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Kawasaki disease (KD) was first described by Dr. Tomisaku Kawasaki in 1967. The

etiology of KD has been studied comprehensively but remains largely unknown. The

disease seems to result from the interplay of genetic and environmental susceptibility

factors with infectious triggers, followed by a subsequent abnormal immune response

characterized by increased levels of inflammatory cytokines and chemokines during the

acute phase. Evidence has mounted to suggest that an imbalance between T helper

17 cells (Th17s) and regulatory T cells (Tregs) is associated with aberrant immune

responses in KD. Recent advances in culture-independent techniques for detection

and identification of intestinal commensal bacteria enabled the discovery that Th17

and Treg differentiation are regulated by short chain fatty acids (SCFAs), in particular

butyrate, produced by the gut microbiota. This finding provided a mechanistic link

between dysbiosis, defined as changes in the composition of the gut microbiota, and

various inflammatory diseases. On this basis, we propose that dysbiosis, with reduced

production of SCFAs leading to imbalances of Th17s/Tregs, could be involved in the

etiology of KD. A pilot study supported this hypothesis, as only fecal concentrations

of butyrate were significantly reduced in KD patients among SCFAs. This evolving

perspective prompted us to undertake metagenomic analyses of bacterial DNA

from the feces of KD patients who were antibiotic-naïve at diagnosis. Simultaneous

measurements of Th17s/Tregs in peripheral blood and SCFA concentrations in feces

would provide valuable information regarding the association between dysbiosis and

dysregulated immune responses in KD.
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INTRODUCTION

Kawasaki disease (KD), named after Dr. Tomisaku Kawasaki deceased June 5th, 2020, mainly
affects young children between the ages of 6 months and 4 years (1). KD is characterized by
persistent fever, bilateral conjunctival congestion, changes of the lips and oral cavity, polymorphous
exanthema, changes of peripheral extremities, and acute non-purulent cervical lymphadenopathy
(2, 3). Although KD was originally reported to be self-limiting and benign (4), it is now recognized
as a systemic vasculitis with a specific predilection for forming coronary artery lesions. These
develop in up to 25% of children with KD who are not treated with intravenous immunoglobulin
(5). Coronary artery lesions associated with KD are the most common causes of pediatric heart
disease in developed countries. The incidence of KD in the Japanese population continues to
increase and reached 330 cases per 100,000 children aged≤4 years per year in 2015 (6).
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Despite extensive ongoing research into the etiology of KD,
the underlying mechanisms of this enigmatic vasculitis are not
fully understood (3, 7).

CURRENT PARADIGM OF THE ETIOLOGY
OF KD

The current paradigm of KD pathogenesis is that the
disease results from a pathologically amplified immune
response against infectious agent(s) in a genetically and
environmentally susceptible child (3). This paradigm is based on
the following observations.

Proposed Infectious Causes of KD
First, there is clinical overlap between KD and infectious
diseases such as adenovirus and streptococcosis. Second, seasonal
clustering of KD in the winter and spring mimics that of
several viral diseases (8). Third, temporal clusters of epidemics
have been reported in Japan, the US, Canada, and Finland (9).
Moreover, an outbreak in Japan began in Tokyo and spread
throughout the country over a period of 6 months (10). Finally,
low incidence in the first 3 months of life suggests at least
partial protection from trans-placental antibodies (11). The low
incidence of KD in schoolchildren indicates a potential role of
common antigen(s) that most children encounter uneventfully
in early childhood and against which they mount an appropriate
and protective immune response (12). However, efforts to find a
single unifying microbiological cause of KD have been, to date,
unsuccessful. Standard microbiological techniques, molecular
methods and serological investigations have all failed to identify
an etiological agent.

It has long been held that infection by one or more widely
distributed microorganism(s) might elicit dysregulated immune
responses in genetically susceptible children resulting in KD.
Candidate pathogens include Epstein-Barr virus (13, 14),
human herpes virus (15), human immunodeficiency virus (16),
human adenovirus (17), human coronavirus (18), retrovirus
(19), human parvovirus B19 (20), human bocavirus (21),
Staphylococcus aureus (22), Streptococcus pyogenes (23), Yersinia
pseudotuberculosis (24), Bacillus cereus (25), Mycoplasma
pneumoniae (26), Mycobacterium spp. (27), Bartonella
henselae (28), Coxiella burnetti (29), and Candida spp. (30).
Candida albicans (C. albicans) has recently drawn attention,
as administration of CAWS (water-soluble extracellular
polysaccharide from culture supernatants of C. albicans) induces
coronary arteritis similar to KD in mice (31). Several reports
suggested that C. albicans plays an important role as an infectious
trigger of KD (30, 32, 33). Considering the recent pandemic of
coronavirus disease 2019 (COVID-19), potential links between
KD and COVID-19 are also deserving of mention (34–37).
Clusters of children presenting with KD-like symptoms have
been documented in the UK, US, France, and Italy, and some
of them were confirmed to have COVID-19. It appears that
hyperinflammation associated with COVID-19 could act as
primer for KD development in individuals having genetically

