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Vocalizations linked to emotional states are partly conserved among phylo-
genetically related species. This continuity may allow humans to accurately
infer affective information from vocalizations produced by chimpanzees. In
two pre-registered experiments, we examine human listeners’ ability to infer
behavioural contexts (e.g. discovering food) and core affect dimensions (arou-
sal and valence) from 155 vocalizations produced by 66 chimpanzees in
10 different positive and negative contexts at high, medium or low arousal
levels. In experiment 1, listeners (n = 310), categorized the vocalizations in a
forced-choice task with 10 response options, and rated arousal and valence.
In experiment 2, participants (n = 3120) matched vocalizations to production
contexts using yes/no response options. The results show that listeners were
accurate at matching vocalizations of most contexts in addition to inferring
arousal and valence. Judgments were more accurate for negative as compared
to positive vocalizations. An acoustic analysis demonstrated that, listeners
made use of brightness and duration cues, and relied on noisiness inmaking con-
text judgements, and pitch to infer core affect dimensions. Overall, the results
suggest that human listeners can infer affective information from chimpanzee
vocalizations beyond core affect, indicating phylogenetic continuity in the
mapping of vocalizations to behavioural contexts.

1. Introduction
When we hear a hissing cat or a person laughing, we may be able to infer infor-
mation from these vocalizations, including both the individual’s affective state
and the kind of situation they are in. In 1872, Darwin [1] hypothesized that
emotional vocal expressions have ancient evolutionary roots and that they are
based on shared mechanisms across mammalian species. In the research on
phylogenetic continuity of emotional vocalizations that have followed since
then, researchers have primarily focused on vocal production; this work has
established considerable similarities in the acoustic features linked to affective
information in different animal groups. In an extensive review, Briefer [2] notes
consistent acoustic correlates of core affect dimensions such as arousal (physio-
logical alertness or attentiveness [3]) and valence (degree of positivity or
negativity [3]) in vocalizations across mammalian species. Across species, there
is thus consistency in the acoustic features that characterize arousal and valence.

In inferring affective information from vocalizations, perceivers might be able
to make use of consistencies in affective vocalizations. When listening to conspe-
cific or heterospecific vocalizations, accurate perception of the producer’s affective
state is beneficial for the perceiver inmany contexts [4]. Indeed, inferring affective
states from conspecific vocalizations can be essential for the perceiver in contexts
including parental behaviour and sexual partner selection. Going beyond
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conspecific vocalizations, listening to heterospecific vocaliza-
tions can be used to gather information about the producer’s
inner state which can facilitate adaptive behaviour in various
contexts, like being attacked by a predator. This ability might
be based on inherent capacities to perceive phylogenetically
conserved acoustic regularities [4].

(a) Human perception of affective information from
heterospecific vocalizations

Most of what we know about human listeners’ perception of
affective information in heterospecific vocalizations comes
from studies on core affect. This work has showed that
humans can accurately infer arousal and valence from vocaliza-
tions ofmanydifferent species [5–13].However, acoustic features
of mammalian vocalizations vary systematically across different
types of behavioural contexts such as threats, food and play, that
do not only vary in terms of arousal and valence [14,15]. Percep-
tual mechanisms may exist that allow human listeners to infer
richer affective information from particular types of behaviours
than inferences of core valence [16]. For instance, humans associ-
ate cats’ purring with contentment and dogs’ yelping with
distress. However, it is not straightforward to map the affective
information in heterospecific expressions onto human emotion
categories, and there is a clear risk of anthropomorphizing
those species. An alternative approach is to examine mappings
between vocalizations and behavioural contexts as an indirect
route to inferring affective states.

Only a few studies to date have tested human listeners’
perception of behavioural contexts fromheterospecific vocaliza-
tions. The results have shown that listeners can correctly classify
the production context of dogs’ barks [17], cats’meows [18] and
the vocalizations of pigs [13]. However, previous studies are
limited to domesticated animals that are distantly related to
humans. Here, we seek to examine human listeners’ ability
to infer behavioural context and core affect dimensions from
vocalizations of chimpanzees (Pan troglodytes), one of the
genetically closest living relatives to humans.

In studies comparing animal vocalizations produced in
positive and negative contexts, humans have consistently
been found to be better at identifying affective information
produced in negative contexts [8,13,18,19]. For instance,
listeners correctly identified arousal levels in silver fox voca-
lizations only when they were produced in negative contexts
[8]. In the current study, we, therefore, examine whether
human listeners’ perception of behavioural context and core
affect dimensions is more accurate for negative as compared
to positive chimpanzee vocalizations.

(b) The present study
Drawing on two complementary approaches to phylogenetic
continuity in emotional expressions, we sought to test the
hypotheses that (i) human listeners can accurately infer the
type of behavioural context in which chimpanzee vocaliza-
tions were produced [16]; and that (ii) human listeners can
correctly judge arousal and valence from chimpanzee vocali-
zations [12]. We included chimpanzee vocalizations
produced in a wide range of different positive and negative
behavioural contexts at high, medium or low arousal levels.

In experiment 1, participants were asked to complete a
forced-choice context categorization task for each vocalization,
and to rate arousal and valence. We predicted that listeners
would be able to categorize the behavioural contexts and to
judge the arousal level and valence from the vocalizations at
better-than-chance levels. However, the 10-way forced-choice
context categorization task was challenging for participants,
and so experiment 2 employed a simpler paradigm. It tested
whether participants could match the vocalizations to a corre-
sponding behavioural context when selecting from two options
(match versus no match). We predicted that listeners would be
able to match vocalizations to their respective production con-
texts at better-than-chance levels. Finally, in both experiments,
we expected that accuracy would be better for vocalizations
produced in negative, as compared to positive, contexts.

In order to investigate the features shaping human listeners’
perception of affective information from chimpanzee vocaliza-
tions, we conducted an acoustic analysis. First, we examined
whether behavioural context, arousal level, and valence
would be reflected in the acoustic structure of the vocalizations.
Second, we tested which acoustic features would predict
humans’ perceptual judgements. The hypotheses, methods
(including exclusion criteria), and data analysis plan for both
experimentswerepre-registeredon theOpenScienceFramework
(osf.io/mkde8) before data collection was commenced.
2. Experiment 1: categorization of behavioural
contexts and judgements of arousal level and
valence

In experiment 1, we tested whether human listeners would be
able to accurately (i) categorize the behavioural context in
which the chimpanzee vocalizations were produced by select-
ing from 10 context categories; and (ii) judge the arousal level
(high, medium, low) and valence (positive, negative) of these
vocalizations.

