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Abstract 

Objective:  Presently, non-LTR retrotransposons are the most active mobile elements in the human genome. Among 
these, Alu elements are highly represented in the modern population. Worldwide, distribution of Alu polymorphisms 
(insertion/deletion; I/D) shows variability between different populations. Two Alu insertion loci, ACE and PR, are sig-
nificant biomarkers that have served in several genotype–phenotype association studies. In Mexico, studies concern-
ing the frequency of these biomarkers have been conducted mainly in subpopulations from central and southern 
regions. Here, we screened a population sample of the northwestern region to gain further knowledge regarding the 
prevalence of Alu polymorphisms within ACE and PR loci.

Results:  For ACE locus, the observed genotype frequencies were 26.5, 51.0 and 22.5% for II, ID, and DD, respectively; 
and allelic frequencies for I and D were 52 and 48%. Whereas respective genotype frequencies for PR locus were 2.7, 
26.5 and 70.8%, and the corresponding allele frequencies were 16 and 84%. Furthermore, the insertion frequency 
within ACE locus was similar between central, western and northwestern subpopulations, and rather higher in 
southeastern subpopulation (p < 0.05). Although the occurrence of Alu polymorphisms within PR locus has not been 
widely examined, the insertion frequency was higher in northwestern subpopulation, as compared with western and 
southeastern subpopulations (p < 0.05). Based on the frequency of Alu insertions found in ACE and PR loci, subpopu-
lations from the northwestern, western and central regions share a common genetic origin, but apparently not with 
the subpopulation from the southeastern region, in accordance with the notion that assumes the existence of a 
broad genomic diversity in the Mexican population. In addition, the high prevalence of Alu insertions reveals their 
potential application as biomarkers with prognostic value for the associated diseases; e.g., as part of the standard 
protocols for clinical diagnosis.

Keywords:  Human polymorphisms, Alu insertions, Genotyping, Mexican population, Genomic diversity

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
Mobile elements can be classified as either DNA transpo-
sons or retrotransposons. DNA transposons are currently 
not mobilizing in the human genome, while retrotrans-
posons have significant mobility. Retrotransposons can 
be subdivided into LTR and non-LTR elements, which 
are distinguished by the presence or absence of long ter-
minal repeats. LTR retrotransposons are endogenous ret-
roviruses with very limited activity. By contrast, non-LTR 

retrotransposons, typified by L1, Alu, and SVA elements, 
are presently the most active [1–3]. Therefore, numer-
ous de novo insertions have resulted in human diseases 
[3–6].

Alu elements are one of the most represented in the 
human genome, being about one million copies (almost 
11% of the genome). As active elements in the modern 
population, new insertions into somatic cells contribute 
to genomic diversity, gene mutations, and genetic dis-
eases [7, 8]. In addition, the ubiquitous presence of Alu 
insertions has culminated in their appearance in many 
genes and transcripts, having a far-reaching influence 
on gene expression [7, 9, 10]. Moreover, it has been sug-
gested that the most detrimental effect is the interaction 
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between highly homologous elements and their potential 
to generate deletions, duplications, inversions and other 
complex genomic rearrangements [11]. Overall, about 
0.5% of all human genetic disorders, including some 
types of cancer, have allegedly resulted from Alu-medi-
ated unequal homologous recombination [12].

The insertion/deletion (I/D) polymorphism of the angi-
otensin-converting enzyme (ACE) locus is an important 
genetic biomarker that has served in numerous geno-
type–phenotype association studies [13]. ACE plays a 
key role in the regulation of systemic blood pressure and 
renal electrolyte homeostasis by converting the inac-
tive angiotensin I into the potent vasoconstrictor and 
aldosterone-stimulator angiotensin II, and by inactivat-
ing the pro-inflammatory vasodilator bradykinin [13, 14]. 
The I/D polymorphism is distinguished by the presence 
(insertion) or absence (deletion) of an Alu element within 
intron 16 of the ACE locus, resulting in three different 
genotypes: II, ID and DD. Moreover, it seems that the 
serum concentrations of ACE correlate with the I/D pol-
ymorphism (DD > ID > II), suggesting that the levels of 
circulating enzyme may be determined by the genotype 
at the ACE locus [15].