or environmentally determined predisposition. However, the
specific mechanism is not yet defined (34).

Genetic and Environmental Risk Factors
for KD
The higher incidence of KD in Asian countries suggests a genetic
predisposition for acquiring the disease (9). Increased risk in
family members of KD patients in Japanese populations (38) also
hint at genetically determined susceptibility. Recent advances
have been made in identifying disease-susceptibility genes from
genome-wide association studies. Candidate genes contributing
to KD susceptibility include B-lymphoid kinase (BLK) (39),
caspase-3 (CASP3) (40), low-affinity immunoglobulin gamma Fc
region receptor II-a (FCGR2A) (41), human leukocyte antigen
(HLA) (39), inositol 1,4,5-triphosphate kinase-C (ITPKC) (42),
transforming growth factor (TGF)-β2 (TGFβ2) (43), TGF-
β receptor 2 (TGFBR2) (43), SMAD3 (43), CD40 (39), and
ORAI1 (44).

Epidemiologic studies have extensively searched for
environmental factors that may explain variation and
seasonality in KD incidence. Surveys from the US and
Japan have demonstrated that higher precipitation and
lower temperatures were associated with higher incidence
of KD (45, 46). An investigation of the role of the early
social environment in KD susceptibility in a Japanese
population found that higher household income, smaller
family size, and urbanization were associated with increased KD
incidence (47). This study, however, did not find a significant
association between absence of infectious exposures during early
life and KD.

Aberrant Immune Responses in KD
The prominent role played by the immune system in KD has
been confirmed by many studies demonstrating activation of
neutrophils and other immune cells as well as overproduction
of inflammatory cytokines and chemokines such as tumor
necrosis factor-α, interleukin (IL)-1, IL-2, IL-6, and IL-8, and
monocyte chemotactic protein-1 (3). Levels of inflammatory
cytokines and chemokines are reported to be elevated during
the acute phase of KD. However, the mechanisms responsible
for abnormal immune responses and overexpression of
inflammatory cytokines remain unclear. Several lines of evidence
have revealed decreased numbers of regulatory T cells (Tregs)
and imbalances between T helper 17 cells (Th17s) and Tregs in
acute KD (48–50). Jia et al. elegantly demonstrated that Th17
proportions and cytokine (IL-17, IL-6, and IL-23) levels were
significantly increased, while Treg proportions and expression
of Treg transcription factors (e.g., FoxP3) were significantly
decreased in patients with acute KD (49). They concluded
that Th17 expansion and Treg depletion were characteristic of
acute KD. Furthermore, recent studies suggested that treatment
efficacy was associated with decreased Th17 proportions and
increased Treg proportions, with both returning closer to
a normal range (48, 51). Thus, Th17/Treg imbalances may
contribute to exaggerated immune responses in KD patients.
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THE IMPORTANCE OF GUT MICROBIOTA
IN HUMAN HEALTH

Growing evidence suggests that disturbances within intestinal
communities of commensal bacteria may lead to illness through
aberrant immune system development. While the study of gut
microbiology related to human health has a centennial history,
recent technological advances have enabled us to explore this
field in a more sophisticated manner. Current approaches rely
primarily on culture-independent methods such as amplification
of conserved regions of the 16S rRNA gene present in all bacteria
(52). Studies using these techniques have demonstrated that an
adult humans harbor 100 trillion gut bacteria comprising more
than 1,000 different species and approximately 160 species per
person per fecal sample (53). Development of the gut microbiota,
defined as its colonization by microorganisms, might begin not
at birth but in utero. However, the existence of viable bacteria
in the womb was recently questioned (54–56). The maternal
microbiota provides the first microbial inoculum, and from birth,
microbial diversity increases and converges toward an adult-
like microbiome within the first 3–5 years of life (53). The
composition of the microbiota in childhood depends on various
factors including sanitation, mode of delivery, maturity at birth,
infant diet, antibiotic use during infancy, immunizations, and
environmental factors such as geography or diet (52, 53, 57, 58).
Ethnic and genetic factors may also give rise to dysbiosis (59, 60).
The factors that can alter the microbiome are being studied
as potential drivers of changing trends in non-communicable
diseases. Dysbiosis, defined as changes in the composition of the
gut microbiota, may be associated with several clinical conditions
including obesity and metabolic diseases (61), cancer (62),
autoimmune diseases (63), allergy (64), chronic inflammatory
bowel diseases (65, 66), chronic kidney diseases (67), and autistic-
spectrum disorders (68). We also found that dysbiosis was
present in children with idiopathic nephrotic syndrome (69).