(a) Participants
The sample size was predetermined by a power analysis using
G*Power 3.1 [20] for a t-test given d = 0.2, power = 0.80, α =
0.005. The power analysis was conducted based on the context
categorization task, aswe expected it to be themost difficult for
participants. This categorization task included separate tests
for 10 behavioural context categories; thus Bonferroni-
corrected alpha level was used (α = 0.005 [0.05/10]), and so
296 participants were required to detect a small effect size.
To ensure that the study was not underpowered, data were
collected from 14 additional participants to allow for potential
exclusions (see Statistical analyses for exclusion criteria).
Consequently, 310 participants (195 female, mean (M)age =
22.08, s.d.age = 3.39, range = 18–38 years old) took part in the
experiment. All reported having no hearing impairments and
no experience working with or studying chimpanzees.
Participants were recruited via the University of Amsterdam,
Department of Psychology’s research pool, and flyers distribu-
ted across the university campus. The average duration of the
main experiment was 27.43 min (s.d. = 9.75), and participation
was compensated with monetary reward or course credit.

(b) Materials and procedure
(i) Stimuli
In the practice trials, two chimpanzee vocalizations taken from
findsounds.com were used as stimuli. In the main task, the



Table 1. Behavioural contexts and core affect dimensions of chimpanzee vocalizations. (Note. For each context, vocalizations were obtained from between 4 and
21 individual chimpanzees.)

positive (n = 80) negative (n = 75)
no specific valence
(n = 11)

high arousal

(n = 62)

pant hoots when discovering a

large food source (n = 12)

Waa barks while threatening an aggressive chimp or

predator (n = 16)

victim screams when attacked by another chimpanzee

(n = 21)

alarm calls when discovering something scary (n = 13)

medium arousal

(n = 71)

rough grunts while eating high

value food (n = 19)

tantrum screams when refused access to food (n = 15) copulation calls while

having sex (n = 11)a

laughter while being tickled (n = 16) whimpers by juveniles when separated from mother

(n = 10)

low arousal (n = 22) rough grunts while eating low value

food (n = 22)
aCopulation calls may be associated with either positive (pleasure) or negative (fear/pain) valence, thus no specific valence is attributed to the vocalizations
produced during copulation.
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stimuli were 155 vocalizations produced by 66 individual chim-
panzees in 10 types of behavioural contexts including positive
and negative contexts at high, medium, and low arousal
levels (table 1). The behavioural contexts were recorded by
author K.E.S. in real time, alongside the sound recordings
of vocalizations, and K.E.S., an expert in chimpanzee vocal
communication, provided classifications of the arousal levels
and valence of each call type (table 1). Descriptions of behav-
ioural contexts and classification of each context based on
arousal level and valence, together with number of stimuli,
are listed in table 1; details of the recording set-ups are
provided in the electronic supplementary material, Text S1.
A representative vocalization for each context can be found in
the electronic supplementarymaterial, Audio S1. All recordings
were normalized for peak amplitude using AUDACITY software
(http://audacity.sourceforge.net) before the experiment.
(ii) Experimental procedure
On arrival at the laboratory, each participant was led to a silent
individual cubicle. After completing two practice trials, partici-
pants listened to the 155 chimpanzee vocalizations and for each
were asked to (i) make a forced-choice context categorization,
selecting from 10 categories, (ii) indicate the level of arousal
on a 5-point scale (1 = very low, 5 = very high, and (iii) indicate
the emotional valence on a 5-point scale (1 = very negative, 5 =
very positive). Finally, participants reported their familiarity
with each behavioural context (how familiar are you with the
chimpanzees in the context of X from zoo settings or
media?), and a representative vocalization from each context
(how familiar are you with this chimpanzee vocalization
from zoo settings or media?) on a 5-point scale (1 = not at all,
5 = extremely).

The presentation order of vocalizations, scales, and
context categories were randomized separately for each
participant. Participants could replay each vocalization as
many times as needed to make their judgments. The stimuli
were presented through headphones (Monacor MD-5000DR)
connected to a computer, and the sound level was held
constant across participants. The experimental interface was
created using PSYCHOPY [21].
(c) Statistical analyses
Before analysis, the dataset was checked for outliers, defined
as performance of three s.d. or more below the mean on the
categorization task. No participants had to be excluded.

To test whether human listeners would perform better
than chance in the categorization of contexts, the proportion
of correct responses was calculated for each participant for
each context category. Unbiased hit rates (Hu scores, [22])
were calculated to control for individual biases in the use of
particular context categories. These were arcsine transformed
before the analysis to stabilize variance [22]. Following this
transformation, all variables were checked for normality
using a Shapiro–Wilk test, which indicated that they were
not normally distributed ( ps < 0.001). We therefore employed
paired sample Wilcoxon signed-rank tests. Chance levels
were calculated for each context per individual following
Wagner’s formula [22]: the product of the column and row
marginals, divided by the squared number of observations.
The corrected chance level takes the number of stimuli for
each context category into account. Arcsine-transformed Hu
scores were then compared to chance using a paired sample
Wilcoxon signed-rank test for each category, Bonferroni
corrected for multiple comparisons (0.05/10).

To assess how accurately human listeners judged the
arousal level and valence of the vocalizations, ratings on the
5-point scales were transformed into −2 (very low), −1 (low),
0 (medium), 1 (high), 2 (very high); and −2 (very negative),
−1 (negative), 0 (neutral), 1 (positive), 2 (very positive).
A response was considered correct if (i) arousal ratings were
significantly higher (lower) than zero for high (low) arousal
vocalizations, (ii) arousal ratings were not significantly differ-
ent from zero for medium arousal vocalizations, (iii) valence
ratings were significantly higher (lower) than zero for emotion-
ally positive (negative) vocalizations. Based on these criteria,
we calculated arcsine-transformed Hu scores for statistical
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Figure 1. Heatmap of confusion matrices (%) for behavioural context categorization data (a), arousal (b) and valence (c) judgments. The x-axes represent stimulus
types and the y-axes indicate responses. c1, eating high value food; c2, eating low value food; c3, copulating (having sex); c4, being separated from mother; c5,
discovering a large food source; c6, being refused access to food; c7, being tickled; c8, being attacked by another chimpanzee; c9, threatening an aggressive
chimpanzee; c10, discovering something scary. (Online version in colour.)
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tests. Using separate Wilcoxon signed-rank tests, we tested
whether performance was better than chance level for high,
medium, and low arousal and for positive and negative
vocalizations. Finally, we tested separately for context categor-
ization, arousal and valence ratings whether perception
accuracy was higher for vocalizations produced in negative
as compared to positive contexts using paired sample
Wilcoxon signed-rank tests with the arcsine-transformed
Hu scores.
(d) Results
Confusion matrices for average recognition percentages are
shown in figure 1. The results show that participants were
not able to accurately categorize any of the behavioural con-
texts (ps > 0.005, Bonferroni corrected; figure 1a). However,
judgments of core affect were significantly better than chance
for high (z = 14.734, p < 0.001), low (z = 13.567, p < 0.001) and
medium (z = 8.745, p < 0.001) arousal levels (figure 1b),
as well as positive (z = 14.805, p < 0.001) and negative
(z = 14.713, p < 0.001) valence (figure 1c).

