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While machine learning approaches to analyzing Alzheimer disease connectome

neuroimaging data have been studied, many have limited ability to provide insight in

individual patterns of disease and lack the ability to provide actionable information

about where in the brain a specific patient’s disease is located. We studied a cohort

of patients with Alzheimer disease who underwent resting state functional magnetic

resonance imaging and diffusion tractography imaging. These images were processed,

and a structural and functional connectivity matrix was generated using the HCP cortical

and subcortical atlas. By generating a machine learning model, individual-level structural

and functional anomalies detection and characterization were explored in this study. Our

study found that structural disease burden in Alzheimer’s patients is mainly focused in

the subcortical structures and the Default mode network (DMN). Interestingly, functional

anomalies were less consistent between individuals and less common in general in these

patients. More intriguing was that some structural anomalies were noted in all patients

in the study, namely a reduction in fibers involving parcellations in the right anterior

cingulate. Alternately, the functional consequences of connectivity loss were cortical

and variable. Integrated structural/functional connectomics might provide a useful tool

for assessing AD progression, while few concerns have been made for analyzing the

mismatch between these two. We performed a preliminary exploration into a set of

Alzheimer disease data, intending to improve a personalized approach to understanding

individual connectomes in an actionable manner. Specifically, we found that there were

consistent patterns of white matter fiber loss, mainly focused around the DMN and

deep subcortical structures, which were present in nearly all patients with clinical AD.

Functional magnetic resonance imaging shows abnormal functional connectivity different

within the patients, which may be used as the individual target for further therapeutic

strategies making, like non-invasive stimulation technology.

Keywords: brain connectivity, diffusion tractography imaging, Alzheimer’s disease, brain parcellation, functional
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INTRODUCTION

Alzheimer disease (AD) is characterized as the most common
cause of dementia with non-stop developing progression
and effective strategies, even to date. It is well-known that
conventional magnetic resonance imaging (MRI) imaging
provides very limited insight into dementia patients (1). While
patterns of atrophy can provide some indirect diagnostic
evidence for one type of degenerative disease vs. another, this
is relatively limited and often can be non-specific. Furthermore,
individuals can have substantial age-related atrophy and not
exhibit clinical signs of dementia, again suggesting that structural
brain MRI has only limited ability to diagnose, stage, or
guide treatment in any meaningful way for these patients (1).
Growing evidence supports the idea that AD is associated with
disruptions in brain activity and networks that may target
specific functionally connected neuronal networks (2, 3). These
facts drive interest in more sophisticated neuroimaging, such
as positron emission tomography–based studies, which are able
to image the amyloid and tau proteins (4), and connectomic-
based approaches, leveraging imaging studies such as functional
magnetic resonance imaging (fMRI) and diffusion tractography
imaging (DTI) (5). A growing number of researchers work on the
development of personalized, reproducible, non-invasive, and
neuroscientifically interpretable biomarkers for early diagnosis
or prediction of AD even on the subjective cognition decline
(SCD) stage (6–8), yet most of which is focused on the consistent
abnormal connection within the multimodal imaging as the
combination with DTI and fMRI (9, 10). Given the subtle and
often diffuse nature of dementing disorders, machine learning–
based approaches provide the most realistic method for complex
imaging datasets (11, 12).

Machine learning is an application of artificial intelligence

that allows computers to learn automatically and improve

from experience. It is one of today’s most rapidly growing
technical fields (13), which performs throughout science
including health care (14) such as identification and classification
for diseases like AD (15–17), traffic programming (18), and
marketing apps designing (19), which allows us to process large-
scale, multidimensional, complex datasets in this information
explosion of an era. Machine learning–based analysis of
connectomic data created from neuroimaging studies in patients
AD has been extensively studied in the literature (5, 9, 12, 20,
21). Most such efforts utilize a method for modeling features
of either DTI and/or fMRI studies, which allow a model to
differentiate between some combination of healthy controls,
patients with mild cognitive impairment, and those with AD.
While early identification of patients who will progress to clinical
AD would provide a clinically critical patient cohort who are the
best candidates for disease-modifying therapies (8), models that
provide a yes vs. no answer ignore the possibility of heterogeneity
of phenotypes, have limited ability to provide insight into
stages of the disease, and lack the ability to provide actionable
information about where in the brain a specific patient’s disease
is located and what specifically is happening. Treatments such
as repetitive transcranial magnetic stimulation (rTMS) provide
a safe and potentially useful tool that may palliate symptoms in

TABLE 1 | Demographic and clinical characteristics of participants.