Although research on the mechanism(s) through which
dysbiosis impairs human health has just begun, regulation of the
gut immune system by microbiota is believed to be involved.
Experiments with germ-free animals (deficient in commensal
microbiota including gut microbiota) have demonstrated that
microbial colonization promotes anatomical development of the
intestinal epithelium, increases epithelial cell turnover rates, and
initiates the maturation of gut-associated lymphoid tissue (70).
Both Tregs and Th17s have received much attention in terms
of their role in the gut immune system and its regulation by
microbiota (71). Tregs were originally identified as CD4-positive,
CD25-positive and Foxp3-positive T cells that exerted inhibitory
control over immune responses (72), maintained tolerance to
self-antigens, and prevented autoimmune disease (73). There
are several immunosuppressive mechanisms mediated by Tregs,
including secretion of immunosuppressive cytokines such as IL-
10 and TGF-β, functional modification or killing of antigen-
presenting cells, and cell contact-dependent suppression via
cytotoxic T-lymphocyte- associated protein 4 (72). Tregs mainly
arise from naïve T cell precursors following stimulation by
short chain fatty acids (SCFAs) such as acetate, propionate or
butyrate produced by the gut microbiota (74, 75). Previous

studies demonstrated that members of the genus Clostridium
were potent inducers of Treg differentiation through butyrate
production (76, 77) and that reduced luminal concentrations
of SCFAs resulted in impaired development of intestinal Tregs
in germ-free mice (74, 76). In these mice, reconstitution with
commensal bacteria or administration of SCFAs, especially
butyrate, restored Treg frequency (76), supporting the role of
bacterial metabolites in Treg development. Therefore, it has been
proposed that a decrease in the relative abundance of butyrate-
producing microbes may disrupt mucosal immune homeostasis
(78). The gut microbiota also plays a crucial role in the induction
of effector T cell responses in the intestine. Th17s are a subtype of
CD4-positive T cells specialized for mounting immune responses
against fungi and some extracellular bacteria. In addition to IL-
17A, Th17s produce IL-17F, IL-21, IL-22, and IL-26 (79). Because
IL-17 is a potent proinflammatory cytokine that amplifies
ongoing inflammation, aberrant regulation of Th17s contributes
to development of inflammatory and autoimmune disorders. In
germ-free mice, the number of Th17s was markedly decreased.
However, the Th17 compartment was restored by reconstitution
with conventional microbiota (80), thus indicating a crucial
role for gut microbes in Th17 development. Among commensal
bacteria, segmented filamentous bacteria (SFB) are one of the
most potent inducers of Th17s. Colonization of mice by SFB
causes abundant accumulation of Th17s in the small intestine
via enhanced production of serum amyloid A (81, 82). The
existence of human commensal bacteria equivalent to SFB in
rodents is probable because mixtures of bacterial strains isolated
from fecal samples ulcerative colitis patients could induce Th17
development (81).

THE GUT MICROBIOTA IN KD

The gut, the largest interface between microbial factors and the
host, contains the largest proportion of bacteria and the largest
amount of lymphoid tissue in the body. Thus, it was hypothesized
that the intestinal environment might be reshaped in patients
with KD. Indeed, KD patients frequently exhibit gastrointestinal
symptoms and complications (83). The contribution of the gut
microbiota to KD has been evaluated in limited numbers of small
cohorts using culture-based methods. Several studies have been
performed to identify the causative microbial agent(s) of KD at
disease onset. Takeshita et al. showed that the gut microbiomes
of KD patients were distinguished by a lack of Lactobacilli
during the acute phase (84), while Nagata et al. isolated both
HSP60-producing Gram-negative bacteria and Gram-positive
cocci capable of inducing Vβ2 T cell expansion from KD patients
(85). These results indicated that distinctive gut microbes might
be involved in the pathophysiology of KD. However, because
these studies of the microbiomes of KD patients were carried
out using culture-based methods, microorganisms that cannot
be cultured, which constitute more than half of the human gut
microbiome, would have been overlooked.

