for stochastic gene expression. Proceedings of the National Academy of Sciences 
105, 17256–17261 (2008).

 70. Pedraza, J. M. & Paulsson, J. Effects of molecular memory and bursting on fluctuations in gene expression. Science 319, 339–343 
(2008).

 71. Jia, T. & Kulkarni, R. V. Intrinsic noise in stochastic models of gene expression with molecular memory and bursting. Journal of 
Mathematical Biology 106, 058102 (2011).

 72. Kumar, N., Singh, A. & Kulkarni, R. V. Transcriptional bursting in gene expression: Analytical results for genera stochastic models. 
PLOS Computational Biology 11, e1004292 (2015).

 73. Bokes, P. & Singh, A. Gene expression noise is affected deferentially by feedback in burst frequency and burst size. Journal of 
Mathematical Biology 74, 1483–1509 (2017).

 74. Singh, A. & Soltani, M. Quantifying intrinsic and extrinsic variability in stochastic gene expression models. PLOS ONE 8, e84301 
(2013).

 75. Soltani, M., Vargas-Garcia, C. A., Antunes, D. & Singh, A. Intercellular variability in protein levels from stochastic expression and 
noisy cell cycle processes. PLOS Computational Biology e1004972 (2016).

 76. Yu, J., Xiao, J., Ren, X., Lao, K. & Xie, X. S. Probing gene expression in live cells, one protein molecule at a time. Science 311, 
1600–1603 (2006).

 77. Paulsson, J. Model of stochastic gene expression. Physics of Life Reviews 2, 157–175 (2005).
 78. Elgart, V., Jia, T., Fenley, A. T. & Kulkarni, R. Connecting protein and mrna burst distributions for stochastic models of gene 

expression. Physical biology 8, 046001 (2011).
 79. Wilkinson, D. J. Stochastic Modelling for Systems Biology (Chapman and Hall/CRC, 2011).
 80. McQuarrie, D. A. Stochastic approach to chemical kinetics. Journal of Applied Probability 4, 413–478 (1967).
 81. Munsky, B. & Khammash, M. The finite state projection algorithm for the solution of the chemical master equation. Journal of 

Chemical Physics 124, 044104 (2006).
 82. Gupta, A., Mikelson, J. & Khammash, M. A finite state projection algorithm for the stationary solution of the chemical master 

equation. The Journal of Chemical Physics 147, 154101 (2017).
 83. Dinh, K. N. & Sidje, R. B. Understanding the finite state projection and related methods for solving the chemical master equation. 

Physical Biology 13, 035003 (2016).
 84. Gillespie, D. T. Approximate accelerated stochastic simulation of chemically reacting systems. Journal of Chemical Physics 115, 

1716–1733 (2001).
 85. Gibson, M. A. & Bruck, J. Efficient exact stochastic simulation of chemical systems with many species and many channels. Journal 

of Physical Chemistry A 104, 1876–1889 (2000).
 86. Cao, Y., Li, H. & Petzold, L. Efficient formulation of the stochastic simulation algorithm for chemically reacting systems. Journal of 

Chemical Physics 121, 4059–4067 (2004).
 87. Anderson, D. F. A modified next reaction method for simulating chemical systems with time dependent propensities and delays. 

Journal of Chemical Physics 127, 214107 (2007).
 88. Daigle, B., Soltani, M., Petzold, L. & Singh, A. Inferring single-cell gene expression mechanisms using stochastic simulation. 

Bioinformatics 31, 1428–1435 (2015).
 89. Van Kampen, N. Stochastic Processes in Physics and Chemistry (Elsevier, 2011).
 90. Elf, J. & Ehrenberg, M. Fast evaluation of fluctuations in biochemical networks with the linear noise approximation. Genome 

Research 13, 2475–2484 (2003).
 91. Lestas, I., Paulsson, J., Ross, N. E. & Vinnicombe, G. Noise in gene regulatory networks. IEEE Transactions on Automatic Control 

53, 189–200 (2008).
 92. Modi, S., Soltani, M. & Singh, A. Linear noise approximation for a class of piecewise deterministic markov processes. In 2018 

Annual American Control Conference (ACC), 1993–1998 (2018).
 93. Munsky, B., Hlavacek, W. S. & Tsimring, L. S. Quantitative biology: theory, computational methods, and models (The MIT Press, 