The long-range haplotype, named PROGINS, found in 
the progesterone receptor (PR) locus comprises an Alu 
insertion within the intron G (between exon 7 and 8) and 
two single-nucleotide polymorphisms (SNP): G→T trans-
version in exon 4, producing a missense mutation (V660L), 
and C→T transition in exon 5, yielding a silent mutation 
(H770H). Remarkably, the identification of any of these 
three alleles uniquely recognizes the presence of the other 
two [16]. The phenotypic effect of PROGINS is predicted 
to be due to both the Alu insertion, affecting gene expres-
sion and RNA stability, and the V660L substitution, lead-
ing to a reduction in the response to progesterone [17].

Distribution of Alu polymorphisms shows variability 
among different world populations [18]. In Mexico, stud-
ies concerning the frequency of these biomarkers have 
been conducted mainly in populations of central and 
southern regions [19–21]. Thus, to obtain additional data 
on the distribution of Alu insertions among other sub-
populations, we screened a sample of the northwestern 
region. Here, we report the prevalence of Alu polymor-
phisms within ACE and PR loci, two genomic variations 
which presumably can lead to diseases in humans. More-
over, these biomarkers offer the possibility of being trans-
lated to clinical practice after a thorough validation of the 
genotype–phenotype association.

Main text
Methods
One hundred and forty-seven samples were available from 
a DNA biobank collected in a previous study [22]. Any 

personal data was removed from the sample tube prior to 
conduct this study; e.g., ensuring individual privacy and 
autonomy [23]. All samples were assayed for each Alu 
polymorphism; e.g., ACE or PR. Each segment comprising 
the insertion was amplified by polymerase chain reactions 
(PCR) using locus-specific primers (Table  1). Although 
these assays are sensitive and well documented, precision 
and reproducibility were ensured by re-typing randomly 
selected samples throughout the study.

Typical PCR amplifications were performed in a total 
volume of 0.02  mL of 1X Taq Mix (Qiagen) contain-
ing 25 pmol of each primer and 100 ± 40 ng of template 
DNA. Thermal cycling conditions were as follows: an 
initial denaturation step (2 min at 94 °C), followed by 35 
cycles of exponential amplification (20  s at 94  °C, 20  s 
at 50  °C, and 40  s at 72  °C), and a final elongation step 
(7  min at 72  °C). PCR products were separated by gel 
electrophoresis (2% agarose) and stained with ethidium 
bromide. The I/D polymorphisms were determined by 
visual discrimination of each fragment length (Table 1).

The observed values for allele and genotype frequen-
cies were obtained by direct counting, while the expected 
value for genotype frequency was calculated according to 
the Hardy–Weinberg (HW) model. HW equilibrium was 
verified by the goodness-of-fit test χ2 with a significant 
confidence value of p < 0.05.

Results
Since a significant percentage (around 0.5%) of all human 
genetic disorders might result from Alu-mediated une-
qual homologous recombination [12], the discovery and 
characterization of the insertion sites are essential in 
narrowing down the cause of such diseases [24]. Moreo-
ver, as Alu elements are the most abundant interspersed 
repeats in the human genome [8], the distribution and 
classification of widespread variants are decisive to iden-
tify novel pathogenic insertions [24, 25].

We have reported the prevalence of three pharma-
cogenetic traits in northwestern Mexicans [22]. To gain 
additional data regarding other biomarkers, a genetic 
screening was performed to determine the frequency of 
Alu polymorphisms within ACE and PR loci (Table  2). 

Table 1  The sequence of locus-specific primers and length 
of  PCR products used for  discrimination of  Alu polymor-
phisms

Locus Primer sequence (5′–3′) PCR product (bp)

ACE FW: CTGGAGACCACTCCCATCCTTTCT Insertion (I): 480

RV: GATGTGGCCATCACATTCGTCAGAT Deletion (D): 191

PR FW: GGCAGAAAGCAAAATAAAAAGA Insertion (I): 479

RV: AAAGTATTTTCTTGCTAAATGTC Deletion (D): 159
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For ACE locus, the observed genotype frequencies for II, 
ID and DD were 26.5, 51.0 and 22.5%; and the frequen-
cies for I and D alleles were 52 and 48%; respectively. 
Whereas for PR locus, the observed frequencies for II, 
ID and DD genotypes were 2.7, 26.5 and 70.8%; and the 
allele frequencies were 16 and 84% for I and D; respec-
tively. Furthermore, distribution of polymorphic geno-
types was found to be in Hardy–Weinberg equilibrium 
(p > 0.05).