Unlike culture methods, metagenomic analyses can reveal the
composition of the intestinal microbiota irrespective of the ability
to culture microbes. Kinumaki et al. first reported the results
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FIGURE 1 | Potential association between gut dysbiosis and Kawasaki Disease (KD). Various factors during both the in utero and postnatal period could drive

dysbiosis in infants. Dysbiosis results in reduced intestinal production of SCFAs including butyrate. Reduced SCFA concentrations cause an imbalance of Th17s/Tregs.

Individuals with Th17/Treg imbalances develop hypercytokinemia following stimuli from one or more infectious agents(s) followed by KD. SCFAs, short chain fatty acids.

of a metagenomic analysis of feces using culture-independent
methods (86). They collected 28 paired fecal samples from
children with KD during the acute and non-acute phases and
demonstrated that Streptococcus spp., including S. pneumoniae,
S. pseudopneumoniae, S. mitis, S. oralis, S. gordonii, and
S. sanguinis, were more abundant during the acute phase while
the genera Ruminococcus, Roseburia and Faecalibacterium were
less abundant. Unfortunately, more than half of subjects were
treated empirically with antibiotics during the early phase of
KD when the fecal samples were collected because clinical and
laboratory findings often do not fulfill the diagnostic criteria of
KD (2), but are instead suggestive of bacterial infections (87).
As antibiotic administration rapidly perturbs the gut microbiota
(88), these results may reflect the effects of antibiotic therapy on
the gut microbiota and not dysbiosis associated with KD.

NOVEL PERSPECTIVES ON KD
PATHOGENESIS

Here, we would like to focus on a novel viewpoint on the role
of the gut microbiota in KD: Dysbiosis, defined as changes in
the composition of the gut microbiota and caused by various
prenatal and postnatal factors that are not necessarily infectious
agent(s), might contribute to genetically and environmentally
determined predilection for KD. This perspective is illustrated
in Figure 1 and can be explained as follows: [1] various factors

during the in utero and postnatal period drive dysbiosis in young
children; [2] dysbiosis results in reduced intestinal production
of SCFAs including butyrate; [3] reduced levels of SCFAs in
the gut cause an imbalance of Th17s/Tregs; and [4] individuals
with Th17/Treg imbalances develop hypercytokinemia triggered
by ubiquitous infectious agents(s), followed by KD (Figure 1).
Recent observations revealed that viral respiratory infectionsmay
alter microbial growth in the gut leading to dysbiosis (89). In
addition, the gut microbiota has been shown to play an important
role in regulating the generation of virus-specific CD4-positive
and CD8-positive T cells and antibody responses following
influenza virus infection (90). Therefore, we hypothesize that
young children with dysbiosis are prone to a vicious cycle of
hypercytokinemia following infection by viruses.

This paradigm for the pathogenesis of KD contrasts with
previous hypotheses, which focused on specific microorganisms,
toxins, or pathogen-associated molecular patterns (91–93).

As butyrate has been reported to limit Th17 differentiation
and promote Treg development (94–96), we hypothesize that
KD-associated dysbiosis might be characterized by lower
abundance of butyrate-producing bacteria. Interestingly, the
genera Roseburia and Faecalibacterium, which were reported to
be less abundant in patients with acute KD by Kinumaki et al.
(86), are butyrate-producing bacteria (97, 98). Furthermore, the
strong association between KD and allergic diseases (99–101)
in which dysbiosis plays an important role (102) also supports
this perspective. Recent observations of a potential association
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FIGURE 2 | Results of pilot study: fecal organic acid concentrations in Kawasaki disease (KD). Fecal butyrate concentrations were significantly lower in KD patients (p

< 0.05, Mann–Whitney U test) while concentrations of acetate, lactate, and propionate did not differ between KD patients and healthy control children. KD: Kawasaki

disease; HC: age-matched healthy children. The horizontal lines in the boxes represent the median values, and the bottoms and tops of the boxes represent the 25th

and 75th percentiles, respectively. The vertical lines extend from the box to the maximum values and minimum values. Frozen fecal specimens were thawed, and a