In the analysis comparing listeners’ performance for voca-
lizations produced in negative versus positive contexts, the
judgements of behavioural contexts were not employed, as
participants were unable to identify any of the contexts at
better-than-chance levels. The results showed that, consistent
with our prediction, participants were more accurate
at identifying high arousal from vocalizations produced in
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negative contexts than in positive contexts (z = 14.374,
p < 0.001). However, listeners were more accurate at inferring
medium arousal levels from positive as compared to negative
vocalizations (z = 14.852, p < 0.001). Because the low arousal
context category consisted of only one context, vocalizations
from negative and positive contexts could not be compared.
In terms of valence, listeners were better at judging the
valence of vocalizations produced in negative as compared
to positive contexts (z = 15.146, p < 0.001). To assess whether
participants tend to perceive vocalizations as more negative
or positive in general, we calculated the average of valence
ratings across positive and negative vocalizations per partici-
pant (M =−0.29, s.d. = 1.11). When the valence ratings were
compared against zero, they show a bias towards judging
the vocalizations as negative (z =−14.787, p < 0.001). Human
listeners tend to perceive chimpanzee vocalizations as more
negative in general.

On average, participants rated both behavioural contexts
(M = 1.86, s.d. = 0.89) and representative vocalizations (M =
2.14, s.d. = 0.98) as unfamiliar. Because of the large number
of stimuli and judgements, we checked for evidence of fati-
gue by comparing the accuracy in early (the first 30) and
late (the last 30) trials. Pairwise comparisons showed that
participants’ performance on the arousal judgement task
was high in both the early (M = 46.74, s.d. = 0.10) and late
trials (M = 44.92, s.d. = 0.11), although participants performed
better in the early trials (z = 2.552, p = 0.011). No difference in
accuracy was found for early and late judgments of context
categorization and valence (see the electronic supplemen-
tary material, table 1S for details). It is therefore unlikely
that participants’ performance was adversely affected by
possible fatigue.
3. Experiment 2: matching chimpanzee
vocalizations to a single behavioural context

The 10-way context categorization task used in experiment 1
was challenging for participants because they were asked to
choose from a substantial number of unfamiliar behavioural
context categories. In experiment 2, we therefore sought to
test whether listeners would be able to match vocalizations
to behavioural contexts in a simpler task involving a single
behavioural context for each participant.

(a) Participants
Each participant was given a context matching task for a single
context with yes/no response options on each trial. A power
analysis (G*Power 3.1; [20]) based on a t-test given d = 0.2,
power = 0.80, α = 0.05 showed that 156 judgments per stimulus
were needed. To reduce the risk of learning effects, each partici-
pant heard half of the stimuli from the target behavioural
context category. This yielded a total number of 312 partici-
pants per context category. Because we tested 10 behavioural
contexts, the total sample size was set to 3120. Consequently,
a total of 3120 participants (1570 females,1 Mage = 34.03,2

s.d.age = 10.34, range = 18–75 years old) were recruited from
Amazon Mechanical Turk to take part in the experiment.
All reported having no hearing impairments or experience
of working with or studying chimpanzees. Each session
lasted around 10 min and participation in the experiment
was compensated with monetary reward.
(b) Materials and procedure
(i) Stimuli
Experiment 2 used the same stimuli as those in experiment 1
for both the practice trials and the main task.

(ii) Experimental procedure
The study was run online using the Qualtrics survey tool
(Qualtrics, Provo, UT). Before commencing, participants were
instructed to complete the experiment in a silent environment
and use headphones. Participants were given two screening
questions. On one they were played a doorbell and on the
other a car horn sound. They were asked to indicate what
they heard, with ‘doorbell’ and ‘car horn’ as response options.
Participants who failed one or more screening questions were
not able to continue to the main experiment.

After the practice and screening trials, each participant was
randomly assigned to one of the 10 conditions, each focusing
on a specific behavioural context. In each condition, partici-
pants were asked to give a match-to-context judgment (does
this vocalization match context X?), selecting from yes and no
options. The matching vocalizations were a randomly selected
subset (half) of the vocalizations from that behavioural context.
This constituted one-fourth of the stimuli heard by that partici-
pant; the other three-fourths were the non-matching stimuli
randomly drawn from all of the other context categories.
Only a quarter of the stimuli heard by a given participant
were thus from the relevant behavioural context, again to
reduce the risk of learning effects. The presentation order of
vocalizations was randomized for each subject.

(c) Statistical analyses
The dataset was checked for participants whose performance
was three s.d. or more below the context-specific mean, but
none were and so all data were retained.

We quantified participants’ ability to match behavioural
contexts using the sensitivity index d-prime. d-prime controls
for individual biases in the use of a particular response, and
is calculated as z-transformed hit rates minus false alarm
rates [23]. Hit and false alarm rates with extreme values
(i.e. 0 or 1) return an error when z-transformed. Those cases
are commonly adjusted by replacing rates of zero with 0.5/
n (0.5/m) and rates of 1 with (n−0.5)/n ([m−0.5]/m) where
n (m) is the number of signal (noise) trials [24]. We calculated
hit rates as the proportion of ‘yes’ trials to which participants
responded yes, false alarm rates as the proportion of ‘no’
trials responded to as yes. In order to test our hypothesis
that human listeners would perform better than chance in
matching vocalizations to context types, d-prime scores for
each participant were tested against chance (random gues-
sing, reflected by a d-prime score of zero) using separate
one sample t-tests for each context type at the Bonferroni-cor-
rected level α level (α = 0.005).

Furthermore,we testedwhetherperformancewouldbebetter
for negative than for positive vocalizations. This was tested using
an ANOVA comparing the mean accuracy from negative versus
positive behavioural contexts using d-prime scores.