Healthy control

(n = 41)

AD (n = 21) P

Age (years) 70.25 (0.77) 67.43 (2.35) 0.14

Gender (% female) 22 (50%) 17 (76%) 0.001**

Education (years) 16.56 (0.40) 10.71 (1.02) <0.0001****

Handedness (% right handed) 40 (100) 21 (100) 0.99

MMSE 29.00 (0.18) 24.29 (1.05) 0.002**

**means a significant difference with P = 0.001; **** means a significant difference with

p < 0.0001.

patients even if not disease-modifying, but for which it is unclear
what the appropriate target is (22).

In this pilot study, we presented a different approach using
machine learning to study AD which focused on characterizing
the site of a structural and functional anomaly at the single-
subject level. Not only did this approach provide potentially
actionable information, for therapies such as rTMS, but
our data suggested that specific anomalies were remarkably
consistent between individuals regardless of disease staging,
which suggested that they might represent fundamental steps
in early symptomatology of AD, and others became increasing
less consistent which indicated the possibility of heterogeneous
subgroups or stages of the disease.

MATERIALS AND METHODS

Participants
The study included 21 patients with clinically diagnosed AD
between the ages of 50 and 90 years who presented to
Shenzhen’s People’s Hospital for evaluation and 41 healthy
controls with similar age and intact cognition. All research
testing was performed with the approval of the local institutional
review board (Shenzhen People’s Hospital Medical Ethics
Committee) and with informed consent from the patient and/or
designated surrogate. The research has registered in the Chinese
Clinical Trial Registry (ChiCTR1800019199). The demographic
characteristics of the participants are listed in Table 1.

Clinical and Neurocognitive Assessments
We administered the same standardized neurocognitive test
to participants in both the AD and HC groups. All patients
underwent standard neurologic testing in addition to the Mini-
Mental Status Examination (MMSE) (23) and the Montreal
Cognitive Assessment (24) to confirm the diagnosis. MMSE was
used for the comparison between the AD and HC groups, based
on the correction of educational level; patients were classified as
cognitive decline where ≤18 MMSE. In the AD group, 17 of 21
patients were female, which had a significant difference with HC
(P = 0.001), despite we included equal proportions of gender
in HC, in clinical setting; two-thirds of persons diagnosed with
AD are women. There was also a notable difference in education
between two groups (P < 0.0001), which was consistent with
the research that older adults with at least 16 years of education
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had less of the progressive neurodegeneration associated with
AD. The MMSE in the AD group was decreased significantly
compared with HC (P = 0.002). The participants had suffered
approximately 3.2 years from AD or a noticeable cognition
decline with a variation from 2 up to 10 years.

Inclusion and Exclusion Criteria for AD
For inclusion criteria, (1) a diagnosis of probable AD according
to the National Institute of Neurological and Communicative
Disorders and Stroke (NINCDS) and the Alzheimer’s Disease and
Related Disorders Association (ADRDA) (NINCDS-ADRDA)
(25), (2) at age 50 to 90 years, (3) with ≤18 MMSE score, and
(4) current symptomatic treatment of AD.

And for the exclusion criteria, any other causes for cognitive
decline (1) prior or current neurological or central nervous
system disorders, (2) psychiatric disorder such as schizophrenia,
major depression, or any other psychiatric condition, (3)
abnormalities on MRI like lacunar infarcts, cerebral lesions, etc.,
and (4) the presence of associated disorders, immune, metabolic,
or endocrine disorders and a history of cancer, etc., (5) use of
prohibited medication or alcohol abuse, and (6) a diagnosis of
AD and concomitant cerebrovascular disease.

MRI Data Acquisition
For the HC group, we obtained 36 normal subject images from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) from
the ADNI2 study collected on the Philips Achieva and GE
Discovery MR 750 3.0-TMRI scanner. DTI was acquired on with
5 b = 0 baseline image and a b = 1,000 shell with 41-direction
acquisition, field of view (FOV) = 350 ∗ 350mm, slice thickness
2.7mm, 0-mm gap between slices with no overlap, full brain
coverage, isotropic voxels, square 256 ∗ 256 matrix.