2018).
 94. Thomas, P., Straube, A. V. & Grima, R. The slow-scale linear noise approximation: an accurate, reduced stochastic description of 

biochemical networks under timescale separation conditions. BMC Systems Biology 6, 39 (2012).
 95. Ochab-Marcinek, A. J. E., Drak, J. & Tabaka, M. Hill kinetics as a noise filter: the role of transcription factor autoregulation in gene 

cascades. Phys. Chem. Chem. Phys. 19, 22580–22591 (2017).
 96. Czuppon, P. & Pfaffelhuber, P. Limits of noise for autoregulated gene expression. Journal of Mathematical Biology 77, 1153–1191 

(2018).
 97. Sepúlveda, L. A., Xu, H., Zhang, J., Wang, M. & Golding, I. Measurement of gene regulation in individual cells reveals rapid 

switching between promoter states. Science 351, 1218–1222 (2016).
 98. Singh, A. Transient changes in intercellular protein variability identify sources of noise in gene expression. Biophysical Journal 107, 

2214–2220 (2014).
 99. Singh, A. & Hespanha, J. P. Stochastic hybrid systems for studying biochemical processes. Philosophical Transactions of the Royal 

Society A 368, 4995–5011 (2010).
 100. Singh, A. & Hespanha, J. P. Approximate moment dynamics for chemically reacting systems. IEEE Transactions on Automatic 

Control 56, 414–418 (2011).
 101. Gomez-Uribe, C. A. & Verghese, G. C. Mass fluctuation kinetics: Capturing stochastic effects in systems of chemical reactions 

through coupled mean-variance computations. Journal of Chemical Physics 126, 024109 (2007).
 102. Lee, C. H., Kim, K. & Kim, P. A moment closure method for stochastic reaction networks. Journal of Chemical Physics 130, 134107 

(2009).
 103. Goutsias, J. Classical versus stochastic kinetics modeling of biochemical reaction systems. Biophysical Journal 92, 2350–2365 

(2007).
 104. Gillespie, C. S. Moment closure approximations for mass-action models. IET Systems Biology 3, 52–58 (2009).
 105. Soltani, M., Vargas, C. & Singh, A. Conditional moment closure schemes for studying stochastic dynamics of genetic circuits. IEEE 

Transactions on Biomedical Systems and Circuits 9, 518–526 (2015).
 106. Zhang, J., DeVille, L., Dhople, S. & Dominguez-Garcia, A. A maximum entropy approach to the moment closure problem for 

stochastic hybrid systems at equilibrium. In IEEE Conference on Decision and Control, 747–752 (2014).
 107. Smadbeck, P. & Kaznessis, Y. N. A closure scheme for chemical master equations. Proceedings of the National Academy of Sciences 

110, 14261–14265 (2013).
 108. Schnoerr, D., Sanguinetti, G. & Grima, R. Validity conditions for moment closure approximations in stochastic chemical kinetics. 

The Journal of Chemical Physicsl 141, 084103 (2014).

https://doi.org/10.1038/s41598-020-65750-2


13Scientific RepoRtS |         (2020) 10:9126  | https://doi.org/10.1038/s41598-020-65750-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

 109. Lakatos, E., Ale, A., Kirk, P. D. W. & Stumpf, M. P. H. Multivariate moment closure techniques for stochastic kinetic models. The 
Journal of Chemical Physics 143, 094107 (2015).

 110. Lamperski, A., Ghusinga, K. R. & Singh, A. Stochastic optimal control using semidefinite programming for moment dynamics. 
Proc. of the 55th IEEE Conf. on Decision and Control, Las Vegas 1990–1995 (2016).

 111. Ghusinga, K. R., Vargas-Garcia, C. A., Lamperski, A. & Singh, A. Exact lower and upper bounds on stationary moments in 
stochastic biochemical systems. Physical Biology 14, 04LT01 (2017).

 112. Gillespie, D. T. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal 
of Computational Physics 22, 403–434 (1976).