(d) Results
Mean accuracy levels (d-primes) per behavioural context
are shown in figure 2. The statistical tests showed that partici-
pants were able to accurately match most of the vocalizations



eating high value food

eating low value food

copulating (having sex)

being separated from mother

discovering a large food source

being refused access to food

being tickled

being attacked by another chimpanzee

threatening an aggressive chimp or predator

discovering something scary

–0.5 0 0.5
d-prime

1.0

Figure 2. d-prime scores per behavioural context showing human listeners’ performance in matching vocalizations to production contexts. Bold indicates better than
the chance level performance. (Online version in colour.)
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to behavioural contexts. Specifically, performance was signifi-
cantly better than chance for eating high value food (t = 5.04,
p < 0.001, d = 0.28, 95% confidence intervals (CIs) (0.15, 0.34)),
eating low value food (t = 9.59, p < 0.001, d = 0.55, 95% CIs
(0.49, 0.75)), discovering a large food source (t = 5.52, p <
0.001, d = 0.31, 95% CIs (0.17, 0.37)), being refused access to
food (t = 13.09, p < 0.001, d = 0.74, 95% CIs (0.63, 0.85)), being
attacked by another chimpanzee (t = 22.99, p < 0.001, d = 1.29,
95% CIs (1.06, 1.26)), and threatening an aggressive chimp or
predator (t = 11.19, p < 0.001, d = 0.64, 95%CIs (0.37, 0.53)). Per-
formance was not better than chance, however, for
vocalizations of copulation (having sex) (t =−2.99, p = 0.003,
d = 0.17, 95% CIs (−0.04, 0.003)), being separated from mother
(t = 2.81, p = 0.005, d = 0.16, 95% CIs (0.04, 0.23)), being tickled
(t = 1.77, p = 0.19, d = 0.10, 95% CIs (−0.01, 0.19)), and discover-
ing something scary (t =−16.49, p = 0.003, d = 0.93, 95% CIs
(−0.68,−0.53)). Accuracy levels formatching vocalizations pro-
duced in negative contexts were significantly better than those
from positive contexts (negative:M = 0.43, s.d. = 0.37, positive:
M = 0.22, s.d. = 0.47, F1,631 = 38.938, p < 0.001).
4. Acoustic analysis
We performed an acoustic analysis to explore acoustic fea-
tures shaping human perception of affective information in
chimpanzee vocalizations. First, independently of perceptual
responses of listeners, a classification analysis was conducted
to test whether chimpanzee vocalizations differ by context,
arousal level, and valence, in terms of acoustic features.
We then examined which acoustic features, if any, would pre-
dict humans’ ability to accurately infer affective information
from chimpanzee vocalizations in terms of correctly judging
the arousal level and valence of the vocalizations (exper-
iment 1) and accurately matching the vocalizations to the
corresponding behavioural context (experiment 2).

(a) Method
(i) Extraction of acoustic features from chimpanzee vocalizations
We measured acoustic features of 155 vocalizations produced
by 66 individual chimpanzees using PRAAT [25]. For each
vocalization, we measured the following acoustic features:
number of calls in a bout, duration of each call, time of the maximum
peak frequency, relative position of the peak frequency within a call,
percentage of voiced frames, jitter, shimmer, spectral centre of gravity
(SCoG) as well as minimum, maximum, mean and s.d. of funda-
mental frequency ( f0) and harmonics-to-noise ratio (HNR). We
based the choice of parameters on previous findings on
production and perception of affective mammalian vocaliza-
tions: duration, f0 and HNR are linked to the affective state of
the caller across many animal species [4,14,26,27]. Peak
frequency has been found to differ across dog barks recorded
in different contexts [17]. In addition, the percentage of voiced
frames was added as a tonality measure because in nonverbal
human vocalizations such as laughter, voiced frames are typi-
cally more periodic, while unvoiced frames are noisier and
more aperiodic [28]. Jitter and shimmer are important par-
ameters for analysis of arousal in animal vocalizations [29],
while SCoG is associated with the perception of arousal in
humans [6,7,30]. Means and s.d. of all acoustic parameters
can be found in the electronic supplementarymaterial, table 2S.

(ii) Further selection of acoustic features
To avoid multicollinearity, we performed a principal com-
ponent analysis (PCA) with varimax rotation on the 15
acoustic parameters to attempt to reduce the number of acous-
tic parameters. Based on the examination of the scree plot and
selecting components that explain more than 10% of the var-
iance, the first three components, together explaining 63% of
the variance, were retained. Factor loadings on the three acous-
tic dimensions can be found in the electronic supplementary
material, table 3S. Online interactive maps showing the
distribution of the 10 behavioural contexts is available
in https://emotionwaves.github.io/context/, arousal levels
in https://emotionwaves.github.io/arousal/, and valence in
https://emotionwaves.github.io/valence/ on the first three
acoustic dimensions. These visualizations demonstrate that
the behavioural contexts, arousal levels, and valence are
reflected in the acoustic structure of vocalizations. The first
dimension mainly relates to HNR, which is a measure of
clear versus noisy components in the signal. The second
dimension is primarily related to pitch, while the third
mainly relates to temporal measures. The variance of inflation
factor (VIF) was substantially greater than 1 for acoustic fea-
tures loading on the second and third dimensions (duration:
4.62; f0 min: 30.42; f0 max: 64.16; f0 mean: 37.86; f0 s.d.: 21.05;

https://emotionwaves.github.io/context/
https://emotionwaves.github.io/context/
https://emotionwaves.github.io/arousal/
https://emotionwaves.github.io/arousal/
https://emotionwaves.github.io/valence/
https://emotionwaves.github.io/valence/
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time of the maximum peak frequency: 4.10) indicating that there
was a collinearity problem [31]. We therefore selected the
features with highest interpretability based on the previous lit-
erature in addition to the factor loadings on the first three
components. This selection allowed us to choose acoustic fea-
tures with low VIF and high factor loadings on the first three
dimensions. The selected acoustic features for statistical ana-
lyses were thus: SCoG, duration, f0 mean, f0 s.d., HNR mean,
and HNR max. Collinearity was not a problem for these fea-
tures (VIF: SCoG: 1.67; duration: 1.47; f0 mean: 1.62; f0 s.d.: 1.25;
HNR mean: 1.56; HNR max: 1.62).

(b) Statistical analyses
We sought to test whether behavioural contexts, arousal levels
and valence could be differentiated based on the selected
acoustic features. Multinomial logistic regressions (MLR)
were performed in SPSS (Version 23, IBM Statistics) on the
acoustic features to determinewhether the acoustic parameters
provide sufficient information to predict the actual behavioural
contexts and arousal levels, and binomial logistic regression
(BLR) for valence.