Resting-state fMRI (rsfMRI) images were acquired on a
3.0-T MRI scanner, 3.312 × 3.312 × 3.312-mm voxels, 140
volumes/run, TR = 2,020ms, TE = 30ms, field of view = 224
× 224mm, flip angle= 80◦, 7-min run time.

For AD patients, Siemens Skyra 3.0-T MRI scanner was
used for data acquisition; all patients underwent a pretreatment
standard structural T1- and T2-weighted images, as well as
diffusion-weighted image, and MR angiography to rule out
secondary explanations for their clinical dementia.

DTI with the following parameters: with 10 b = 0 baseline
image and a b = 1,000 shell with 64 direction acquisition, FOV
= 224 ∗ 224mm, slice thickness 2mm, 0-mm gap between slices
with no overlap, full brain coverage, isotropic voxels, square 112
∗ 112 matrix.

rsfMRI was performed with the following parameters: T2-star
EPI sequence, 3.5×3.5×3.5-mm voxels, 240 volumes/run, TR =

2,020ms, TE = 30ms, field of view = 224 × 224mm, flip angle
= 90◦, 8-min run time.

To eliminate the difference made by MRI scanners in this
study, a preprocessing step using tangent space normalization
and whitening method was applied to correct the influence of
the bias field to reduce misdiagnosis and improve the accuracy
of diagnosis before segmentation or classification.

rsfMRI Preprocessing
The rsfMRI images were processed using standard processing
steps: (1) motion correction was performed on the T1 and
BOLD images using a rigid body alignment; (2) slices with excess
movement [defined as DVARS> 2 sigma (26) from the mean
slice] were eliminated; (3) the T1 image was skull stripped using
a convolutional neural net (CNN); this was inverted and aligned
to the resting state bold image using a rigid alignment, which was
then used as a mask to skull strip the rsfMRI image, (4) slice time
correction and global intensity normalization was performed,
(5) gradient distortion correction were performed using a
diffeomorphic warping method which aimed to locally similarize
the rsfMRI and T1 images, (6) High variance confounds were
calculated using the CompCor method (27) as well as motion
confounds were regressed out of the rsfMRI image, and the linear
and quadratic signals were detrended, (7) spatial smoothing was
performed using a 4-mm full width at half maximum Gaussian
kernel. The personalized atlas created in previous steps was
registered to the T1 image and localized to the gray matter
regions. Thus, it was ideally positioned for extracting an average
BOLD time series from all 379 areas (180 parcellations × 2
hemispheres, additionally with 19 subcortical structures), which
yielded 143,641 correlations.

Diffusion Tractography Preprocessing
The diffusion tractography (DT) images were processed using
the Omniscient software, which employs a standard processing
steps in the Python language (28): (1) the diffusion image
was resliced to ensure isotropic voxels; (2) motion correction
was performed using a rigid body alignment; (3) slices with
excess movement (defined as DVARS >2 sigma from the mean
slice) were eliminated; (4) the T1 image was skull stripped
using a convolutional neural net (CNN); this was inverted and
aligned to the DT image using a rigid alignment and then
used as a mask to skull strip the DT; (5) gradient distortion
correctionwas performed using a diffeomorphic warpingmethod
which aimed to locally similarize the DT and T1 images;
(6) eddy current correction was performed; (7) fiber response
function was estimated and the diffusion tensors were calculated
using constrained spherical deconvolution; and (8) deterministic
tractography was performed with random seeding, usually
creating about 300,000 streamlines per brain.

Machine Learning–Based Parcellation
Not only the ML has been largely used in the prediction
for internet-of-Things services (29) and traffic control system
(30), which also been applied to the neurological science. To
create a personalized brain atlas, the structural adjacency matrix
was extracted as a set of fibers running between each pair
of parcellations. To minimize the effects of brain atrophy, we
created a machine learning–based, subject-specific version of the
HCP-MMP1 (31) atlas based on DTI structural connectivity.
This was created by training a machine learning model on 200
normal adult subjects by first processing T1 and DT images as
above. A HCP-MMP1 atlas in NIFTIMNI space was then warped
onto each brain and the structural connectivity was calculated
between every pair of this atlas and a set of ROI’s containing 8
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subcortical structures per hemisphere as well as the brainstem
based on the streamlines, which terminated within an ROI.
This step both allowed the generation of feature vectors that
basically a 379 × 379 structural connectivity based adjacency
matrix, and generated a centroid of the parcellation, which was
utilized to constrain the voxels studied for assignment to a given
parcellation to a plausible area near its typical position. These
feature vectors for each region were then used as a training set
and the data were modeled using the eXtreme Gradient Boosting
(XGBoost) method.