Through a comparative analysis (Table  3), we found 
that the frequency of Alu insertions within ACE locus 
was quite similar between central, western and north-
western subpopulations, but significantly different in a 
southeastern subpopulation (p  <  0.05), suggesting dis-
tinct genetic origins amongst current Mexican subpop-
ulations. Conversely, although the occurrence of Alu 
polymorphisms within PR locus has not been widely 
examined, we found that the frequency of insertions was 
significantly higher in a northwestern subpopulation, as 
compared with western and southeastern subpopulations 
(p < 0.05), supporting the previously mentioned notion.

Discussion
Because of their transposition activity, Alu elements 
represent a significant source of genomic variation [2]. 
Their importance becomes highlighted by the potential 

association with genetic instability, one of the major 
causes of human diseases such as cancer [26]. In addi-
tion, several studies have demonstrated their ability to 
modulate gene expression at the post-transcriptional 
level [27]. From the evolutionary standpoint, the Alu 
elements can be regarded as fixed or polymorphic. Fixed 
elements are evolutionarily older and present through-
out the population, while those that are polymorphic 
are the result of recent retrotransposition events and 
can be found in a subset of individuals in the popula-
tion. Since the prevalence of polymorphic alleles may 
vary between populations of different origin [28], geno-
type screening is essential identifying individuals car-
rying insertions (e.g., homozygous and heterozygous), 
especially when the genotype–phenotype association 
has been well established, because those individuals 
could be at risk of developing the condition associated 
[7, 24, 29, 30].

In Mexican populations, the ancestral genetic contribu-
tion exhibits regional fluctuations [31]. Although numer-
ous studies have been conducted in different regions, 
a few have been performed in the northwestern region. 
Since polymorphic Alu elements are reliable biomark-
ers [32, 33], we used those within ACE and PR loci to 
determine the occurrence of I/D polymorphism in the 
northwestern subpopulation. Our results showed that 
the frequency of Alu insertions found in the examined 
subpopulation is quite comparable to the observed in 
western and central subpopulations, but it is significantly 
different from that reported in southeastern subpopula-
tion (p < 0.05). This is consistent with the notion that pre-
sumes the existence of a broad genomic diversity in the 
Mexican population [31, 34].

Limitations
The high prevalence of Alu insertions in current Mexican 
population reveals their potential application as biomark-
ers with a prognostic value for the associated diseases; 
e.g., as part of the standard protocols for laboratory diag-
nosis. However, this notion should be properly assessed 
through genotype–phenotype association studies to ade-
quately fulfill clinical purposes.

Abbreviations
LTR: long terminal repeats; ACE: angiotensin converting enzyme; PR: progester-
one receptor; SNP: single nucleotide polymorphisms.
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Table 2  The frequencies of  the Alu polymorphisms found 
within  ACE or PR locus among  northwestern Mexicans 
(N = 147)

Locus Genotype (f) Allele (f) P value (χ2)

ACE II: 39 (0.265)
ID: 75 (0.510)
DD: 33 (0.225)

I: 153 (0.52)
D: 141 (0.48)

0.789 (0.072)

PR II: 4 (0.027)
ID: 39 (0.265)
DD: 104 (0.708)

I: 47 (0.16)
D: 247 (0.84)

0.881 (0.022)

Table 3  The frequency of the Alu insertions within ACE or 
PR locus among Mexican subpopulations

Locus Subpopulation (region) N F (I) References

ACE Baja California (NW) 147 0.520 This study

Jalisco (W) 144 0.517 [35]

288 0.519 [36]

Michoacán (W) 269 0.572 [37]

México D.F. (C) 138 0.590 [38]

98 0.602 [19]

Yucatán (SE) 51 0.735 [39]

PR Baja California (NW) 147 0.160 This study

Jalisco (W) 209 0.079 [21]

Campeche (SE) 48 0.060 [20]
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