To assess which, if any, acoustic parameters of the vocaliza-
tionswouldmap onto listeners’ ability to accurately perceive (i)
behavioural context, (ii) arousal levels, and (iii) valence, we
conducted three generalized linear mixed models (GLMMs).
The dependent variable was a binary response (i.e. correct or
incorrect response). Participant and chimpanzee identities
were entered as random factors, accounting for participant
and chimpanzee variability. The selected acoustic parameters
were set as fixed factors. We used Akaike’s information cri-
terion (AIC) to select the most parsimonious model [32].
ΔAICs are calculated as the difference between the AICc of
the fitting model and the best model to identify the models
with the highest power to explain the variation in the depen-
dent variable. Lower AIC values indicate improved support
for each model [32,33], and each added variable is considered
to improve the fit only if it increases the AIC value by more
than two units [34]. GLMMs were implemented using lme4
package [35] with optimizer ‘bobyqa’ [36]. Binomial data and
estimated odds were plotted as forest plots for fixed effects
‘sjplot’ package in R [37].

(c) Results
(i) Classification of behavioural contexts, arousal levels and

valence based on acoustic parameters
MLR on behavioural contexts showed that the overall model
was significant x254 ¼ 595:618, p < 0.001. All acoustic par-
ameters, SCoG (x29 ¼ 92:919, p < 0.001), duration (x29 ¼ 114:154,
p < 0.001), f0 mean (x29 ¼ 92:283, p < 0.001), f0 s.d. (x29 ¼ 50:906,
p < 0.001), HNR mean (x29 ¼ 112:324), p < 0.001 and HNR max
(x29 ¼ 22:620, p < 0.01) made significant unique contributions
and the overall model showed 85.7% classification agreement
on behavioural context classification.

The results from the MLR on arousal levels revealed that
the overall model was significant (x22 ¼ 191:391, p < 0.001).
Significant contributions were made by SCoG (x22 ¼ 28:990,
p < 0.001), duration (x22 ¼ 72:489, p < 0.001) and HNR mean
(x22 ¼ 25:352, p < 0.001). Vocalizations with higher arousal
levels were longer in duration compared to vocalizations
with lower arousal levels. HNR mean was higher for high
and medium arousal and lower for low arousal vocalizations,
while the SCoG of low arousal vocalizations was lower than
that of medium and high arousal vocalizations. The final
model showed a classification agreement of 83.1%.

Third, the BLR on valence showed that the overall model
was significant (x26 ¼ 60,433, p < 0.001). Duration (x26 ¼ 8:789,
p < 0.01), f0 mean (x26 ¼ 19:797, p < 0.01) and HNR mean
(x26 ¼ 5:381, p < 0.05) made significant unique contributions.
Duration was longer for negative vocalizations and f0 mean
and HNR mean were higher for negative vocalizations than
positive vocalizations. The final model had a classification
agreement of 73.4%.

(ii) Prediction of human listeners’ perceptual judgments from
acoustic parameters

GLMMs revealed that SCoG (z = 6.59, p < 0.001), duration (z =
2.83, p < 0.01), f0 s.d. (z =−2.73, p < 0.01), HNR mean
(z =−6.03, p < 0.001) and HNR max (z = 3.31, p < 0.001) signifi-
cantly predicted accurate match-to-context responses in
experiment 2. SCoG is a measure of how high the frequencies
in a spectrum are, which is perceptually connected with the
impression of brightness of a vocalization. Duration refers to
the total duration of calls in whole stimulus, while f0 is the
lowest periodic cycle of the acoustic signal, which has the
perceptual correlate of pitch. HNR is the degree of acoustic
periodicity, which relates to human perception of noisiness.
The model selection procedure based on the AIC identified
themodel excluding f0 mean as the strongest model for explain-
ing variation in human listeners’ accurate responses in the
match-to-context task. The best predictor of performance was
SCoG, which was linked to participants’ ability to correctly
match vocalizations to behavioural contexts (figure 3).

GLMM predicting accurate arousal level judgments in
experiment 1 revealed significant effects of SCoG (z = 5.33,
p < 0.001), duration (z = 2.91, p < 0.05), f0 mean (z = 13.25, p <
0.001) and f0 s.d. (z = 13.90, p < 0.001). Increases in those acoustic
parameters predicted higher accuracy in listeners’ judgments of
arousal level. The best predictor of arousal level judgmentswas
f0 s.d. Specifically, decreases in this parameter (corresponding
approximately to less pitch variability) predicted better listener
accuracy in identification of arousal levels. For valence judg-
ments, SCoG (z = 11.96, p < 0.001), duration (z = 8.24, p < 0.001),
f0 mean (z = 15.48, p < 0.001) and f0 s.d. (z =−5.78, p < 0.001),
showed significant effects on the prediction of listeners’ per-
formance. Specifically, increases in SCoG, duration and f0 mean
predicted more accurate valence judgments, while increases
in f0 s.d. predicted lower accuracy. The best predictor of valence
judgements was f0 mean,which predicted better accuracy in the
identification of valence. In explaining variation in human lis-
teners’ accuracy in identifying both arousal levels and
valence from chimpanzee vocalizations, the model excluding
HNR mean as well as the model without HNR max were the
strongest models. The effects of each acoustic features on the
accurate perception of behavioural context, arousal levels and
valence are visualized in figure 3. Full details of the GLMMs
and model selection procedures are provided in the electronic
supplementary material, tables 4S and 5S.
5. Discussion
Twoexperiments testedhuman listeners’ ability to accurately (i)
perceive behavioural contexts in which chimpanzee vocaliza-
tions were produced, using a 10-way context categorization
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Figure 3. Forest plots of estimates of the GLMMs. Estimates for fixed effects are given as log-odds. The vertical intercept indicates no effect. (a) Behavioural context
based on match-to-context task in experiment 2, (b) arousal level judgment task in experiment 1, (c) valence judgement task in experiment 1. (Online version in
colour.)
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task and a yes/no match-to-context task; and judge (ii) arousal
and valence from chimpanzee vocalizations. Human listeners
failed to categorize production contexts of vocalizations when
a 10-way forced-choice task was used. However, they were
able to match vocalizations to most behavioural contexts in
the simpler yes/nomatch-to-context task. In addition, the arou-
sal levels (high, medium, low) and valence (positive, negative)
of the chimpanzee vocalizations were accurately inferred by
human listeners. Overall, participants performed better with
negative, as compared to positive, vocalizations.