This model was then applied to the new subject by first
warping the HCP-MMP1 atlas to the new brain and collecting a
set of feature vectors of the connectivity of each voxel (32–35).
The feature vectors were then used to determine if each voxel
belongs to a parcellation or region. This created a version of the
HCP-MMP1 atlas with subcortical components, which was not
dependent on brain shape or pathologic distortion but specific
for this subject while comparable between subjects.

Personalized Anomaly Detection
Instead of trying to fit a machine learning model to the raw
data, we studied these patients on an individual level by utilizing
machine learning to direct us to areas that were abnormal in
AD patients compared to age-similar controls. To do this, we
utilized the ADNI2 dataset to generate a training set, which

was processed using the same technique. We then performed
a tangent space connectivity transformation, whitening, and
normalization (36) to determine the range of normal correlations
for each functional connectivity and structural connectivity pair
in the matrix. We then excluded the one-third of pairs in
both structural and functional with the highest between subject
variance in the normal cohort (37), under the hypothesis that
these areas might be prone to false discovery, possible due
to inter-individual variability in normal subjects. Abnormal
connectivity for each connection was determined as a 3-sigma
outlier for that structural or functional entry. Assignment of
parcellations to various large-scale brain networks was based on
several previous coordinates based meta-analyses, which have
been previously published research (38–41).

The illustration of the data processing and model forming is
shown in Figure 1.

Statistical Analyses
All statistical analyses were conducted in SPSS software
(IBM Corporation), for the comparison of demographic and
clinical characteristics of participants, independent sample T-test
analyses using two-sided tests in continuous data and a Chi-
square was assessed for the discreet data.

FIGURE 1 | Workflow for the research. From the upper left to the right of this flowchart: the research starts with a standard atlas warped onto the brain, the

boundaries are smooth because it is not machine learning–based. Then using the constrained spherical deconvolution–based tractography to adjust the atlas to

personalize it. Process the rsfMRI to a functional matrix and structural MRI to a structural matrix by taking parcellation of atlas. The final step will be utilizing a training

set in machine learning to make an anomaly matrix of structural and functional connectivity for further analysis.
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FIGURE 2 | Fiber tracts and fMRI-based brain network. (A) Parcellations and fiber tracts–based brain network pulled out from the machine learning algorithms.

Three-dimensional rendering of parcellations and tractography-based MRI images for identified set of seven canonical brain connectivity networks that Only shows

tracts within areas of the network. (B) Example submatrices of structural anomalies for the same patient based on affiliation in the same brain-network with (A).

Normal or high variances (excluded areas) were indicated in white. Dots represent areas with less diffusion tractography fibers traces between them and normal,

age-similar subjects. These maps provided a network-by-network fingerprint. CEN, central executive network; DAN, dorsal attention network; DMN, default mode

network; VAN, ventral attention network.

RESULTS

Anomaly Detection–Based Fingerprinting
of AD-Based Anomalies
Parcellations and fiber tracts–based brain network pulled out
from the machine learning algorithms and an example of this
matrix subset based on the affiliation of a parcellation with one
of the known large-scale brain networks. This example showed
the form of data these algorithms provide about specific brain
networks (Figure 2). Note when we visually inspected all 21
brains, we did not note any consistent patterns between patients
except that the default mode network was always abnormal in
some way. It was important to note that white entries include
both connections that were within normal limits compared to
age-similar controls, and those connections are highly variable in
the control group, suggesting that they were too interindividual
variable to be meaningfully called an anomaly.