 113. Paulsson, J. Summing up the noise in gene networks. Nature (London) 427, 415–418 (2004).
 114. Singh, A. & Bokes, P. Consequences of mRNA transport on stochastic variability in protein levels. Biophysical Journal 103, 

1087–1096 (2012).
 115. Hooykaas, M. J. G. et al. Rna accessibility impacts potency of tough decoy microrna inhibitors. RNA Biology 15, 1410–1419 (2018).
 116. Parra, M. et al. An important class of intron retention events in human erythroblasts is regulated by cryptic exons proposed to 

function as splicing decoys. RNA 24, 1255–1265 (2018).
 117. Howard, J. M. et al. HNRNPA1 promotes recognition of splice site decoys by U2AF2 in vivo. Genome Research 28, 689–698 (2018).
 118. Denichenko, P. et al. Specific inhibition of splicing factor activity by decoy RNA oligonucleotides. Nature Communications 10, 1590 

(2019).
 119. Padovan-Merhar, O. et al. Single mammalian cells compensate for differences in cellular volume and DNA copy number through 

independent global transcriptional mechanisms. Molecular Cell 58, 339–352 (2015).
 120. Johnston, I. G. et al. Mitochondrial variability as a source of extrinsic cellular noise. PLOS Computational Biology 8, e1002416 

(2012).
 121. Shahrezaei, V., Ollivier, J. F. & Swain, P. S. Colored extrinsic fluctuations and stochastic gene expression. Molecular Systems Biology 

4 (2008).
 122. Hilfinger, A. & Paulsson, J. Separating intrinsic from extrinsic fluctuations in dynamic biological systems. Proceedings of the 

National Academy of Sciences 108, 12167–12172 (2011).
 123. Razooky, B. S., Pai, A., Aull, K., Rouzine, I. M. & Weinberger, L. S. A hardwired HIV latency program. Cell 160, 990–1001 (2015).
 124. Chavez, L., Calvanese, V. & Verdin, E. HIV latency is established directly and early in both resting and activated primary CD4 T 

cells. PLOS Pathogens 11, e1004955 (2015).
 125. Singh, A. & Weinberger, L. S. Stochastic gene expression as a molecular switch for viral latency. Current Opinion in Microbiology 

12, 460–466 (2009).
 126. Singh, A. Stochastic analysis of genetic feedback circuit controlling HIV cell-fate decision. Proc. of the 51st IEEE Conf. on Decision 

and Control, Maui, Hawaii 4918–4923 (2012).
 127. Richman, D. D. et al. The challenge of finding a cure for HIV infection. Science 323, 1304–1307 (2009).
 128. Dar, R. D., Hosmane, N. N., Arkin, M. R., Siliciano, R. F. & Weinberger, L. S. Screening for noise in gene expression identifies drug 

synergies. Science 344, 1392–1396 (2014).

Acknowledgements
A.S. is supported by the NSF grant ECCS-1711548, and NIH grants 5R01GM124446 and 5R01GM126557.

Author contributions
A.S. defined and supervised the project. S.D. and M.S. did the mathematical derivations. S.D. performed the 
necessary computations. The authors discussed the results and collaborated on the writing, read and approved 
the final manuscript.

competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-65750-2.
Correspondence and requests for materials should be addressed to S.D. or A.S.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2020

https://doi.org/10.1038/s41598-020-65750-2
https://doi.org/10.1038/s41598-020-65750-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Enhancement of gene expression noise from transcription factor binding to genomic decoy sites
	Results
	Model formulation. 
	Noise in free TF counts in the absence of decoy sites. 
	Bound TF’s degradation titrates the regulating activity of TF. 
	Bound TF’s degradation enhances noise in the free TF count. 
	Noise in free TF counts in a mixture of strong and weak decoy binding sites. 
	Quantifying noise propagation from TF to downstream target proteins. 

	Discussion
	Acknowledgements
	Figure 1 Model schematic for investigating the impact of nonspecific transcription factor binding on expression noise.
	Figure 2 Degradation of bound TFs reduces the mean and drives non-monotonicity in the free TF noise level: The mean and the Fano factor for free TF counts are plotted against the total decoy binding sites N for different values of the dissociation constan
	Figure 3 Decreasing stability of bound TFs expands the parameter space for decoy-mediated noise enhancement.
	Figure 4 Noise-buffering decoys can mitigate the effects of noise-amplifying decoys.
	Figure 5 Bound TFs degradation leads to faster fluctuations in the free TF counts reducing noise propagation to downstream proteins.
	Figure 6 High-affinity low-abundance decoys, and low-affinity high-abundance decoys result in the same mean free TF counts with contrasting fluctuation dynamics.
	Table 1 Summary of notation used.