In experiment 1, participants were asked to select the best
matching context from 10 unfamiliar behavioural context cat-
egories. Such tasks are difficult for listeners as it is more
challenging to evaluate and compare contexts [4]. Moreover,
10 is a large number of options for a categorization task. It
has been suggested that even though increasing the number
of alternatives in forced-choice tasks has advantages (e.g. redu-
cing the guessing rate), for a given task, there is a point atwhich
the number of options becomes too large for participants [38].
The present results suggest that for human listeners to be able
to accurately map chimpanzee vocalizations to 10 unfamiliar
behavioural contexts, participants may require additional
information about the contexts, and/or information carried
by other channels such as facial expressions.

In experiment 2, when a yes/no match-to-context task was
used, listeners accurately matched the vocalizations produced
while eating high and low value food, discovering a large
food source, being refused access to food, being attacked by
another chimpanzee, and threatening an aggressive chimpan-
zee or predator. Given that listeners in our experiment had
minimal prior exposure to chimpanzees, they are unlikely to
have learned to decode chimpanzee vocalizations. Rather,
accuratelymapping heterospecific vocalizations to behavioural
contexts linked to affective states may draw on acoustic regu-
larities that are conserved across related species. For instance,
African elephants can differentiate between threatening and
non-threatening human vocalizations [39], and Japanese sika
deer uses the vocalizations produced by Japanese macaques
when they discover a food source to locate fruit [40]. In these
contexts, understanding heterospecific vocalizations clearly
benefits the perceiver, and thusmay confer a fitness advantage.
To assess the effect of different degrees of acoustic regularities
in vocalizations on perception of behavioural contexts from
heterospecific vocalizations, future studies should aim at
including vocalizations from multiple species differing in
phylogenetic closeness.
Listeners failed to match vocalizations of copulation,
being separated from mother, being tickled and discovering
something scary. A possible explanation is that there may
be a great deal of variability in the vocalizations produced
in these contexts, depending on factors such as who potential
perceivers are (e.g. kin versus non-kin, allies versus competi-
tors). For instance, female chimpanzee copulation calls have
been found to differ when copulating with high ranking
males compared to low ranking males [41]. Thus, listeners
might need additional contextual information to be able
to specify vocalizations produced in certain type of
contexts, or might not be able to identify certain contexts
from vocalizations at all.

In general, listeners’ judgments of negative behavioural
contexts were more accurate than judgments of positive con-
texts. Similarly, high arousal vocalizations and valence were
more accurately inferred from vocalizations produced in
negative contexts. In particular, accuracy was especially
high for highly aroused negative vocalizations, which might
signal immediate, potentially dangerous situations. It has
been proposed that stronger phylogenetic continuity for
negative affective signals may be a result of a homologous
signalling system that benefits species in dangerous contexts
[7]. From this perspective, the acoustic structure of vocaliza-
tions produced in negative contexts may be more likely to
have been conserved, because negative contexts involve
risks. Survival might be facilitated by the ability to recognize
vocalizations produced in negative contexts not only by con-
specifics, but also by members of other species [42]. Indeed,
cross-species ‘eavesdropping’ on alarm calls has been
suggested to increase chances of survival [43]. Thus, acoustic
structure may have been preserved to a greater degree for
negative as compared to positive vocalizations.

Independently of listeners’ perceptual responses, acoustic
features of chimpanzee vocalizations varied systematically
across different behavioural contexts, arousal levels, and
valence. Listeners used brightness, duration, pitch variation,
noisiness andmaximum level of noisiness to make accurate classi-
fications of vocalizations into behavioural contexts. Brightness,
duration, pitch and pitch variability predicted listeners’ ability to
correctly infer both arousal levels and valence. Noisiness of
vocalizations was a more useful acoustic feature in matching
production contexts compared to other features, while more
simple acoustic features like pitch mean and pitch variation
were more effective in identification of arousal and valence.
In line with our findings, Maruščáková and colleagues [11]
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found that simple acoustic features such as pitch were more
useful in human judgments of valence than noisiness in piglet
vocalizations. Similarly, Filippi and colleagues [7] have
shown that humans mainly rely on pitch to identify high arou-
sal vocalizations across nine vertebrate species. Furthermore,
consistently with our findings, duration and brightness
have also been suggested to be effective acoustic features in
humans’ ability to identify arousal level from vocalizations
[5,7,30]. In summary, acoustic analysis revealed that chimpan-
zee vocalizations differ by context, arousal and valence based
on acoustic features and allowed us to identify specific features
contributing to human listeners’ perceptual judgments.

In conclusion, the present study demonstrates that
human listeners can accurately perceive affective information
beyond core affect dimensions from the vocalizations of a
closely related species, chimpanzees. These findings suggest
phylogenetic preservation of acoustic features mapping onto
specific behavioural contexts, as well as features characterizing
arousal levels and valence.
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Endnotes
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2Three participants are excluded in the descriptive statistics on age
because of birth date errors.
 :20201148
References
1. Darwin C. 1872 The expression of the emotions in
man and animals. London, UK: John Murray.

2. Briefer EF. 2012 Vocal expression of emotions in
mammals: mechanisms of production and evidence.
J. Zool. 288, 1–20. (doi:10.1111/j.1469-7998.2012.
00920.x)

3. Russell JA. 1980 A circumplex model of affect.
J. Pers. Soc. Psychol. 39, 1161–1178. (doi:10.1037/
h0077714)

4. Andics A, Faragó T. 2018 Voice perception across
species. In Oxford handbook of voice perception (eds
S Frühholz, P Belin), pp. 363. Oxford, UK: Oxford
University Press.

5. Congdon JV, Hahn AH, Filippi P, Campbell KA,
Hoang J, Scully EN, Bowling DL, Reber SA, Sturdy
CB. 2019 Hear them roar: a comparison of black-
capped chickadee (Poecile atricapillus) and human
(Homo sapiens) perception of arousal in
vocalizations across all classes of terrestrial
vertebrates. J. Comp. Psychol. 133, 520–541.
(doi:10.1037/com0000187)

6. Faragó T, Andics A, Devecseri V, Kis A, Gácsi M,
Miklósi A. 2014 Humans rely on the same rules to
assess emotional valence and intensity in
conspecific and dog vocalizations. Biol. Lett. 10,
20130926. (doi:10.1098/rsbl.2013.0926)

7. Filippi P et al. 2017 Humans recognize emotional
arousal in vocalizations across all classes of
terrestrial vertebrates: evidence for acoustic
universals. Proc. R. Soc. B 284, 20170990. (doi:10.
1098/rspb.2017.0990)

8. Filippi P, Gogoleva SS, Volodina EV, Volodin IA, de
Boer B. 2017 Humans identify negative (but not
positive) arousal in silver fox vocalizations:
implications for the adaptive value of interspecific
eavesdropping. Curr. Zool. 63, 445–456. (doi:10.
1093/cz/zox035)