Structural Disease Burden in AD Is Mainly
in the Subcortical Structures and in DMN
To understand the behavior of data produced by our approach,
we first analyzed the overall frequency of anomalies in all
areas we studied to get an estimate of which areas were most

frequently part of pair with a decreased number of white matter
fibers on the diffusion tractography study of these patients
compared to the age-similar controls. Note that two aspects of
the methodology were worth reiterating. First, we parcellated
the brains of both groups using a machine learning model that
assigns voxels to a parcellation of subcortical structure based on
which other voxels they connect to on the DTI. This means that
the basic patterns of connections are held relatively consistent,

and should not greatly vary due to alignment of the atlas or
other similar problems. Second, while white matter connections

decrease with age dependent ways, which do not necessarily cause

dementia, the comparison with age-similar controls implies that

this comparison should select out AD-specific connection loss.
Table 2 demonstrates the areas with the highest fraction of

their possible anomalies in all 21 patients who had an anomaly.
We noted that that the top 23 areas had decreased numbers of
fibers between the area and 7.6 and 13.85% of all possible target
areas in all 21 patients studied (at least among the low variance
options). Figure 3 shows this structural anomaly burden as a
series of bar graphs. This demonstrates two natural inflection
points where the burden drops, suggesting somewhat significant
changes in behavior. As Table 1, shows, the majority of the high
anomaly burden areas are subcortical and include basal ganglia
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TABLE 2 | Structural anomaly burden.

Parcellation No. of anomalies No. of subjects with

at least one anomaly

No. of low variance

connections

Total potential

anomalies

Percentage of total %

R_8BL 634 21 218 4,578 13.85

L_pallidum 592 21 204 4,284 13.82

R_pallidum 694 21 249 5,229 13.27

R_ventralDC 294 21 112 2,352 12.50

R_9m 543 21 211 4,431 12.25

R_caudate 362 21 148 3,108 11.65

R_10v 714 21 302 6,342 11.26

L_ventralDC 203 21 87 1,827 11.11

Brain stem 36 21 16 336 10.71

L_putamen 225 21 104 2,184 10.30

L_thalamus 240 21 114 2,394 10.03

L_8BM 288 21 143 3,003 9.59

R_thalamus 207 21 103 2,163 9.57

R_8BM 338 21 175 3,675 9.20

L_10v 416 21 230 4,830 8.61

R_p24 560 21 333 6,993 8.01

R_OFC 462 21 276 5,796 7.97

R_cerebellum 108 21 65 1,365 7.91

R_10pp 301 21 184 3,864 7.79

R_a24 498 21 307 6,447 7.72

L_caudate 229 21 142 2,982 7.68

L_TGd 170 21 106 2,226 7.64

R_accumbens 417 21 261 5,481 7.61

structures, the dorsal diencephalon, and areas 8BL, and 8BM.
Also notable are several parts of the anterior portion of the default
mode network. Note that patients had at least one structural
anomaly in every parcellation and subcortical area compared to
healthy age-similar controls; these areas have the most frequent
anomalies. Of note, neither hippocampus was among the most
frequent sites of structural anomalies.

Structural–Functional Mismatch
Characterizes the Anomalies in AD
Table 2 shows a similar analysis of Functional anomalies in AD.
Note that the highest-burden areas are generally not subcortical
regions. The default mode areas, such as p24 and 10v are on
both lists as are frontal areas 8BM and 8BL. Also note that
with the exception of the right hippocampus, all of the highest
functional anomaly burden areas are cortical. In other words,
even though the deep structures frequently show decreased
numbers of white matter fibers on with different brain regions,
the less commonly show observable functional connectivity
disturbances with those areas.

Disease Defining Anomalies in AD Were
Structural Changes in the Right Anterior
Cingulate
To see how consistent the anomalies seen in AD occurred, and
specifically if there were any connection, which was usually

abnormal. Table 4 demonstrates the results of this frequency
analysis on the structural connectomes of these patients.
Interestingly, two anomalies were seen in all 21 patients, and
3 anomalies were seen in 20/21 patients. These involved the
anterior and middle cingulate gyrus on the right as one or both
pairs of abnormal structural connections. As we looked through
the connections of decreasing frequency, the most consistent
connections were overrepresented by right-sided and DMN
anomalies, consistent with many other studies.