0.1 g subsample was placed in a 2.0mL tube with zirconia beads and suspended in 0.1mM perchloric acid solution containing 3% phenol. Samples were heated at

80◦C for 15min, vortexed at 5 m/s for 45 s using FastPrep 24 instrument (MP Biomedicals, Irvine, CA, USA), and centrifuged at 15,350 g for 10min. Supernatants

were filtered using 0.45µm filters. Fecal organic acids including acetate, propionate, butyrate, and lactate were measured using high-performance liquid

chromatography (Prominence, Shimadzu, Kyoto, Japan) using a post-column reaction with a detector (CDD-10A, Shimadzu), two columns arranged in tandem

(Shim-pack SCR-102(H), 300 × 8mm ID, Shimadzu) and a guard column (Shim-pack SCR-102(H), 50 × 6mm ID, Shimadzu). The mobile phase was 5mM

p-toluenesulfonic acid and the reaction solution was 5mM p-toluenesulfonic acid containing 100µM ethylenediaminetetraacetic acid and 20mM Bis-Tris. The flow

rate and oven temperature were 0.8 mL/min and 45◦C, respectively. The detector cell temperature was kept at 48◦C. Measurements were performed at Techno

Suruga Lab, Shizuoka, Japan.

between previous antibiotic therapy and development of KD also
supports our hypothesis (103). In this study, the median interval
between the final dose of antibiotics and the onset of KD was
2.5 months, which was insufficient time for restoration of the
gut microbiota and complete resolution of dysbiosis caused by
antibiotic use (104).

To confirm our hypothesis, further investigations involving
metagenomic analysis of bacterial DNA from the feces of a
larger number of antibiotic-naïve patients with KD is clearly
needed. It would be worthwhile to compare the proportions of
specific microbial species such as butyrate-producing bacteria.
Simultaneous analysis of Th17/Treg ratios in peripheral blood
and measurement of fecal butyrate concentrations, reflecting the
intestinal production of SCFAs, would also be helpful.

We have just begun a project to test our hypothesis with
approval from our institutional ethics committee (approval no.
2015127) and parental informed consent. Fecal samples will
be collected not only from KD patients and healthy children
but also from controls with viral infections. This will allow
us to specifically characterize dysbiosis in KD because recent

observations suggested that viral infection itself may cause
dysbiosis (89).

The results of our pilot study of four acute KD patients
(median age 1.1 years, range 0.8–2.1 years; 3 boys and 1 girl)
and four healthy children (median age 2.1 years, range 1.2–3.7
years, 3 boys and 1 girl) supports our perspective as fecal butyrate
concentrations were significantly lower in KD patients (p <

0.05, Mann–Whitney U test). In contrast, fecal concentrations
of acetate, lactate, and propionate did not differ between KD
patients and healthy children (Figure 2). The KD patients studied
had a median body mass index of 14.7 (range: 13.0–18.1), median
maximal body temperatures of 39.0◦C (range: 38.0–39.7◦C), and
median maximal C-reactive protein levels of 41 mg/L (range: 20–
57 mg/L). All KD patients presented with typical clinical features
and fulfilled the diagnostic criteria (2). None reported diarrhea or
constipation and none received antibiotics. Fecal samples were
provided before intravenous immunoglobulin administration.
No cases were complicated by coronary artery lesions.

What factors perturb the gut microbiota and cause dysbiosis
in young children? As shown in Figure 1, both prenatal
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and postnatal conditions affect the establishment of the
intestinal microbiota in infancy. Factors that influence the
initial colonization of the gut by microbes include maternal
factors such as the maternal gut microbiota, vaginal infection
or periodontitis as well as postnatal factors such as cesarean
delivery, formula feeding, excessive antibiotic use, host genetics,
and the environment (105). Interestingly, formula feeding (106)
and social environment factors such as higher household income,
smaller family size, and urbanization were associated with both
increased risk of dysbiosis and increased KD incidence (47). In
addition, the peak age of KD onset ranging from 6 months to 4
years corresponds to the critical period for establishment of the
gut microbiota during the first 1,000 days of life (107).

CONCLUSIONS

We believe that dysbiosis underlies KD and could contribute
to genetically and environmentally determined predilections for
KD. Therefore, KD might be included in the growing list of
dysbiosis-associated conditions. If our perspective is confirmed,
it would be valuable to investigate whether supplying probiotics
starting at birth could reduce the risk of KD in infancy.
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