9. Fritz T, Mueller K, Guha A, Gouws A, Levita L,
Andrews TJ, Slocombe KE. 2018 Human behavioural
discrimination of human, chimpanzee and macaque
affective vocalisations is reflected by the neural
response in the superior temporal sulcus.
Neuropsychologia 111, 145–150. (doi:10.1016/j.
neuropsychologia.2018.01.026)

10. McComb K, Taylor AM, Wilson C, Charlton BD.
2009 The cry embedded within the purr.
Curr. Biol. 19, 507–508. (doi:10.1016/j.cub.2009.
05.033)

11. Maruščáková IL, Linhart P, Ratcliffe VF, Tallet C,
Reby D, Špinka M. 2015 Humans (Homo sapiens)
judge the emotional content of piglet (Sus scrofa
domestica) calls based on simple acoustic
parameters, not personality, empathy, nor attitude
toward animals. J. Comp. Psychol. 129, 121–131.
(doi:10.1037/a0038870)

12. Scheumann M, Hasting AS, Kotz SA, Zimmermann
E. 2014 The voice of emotion across species: how do
human listeners recognize animals’ affective states?
PLoS ONE 9, e91192. (doi:10.1371/journal.pone.
0091192)

13. Tallet C, Špinka M, Maruščáková I, Šimeček P. 2010
Human perception of vocalizations of domestic
piglets and modulation by experience with domestic
pigs (Sus scrofa). J. Comp. Psychol. 124, 81–91.
(doi:10.1037/a0017354)

14. Morton ES. 1977 On the occurrence and significance
of motivation-structural rules in some bird and
mammal sounds. Am. Nat. 111, 855–869. (doi:10.
1086/283219)

15. Rendall D, Owren MJ, Ryan MJ. 2009 What do
animal signals mean? Anim. Behav. 78, 233–240.
(doi:10.1016/j.anbehav.2009.06.007)

16. Adolphs R, Anderson DJ. 2018 The neuroscience of
emotion: a new synthesis. Princeton, NJ: Princeton
University Press.

17. Pongrácz P, Molnár C, Miklósi Á, Csányi V. 2005
Human listeners are able to classify dog (Canis
familiaris) barks recorded in different situations.
J. Comp. Psychol. 119, 136–144. (doi:10.1037/0735-
7036.119.2.136)

18. Nicastro N, Owren MJ. 2003 Classification of
domestic cat (Felis catus) vocalizations by naive and
experienced human listeners. J. Comp. Psychol. 117,
44–52. (doi:10.1037/0735-7036.117.1.44)

19. Scheumann M, Hasting AS, Zimmermann E, Kotz
SA. 2017 Human novelty response to emotional
animal vocalizations: effects of phylogeny and
familiarity. Front. Behav. Neurosci. 11, 204. (doi:10.
3389/fnbeh.2017.00204)

20. Faul F, Erdfelder E, Lang A-G, Buchner A. 2007
G*Power 3: a flexible statistical power analysis
program for the social, behavioral, and biomedical
sciences. Behav. Res. Methods 39, 175–191. (doi:10.
3758/bf03193146)

21. Peirce JW. 2007 PsychoPy—Psychophysics software
in Python. J. Neurosci. Methods 162, 8–13. (doi:10.
1016/j.jneumeth.2006.11.017)

22. Wagner HL. 1993 On measuring performance in
category judgment studies of nonverbal behavior.
J. Nonverbal. Behav. 17, 3–28. (doi:10.1007/
bf00987006)

23. Macmillan, NA. 1993 Signal detection theory as
data analysis method and psychological decision
model. In A handbook for data analysis in the
behavioural sciences: methodological issues (eds
G Keren, C Lewis), pp. 21–57. Hillsdale, NJ:
Lawrence Erlbaum.

24. Macmillan NA, Kaplan HL. 1985 Detection
theory analysis of group data: estimating
sensitivity from average hit and false-alarm rates.
Psychol. Bull. 98, 185–199. (doi:10.1037/0033-
2909.98.1.185)

25. Boersma P, Weenink D. 2017 Praat: doing phonetics
by computer (version 6.0.3). See http://www.fon.
hum.uva.nl/praat/.

26. Taylor AM, Reby D. 2009 The contribution of source-
filter theory to mammal vocal communication

https://figshare.com/s/83157a7974c4659009f1
https://figshare.com/s/83157a7974c4659009f1
https://figshare.com/s/eb570389986c95331907
http://dx.doi.org/10.1111/j.1469-7998.2012.00920.x
http://dx.doi.org/10.1111/j.1469-7998.2012.00920.x
http://dx.doi.org/10.1037/h0077714
http://dx.doi.org/10.1037/h0077714
http://dx.doi.org/10.1037/com0000187
http://dx.doi.org/10.1098/rsbl.2013.0926
http://dx.doi.org/10.1098/rspb.2017.0990
http://dx.doi.org/10.1098/rspb.2017.0990
http://dx.doi.org/10.1093/cz/zox035
http://dx.doi.org/10.1093/cz/zox035
http://dx.doi.org/10.1016/j.neuropsychologia.2018.01.026
http://dx.doi.org/10.1016/j.neuropsychologia.2018.01.026
http://dx.doi.org/10.1016/j.cub.2009.05.033
http://dx.doi.org/10.1016/j.cub.2009.05.033
http://dx.doi.org/10.1037/a0038870
http://dx.doi.org/10.1371/journal.pone.0091192
http://dx.doi.org/10.1371/journal.pone.0091192
http://dx.doi.org/10.1037/a0017354
http://dx.doi.org/10.1086/283219
http://dx.doi.org/10.1086/283219
http://dx.doi.org/10.1016/j.anbehav.2009.06.007
http://dx.doi.org/10.1037/0735-7036.119.2.136
http://dx.doi.org/10.1037/0735-7036.119.2.136
http://dx.doi.org/10.1037/0735-7036.117.1.44
http://dx.doi.org/10.3389/fnbeh.2017.00204
http://dx.doi.org/10.3389/fnbeh.2017.00204
http://dx.doi.org/10.3758/bf03193146
http://dx.doi.org/10.3758/bf03193146
http://dx.doi.org/10.1016/j.jneumeth.2006.11.017
http://dx.doi.org/10.1016/j.jneumeth.2006.11.017
http://dx.doi.org/10.1007/bf00987006
http://dx.doi.org/10.1007/bf00987006
http://dx.doi.org/10.1037/0033-2909.98.1.185
http://dx.doi.org/10.1037/0033-2909.98.1.185
http://www.fon.hum.uva.nl/praat/
http://www.fon.hum.uva.nl/praat/
http://www.fon.hum.uva.nl/praat/


royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

287:20201148

10
research. J. Zool. 280, 221–236. (doi:10.1111/j.
1469-7998.2009.00661.x)

27. Zimmermann E, Leliveld L, Schehka S. 2013 Toward
the evolutionary roots of affective prosody in
human acoustic communication: a comparative
approach to mammalian voices. In Evolution of
emotional communication (eds E Altenmüller,
S Schmidt, E Zimmermann), pp. 116–132. Oxford,
UK: Oxford University Press.