The Functional Consequences of
Connectivity Loss Were Cortical and
Variable
Table 5 demonstrates a similar analysis of the most common
functional anomalies in AD patients. Two obvious differences
were notable. First, functional anomalies were far less consistent
with the most common anomaly in functional connectivity
only occurring in 8 patients. Second, these anomalies are
corticocortical or corticohippocampal, and none appear to
be corticobasal or corticothalamic. Interestingly, the abnormal
functional connectivity, which was common between subjects
spread into numerous networks, as opposed to mainly the DMN,
and it was mostly areas that were interhemispheric or not
immediately adjacent to each other. The Dorsolateral prefrontal
cortex (DLPFC) and dorsomedial prefrontal cortex (DMPFC)
were particularly affected, with 8BM and 8BL notable inclusions.
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FIGURE 3 | A visual depiction of structural anomaly burden in these 21 subjects. This is a set of 377 bar graphs representing the total fractions of anomalies noted in

each of the cortical parcellations and subcortical regions of interest expressed as a total % of possible anomalies. This gives a sense of which connections are most

consistently abnormal compared to normal age-similar but healthy controls in non-variable areas. Note there are two inflection points in this graph that demonstrate

steep transitions in the data. Areas to the left of the first inflection point are mostly subcortical structures, including the putamen, caudate, and thalamus, among

others, and areas 10v, right 9M, bilateral 8BM, and right area 8BL. Areas between the two inflection points mainly include regions within the anterior cluster of the

Default mode network. Most other areas have a lower anomaly burden and are to the right of the second inflection point.

DISCUSSION

The development of personalized, reproducible, non-invasive,
and neuroscientifically interpretable biomarkers are urgently
needed for AD precision medicine (16, 42), yet despite
remarkable advances, few such biomarkers are available.
Neuroimaging using DTI and fMRI in conjunction provides
objective information on the structure and function that for
assessing network connectivity of the brain. In this study, we
performed a preliminary exploration into a set of AD data with
a goal of revising a heuristic for analyzing these patients with
the goal of improving a personalized approach to understanding
individual connectomes in an actionable manner. Specifically,
we found that there were consistent patterns of white matter
fiber loss, mainly focused around the DMN and deep subcortical
structures, which were present in nearly all patients with clinical
AD (Tables 2, 4). Additionally, these structural anomalies were
frequent, but not universal. We also found an obvious mismatch
between the structural and functional anomalies in these patients,
with the latter being most cortical, and mostly areas separated at
long distances from each other.

The fact that DTI found white matter fiber anomalies, which
were consistent between individuals, even being present in all
patients, was a surprising finding, but aligns with other machine
learning approaches (5) aimed at making the diagnosis of AD
vs. normal, suggesting that these changes are early and disease

defining. In other words, it is difficult to have clinical AD with a
DMN with normal structural connectivity.

As important as this is, it implies that these problems are
not useful for personalizing treatment approaches, or for staging.
To that effect, the parcellations in the less common, but not
rare groups e.g., being present in 50–65% of patients, seem
like better candidates, as these might track the course of the
disease better. Previews studies showed that the combination
fMRI or/with DTI can be used for identification of the early
stage of AD (9, 43) and classification from various manifestations
dementia (15), while revealed only the abnormalities in large-
scale network connectivity in several brain regions such as
right hippocampal, left middle frontal gyrus, posterior cingulate,
and middle cingulate gyrus on the right, which is consistent
with the structural abnormal assessed with DTI in our study.
The mismatch between structural and functional anomalies
in our research was striking (Tables 2–5). It is interesting to
speculate why this would be the case, but given the physical
distance between areas common on this list, we suggest that
loss of corticobasal and corticothalamic fibers, common in
these patients, reduce the ability of these structures to facilitate
communication with distant areas. It highlights the need to look
at areas beyond the large-scale brain networks when we try to
understand functional-phenotypic relationships.

It was well-known that DMN was considered as the most
affected network in neurological and neuropsychiatric disorders,
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TABLE 3 | Functional anomaly burden.

Parcellation No. of anomalies No. of subjects with

at least one anomaly

No. of low variance

connections

Total potential

anomalies

Percentage of total %

L_8BM 577 19 377 7,163 8.06

R_PFt 533 19 360 6,840 7.79

R_V1 540 19 374 7,106 7.60

L_9-46d 535 19 379 7,201 7.43

L_10v 500 19 378 7,182 6.96

R_hippocampus 453 19 370 7,030 6.44

L_AAIC 437 19 378 7,182 6.08

R_8BL 389 19 378 7,182 5.42

R_13l 384 19 374 7,106 5.40

L_IFJa 318 19 360 6,840 4.65

R_VMV3 327 19 373 7,087 4.61

L_PIT 306 19 360 6,840 4.47

R_MIP 314 19 371 7,049 4.45

R_PHT 290 19 345 6,555 4.42

L_IFJp 316 19 376 7,144 4.42

L_9p 310 19 371 7,049 4.40

R_PIT 303 19 367 6,973 4.35

L_s32 289 19 351 6,669 4.33

R_p24 304 19 374 7,106 4.28

L_PHA1 289 19 357 6,783 4.26

L_V4t 290 19 362 6,878 4.22

R_PoI2 264 19 334 6,346 4.16

R_2 282 19 359 6,821 4.13

TABLE 4 | Frequency of structural anomalies.

Patients Affiliation 1 Parcellation 1 Parcellation 2 Affiliation 2 Hemisphere Relationship

21 Salience R_a24pr L_STSdp Language Bilateral Intrahemispheric

DMN R_p24 R_24dd Sensorimotor Right Intralobar

20 DMN R_p24 R_p24pr Salience Right Intralobar

DMN R_p24 R_33pr DMN Right Intralobar

DMN R_33pr R_24dd Sensorimotor Right Intralobar

19 Basal ganglia R_caudate R_OFC Orbitofrontal Right Corticobasal

Basal ganglia R_caudate R_10v DMN Right Corticobasal

Orbitofrontal R_OFC R_putamen Basal ganglia Right Corticobasal

17 Salience R_a24pr R_a24 DMN Right Intralobar

DMN R_7m R_23d DMN Right Intralobar

Basal ganglia R_pallidum R_6a Dorsal Premotor Right Corticobasal

SPL R_7Pm R_23d DMN Right Intralobar

16 Salience R_p24pr R_a24 DMN Right Intralobar

Salience R_p24pr R_d32 DMN Right Intralobar

DMN R_23d R_a24pr Salience Right Intralobar

Basal ganglia R_pallidum R_7PL SPL Right Corticobasal

DMN R_10v L_11l Orbitofrontal Bilateral Intrahemispheric

Basal ganglia L_pallidum R_8BL DLPFC Bilateral Intrahemispheric

Insula L_52 L_PoI2 Insula Left Intralobar
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TABLE 5 | Frequency of functional anomalies.

Patients Affiliation 1 Parcellation 1 Parcellation 2 Affilliation 2 Hemisphere Relationship

8 Sensorimotor R_2 L_IFJa DLPFC Bilateral Interhemispheric

DMN L_10v L_ProS Visual Left Long range

Insula L_Pir L_AAIC Insula Left Intralobal

7 DMN L_10v R_PFt Parietal Bilateral Interhemispheric

DMN L_10v R_9-46d DLPFC Bilateral Interhemispheric

DMN L_10v L_AAIC Insula Left Long range

Lateral parietal R_PFt R_8BL DLPFC Right Long range

Lateral parietal R_PFt L_s32 DMPFC Bilateral Interhemispheric

DLPFC L_IFJa R_SFL Sensorimotor Bilateral Interhemispheric

DLPFC L_IFJa R_s32 DMPFC Bilateral Interhemispheric

Limbic R_hippocampus L_3b Sensorimotor Bilateral Interhemispheric

Limbic R_hippocampus R_13l Orbitofrontal Right Long range

DMN L_d32 L_A1 Auditory Left Long range

DMN L_d32 L_OFC Orbitofrontal Left

Visual L_ProS L_8BM DMPFC Left Long range

Visual R_V7 R_VMV1 Visual Right

DLPFC R_IFJa L_OP2-3 Lateral parietal Bilateral Interhemispheric

Orbitofrontal L_pOFC L_9p DLPFC Left Long range

DLPFC L_9-46d L_V4t Visual Left Long range

6 DMPFC L_8BM R_hippocampus Bilateral Interhemispheric

DMPFC L_8BM R_2 Sensorimotor Bilateral Interhemispheric

DMPFC L_8BM R_PFcm Lateral parietal Bilateral Interhemispheric

DMPFC L_8BM R_V7 Visual Bilateral Interhemispheric

DMPFC L_8BM R_V1 Visual Bilateral Interhemispheric

DMPFC L_8BM L_s32 DMPFC Left

DMPFC L_8BM R_10v DMN Bilateral Interhemispheric

DMPFC L_8BM L_9-46d DLPFC Left

Lateral parietal R_PFt R_V3A Visual Right Long range

Lateral parietal R_PFt R_V7 Visual Right Long range

Lateral parietal R_PFt L_ProS Visual Bilateral Interhemispheric

Lateral parietal R_PFt L_31pd DMN Bilateral Interhemispheric

including AD, which shows a high level of activity during
rest while deactivates its performance during cognitive tasks
(44). These areas include the precuneus/posterior cingulate
cortex, medial prefrontal cortex (MPFC), and medial, lateral,
and inferior parietal cortex, and its activity holds potential as
a non-invasive biomarker of incipient AD (45). Researchers
have demonstrated the disconnection or decreased functional
connectivity within/between DMN and other networks, which
contribute to a cognition decline (46).