28. Bachorowski J-A, Owren MJ. 2001 Not all laughs are
alike: voiced but not unvoiced laughter readily
elicits positive affect. Psychol. Sci. 12, 252–257.
(doi:10.1111/1467-9280.00346)

29. Li X, Tao J, Johnson MT, Soltis J, Savage A, Leong
KM, Newman JD. 2007 Stress and emotion
classification using jitter and shimmer features. In
Proc. IEEE Int. Conf. Acoust., Speech Signal process.,
vol. IV, Honolulu, HI, pp. 1081–1084. New York, NY:
IEEE. (doi:10.1109/icassp.2007.367261)

30. Sauter DA, Eisner F, Calder AJ, Scott SK. 2010
Perceptual cues in nonverbal vocal expressions of
emotion. Q. J. Exp. Psychol. 63, 2251–2272. (doi:10.
1080/17470211003721642)

31. Bowerman BL, O’connell RT. 1994 Linear statistical
models: an applied approach. Monterey, CA: Brooks/Cole.
32. Akaike H. 1974 A new look at the statistical model
identification. In Selected papers of Hirotugu Akaike
(eds E Parzen, K Tanabe, G Kitagaw), pp. 215–222.
New York, NY: Springer.

33. Golabek KA, Ridley AR, Radford AN. 2012 Food
availability affects strength of seasonal territorial
behaviour in a cooperatively breeding bird. Anim.
Behav. 83, 613–619. (doi:10.1016/j.anbehav.2011.
11.034)

34. Burnham KP, Anderson DR. 2004 Multimodel
inference. Sociol. Methods. Res. 33, 261–304.
(doi:10.1177/0049124104268644)

35. Bates D, Mächler M, Bolker B. 2014 Walker S. Fitting
linear mixed-effects models using lme4. arXiv
preprint. See https://arxiv.org/pdf/1406.5823.pdf.

36. Powell MJ. 2009 The BOBYQA algorithm for bound
constrained optimization without derivatives.
Cambridge NA report, Cambridge, UK: Cambridge
University Press.

37. Lüdecke D. 2018 Sjplot: data visualization for
statistics in social science. R package version. See
https://cran.r-project.org/web/packages/sjPlot/index.
html.

38. Vancleef K, Read JCA, Herbert W, Goodship N,
Woodhouse M, Serrano-Pedraza I. 2018 Two choices
good, four choices better: for measuring
stereoacuity in children, a four-alternative forced-
choice paradigm is more efficient than two. PLoS
ONE 13, e0201366. (doi:10.1371/journal.pone.
0201366)

39. McComb K, Shannon G, Sayialel KN, Moss C. 2014
Elephants can determine ethnicity, gender, and age
from acoustic cues in human voices. Proc. Natl Acad.
Sci. USA 111, 5433–5438. (doi:10.1073/pnas.
1321543111)

40. Koda H. 2012 Possible use of heterospecific food-
associated calls of macaques by sika deer for
foraging efficiency. Behav Process. 91, 30–34.
(doi:10.1016/j.beproc.2012.05.006)

41. Townsend SW, Deschner T, Zuberbühler K. 2008
Female chimpanzees use copulation calls flexibly to
prevent social competition. PLoS ONE 3, e2431.
(doi:10.1371/journal.pone.0002431)

42. Nesse RM. 1990 Evolutionary explanations of
emotions. Hum. Nat. 1, 261–289. (doi:10.1007/
bf02733986)

43. Magrath RD, Haff TM, Fallow PM, Radford AN. 2014
Eavesdropping on heterospecific alarm calls: from
mechanisms to consequences. Biol. Rev. Camb.
Philos. Soc. 90, 560–586. (doi:10.1111/brv.12122)

http://dx.doi.org/10.1111/j.1469-7998.2009.00661.x
http://dx.doi.org/10.1111/j.1469-7998.2009.00661.x
http://dx.doi.org/10.1111/1467-9280.00346
http://dx.doi.org/10.1109/icassp.2007.367261
http://dx.doi.org/10.1080/17470211003721642
http://dx.doi.org/10.1080/17470211003721642
http://dx.doi.org/10.1016/j.anbehav.2011.11.034
http://dx.doi.org/10.1016/j.anbehav.2011.11.034
http://dx.doi.org/10.1177/0049124104268644
https://arxiv.org/pdf/1406.5823.pdf
https://arxiv.org/pdf/1406.5823.pdf
https://cran.r-project.org/web/packages/sjPlot/index.html
https://cran.r-project.org/web/packages/sjPlot/index.html
https://cran.r-project.org/web/packages/sjPlot/index.html
http://dx.doi.org/10.1371/journal.pone.0201366
http://dx.doi.org/10.1371/journal.pone.0201366
http://dx.doi.org/10.1073/pnas.1321543111
http://dx.doi.org/10.1073/pnas.1321543111
http://dx.doi.org/10.1016/j.beproc.2012.05.006
http://dx.doi.org/10.1371/journal.pone.0002431
http://dx.doi.org/10.1007/bf02733986
http://dx.doi.org/10.1007/bf02733986
http://dx.doi.org/10.1111/brv.12122

	Human listeners’ perception of behavioural context and core affect dimensions in chimpanzee vocalizations
	Introduction
	Human perception of affective information from heterospecific vocalizations
	The present study

	Experiment 1: categorization of behavioural contexts and judgements of arousal level and valence
	Participants
	Materials and procedure
	Stimuli
	Experimental procedure

	Statistical analyses
	Results

	Experiment 2: matching chimpanzee vocalizations to a single behavioural context
	Participants
	Materials and procedure
	Stimuli
	Experimental procedure

	Statistical analyses
	Results

	Acoustic analysis
	Method
	Extraction of acoustic features from chimpanzee vocalizations
	Further selection of acoustic features

	Statistical analyses
	Results
	Classification of behavioural contexts, arousal levels and valence based on acoustic parameters
	Prediction of human listeners' perceptual judgments from acoustic parameters


	Discussion
	Ethics
	Data accessibility
	Competing interests
	Funding
	Acknowledgements
	References