Regardless of the mechanism, functional data seems less
consistent than structural data most in the DMN. There are
good and bad points to using these data. This suggests that
using machine learning–based on the variability of functional
connectivity to classify or identify patients in early-stage disease,
or to stage the extent of the disease, seems less promising than
structural data as the anomalies seem to be more individual

specific. However, the inherent variability of functional anomaly
data in our patients suggests that it is highly promising at
personalizing approaches to therapy, such as TMS (22). In this
paradigm, an integrated understanding of the structural defects
unique to that patient, as well as the functional consequences, can
provide a unique approach to why certain symptoms occur in a
specific patient. In other words, things that do not vary seldom
provide variable outcomes.

The following are a few notes about our data modeling
approach. First, parcellating the brain of structurally abnormal
patients has long been a source of variability in the data, especially
in the presence of brain atrophy. By using a machine learning
approach based on structural connectivity patterns, we hold at
least one variable (voxel identity in a parcellation) relatively
constant, as the connectivity pattern should remain similar
for a parcellation across brains (41, 47–49). Further, while the

Frontiers in Public Health | www.frontiersin.org 9 November 2020 | Volume 8 | Article 584430

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Ren et al. Connectomic Fingerprinting

connectome has seemingly infinite interindividual variability, we
hypothesize that clinically relevant phenotypes we are interested
in at this early stage are less likely to result from the loss of rare
individual variants in connectivity, and instead result from more
constant interindividual connections. Thus, we eliminated many
of the higher variance connectivity edges on the graphs to focus
on similarities across individuals, and reduce the false discovery
rate when scaling the results of machine learning models to
individuals. In other words, we focused on brain connectivity,
which we can more convincingly expect to be in a specific range.

As the potential treatment that non-invasively applying on
cognitive decline, TMS may also begin to address etiological
or syndrome’s heterogeneity by targeting specific circuits to
treat specific symptom clusters. However, it remains unknown
whether the stimulation of different circuits is associated
with improvement in different cognitive symptoms. In clinical
practice, TMS targeting is usually based on scalp measurements
and mostly without a flexible tracking device to fix the coil,
resulting in different patients, or even the same patient during
their series of sessions receiving stimulation of different sites in
the prefrontal cortex.

Although there are important discoveries revealed by our
study, there are also limitations. First, we included only 21 AD
patients, which may lead to some potential bias for machine
learning calculation-based results. Second, the way we eliminated
one-third of parcellation pairs with the highest variance in
the cohort of normal subjects, may have lost some original
information, While, these areas were the smaller parcellations
and is mainly aimed to reduce the problem of multiple
comparisons (50). This should not be expected to introduce
any subjective bias as it was based on the data. Finally, even
after excluding one-third of the connectivity differences, the
abnormities results we made have not been applied to selecting
the individual target for rTMS treatment, although there may be
a long way from being employed to the clinic, the outcome that
we made may provide evidence for individualized and precise
treatment for AD.

In conclusion, we demonstrated a machine learning–based
approach to studying individual connectomes in a non-group
averaged way. This critical exploratory work lays the groundwork
for future larger-scale work in these patients. Our findings
highlight the potential for a reproducible and generalizable
functional brain imaging biomarker to aid the early diagnosis
of AD and track its progression. This data-driven approach
for identifying connectivity-specific targets may prove useful

for other disorders and facilitate personalized neuromodulation
therapy like rTMS. Collectively, our findings highlight the
potential for mismatching between structural and functional
brain imaging to provide a generalizable, and neuroscientifically
interpretable imaging biomarker that may support clinicians
in the non-invasive personalized treatment of AD. Further,
our study may shed light on exploring new mechanisms and
individualized stratagem based on the functional connectivity
of brain networks in patients with dementia or even other
neurodegenerative diseases.
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