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The skeleton is a dynamic and metabolically active organ with the capacity to influence

whole body metabolism. This newly recognized function has propagated interest in

the connection between bone health and metabolic dysfunction. Osteoblasts, the

specialized mesenchymal cells responsible for the production of bone matrix and

mineralization, rely on multiple fuel sources. The utilization of glucose by osteoblasts

has long been a focus of research, however, lipids and their derivatives, are increasingly

recognized as a vital energy source. Osteoblasts possess the necessary receptors

and catabolic enzymes for internalization and utilization of circulating lipids. Disruption

of these processes can impair osteoblast function, resulting in skeletal deficits while

simultaneously altering whole body lipid homeostasis. This article provides an overview

of the metabolism of postprandial and stored lipids and the osteoblast’s ability to acquire

and utilize these molecules. We focus on the requirement for fatty acid oxidation and the

pathways regulating this function as well as the negative impact of dyslipidemia on the

osteoblast and skeletal health. These findings provide key insights into the nuances of

lipid metabolism in influencing skeletal homeostasis which are critical to appreciate the

extent of the osteoblast’s role in metabolic homeostasis.
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INTRODUCTION

Development of the mammalian skeleton and maintenance of its structure for the life of the
organism requires the coordinated actions of two specialized cells. Osteoclasts, largemultinucleated
cells that are derived from themonocyte/macrophage lineage of hematopoietic cells, are responsible
for bone resorption. After attaching to an exposed bone surface, osteoclasts acidify a resorption
lacuna to dissolve the mineral fraction of bone and then secrete proteolytic enzymes that degrade
the organic matrix component (1). During the resorption process, growth factors trapped within
bone matrix are released and trigger the recruitment of osteoblasts responsible for new bone
formation (2, 3). Derived from mesenchymal stem cells present in the bone marrow stroma, these
cells are characterized by their cuboidal shape and abundance of rough endoplasmic reticulum
necessary for the production of the collagen-rich bone matrix (4). After building a packet of bone
most osteoblasts will die by apoptosis, but small fractions will either become encapsulated within
the bone matrix and fulfill regulatory functions as osteocytes or dedifferentiate and line bone
surfaces. Known as bone remodeling, this process prevents the accumulation of old or damaged
bone that may lead to fracture. In humans, peak bone mass is reached during the second decade of
life as a result of net bone accrual during childhood, when bone formation exceeds resorption and
osteoblasts and osteoclasts act on different bone surfaces to maintain the overall shape of bones
during longitudinal growth (known as modeling). A balance between formation and resorption

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2020.578194
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2020.578194&domain=pdf&date_stamp=2020-09-23
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:rriddle1@jhmi.edu
https://doi.org/10.3389/fendo.2020.578194
https://www.frontiersin.org/articles/10.3389/fendo.2020.578194/full


Alekos et al. Lipid Metabolism and Bone

FIGURE 1 | Overview of tissue-targeted lipid metabolism. Ingested lipids are broken down in the intestinal lumen and internalized by enterocytes of the small intestine.

The water insoluble triglycerides and cholesterol are repackaged into chylomicrons and travel through the lymphatic system and into the circulatory system where they

engage lipoprotein lipase (LPL) on the surface of capillary endothelial cells. The hydrolyzed triglycerides result in release of free fatty acids that are taken up by adipose

tissue and the skeleton. The remaining chylomicron remnants (CR) are cleared by the liver via the apolipoprotein E (ApoE) receptor. CR-derived cholesterol and free

fatty acids and circulating glucose are used for de novo lipogenesis, generating ATP for the liver, or repackaged into very low-density lipoproteins (VLDL). VLDL

particles are released into the circulation where they engage LPL and release free fatty acids, which are also available for uptake. The remaining low-density lipoprotein

(LDL) are internalized by cells expressing the low-density lipoprotein receptor (LDLR) including adipocytes and osteoblasts. This figure was created using Servier

Medical Art image templates under a Creative Commons Attribution 3.0 Unported License.

then occurs in early adulthood. However, with advancing age or
as a result of numerous endocrine pathologies, an acceleration
of osteoclastic activity leads to bone loss as osteoblastic activity
is unable to keep pace. As bone mass decreases and structure
integrity deteriorates, the risk of fracture increases (5, 6).

The tremendous economic impact of osteoporotic fractures
(7–9) and development of comorbidities after fracture (10–
12) highlight the need to understand the genetic, cellular, and
endocrine mechanisms that influence bone mass. With the
renewed interest in intermediary metabolism in cancer (13–15)
and the recognition that bone is not merely a structural organ
acting as a reserve of minerals but also an endocrine organ that
can influence systemic metabolism (16–21), research in the field
of skeletal biology has coalesced over the last few years on the
contributions of cellular metabolism to osteoblast function and
bone formation. The field reasoned that if bone contributes to
the regulation of metabolic homeostasis through the release of
osteocalcin and other hormones (16, 21), then the availability
of nutrients must be critical to osteoblast function. Indeed,
hierarchical analysis of energy requirments of cellular function
(22) suggest that the bone remodeling process is energy intensive
due to the synthesis of large extracellular matrix proteins and the
necessity of concentratingmineral ions for hydroxyapatite crystal
formation. Evidence from both the laboratory and the clinic

supports this hypothesis as caloric restriction during gestation or
during postnatal life strongly influences the trajectory of both the
accrual and the maintenance of bone mass (23–25). Additionally,
an increase in oxidative phosphorylation and the abundance of
mitochondria appears to be a requirement for the differentiation
of osteoblasts from marrow stem cells (26–29).

Osteoblasts harvest energy from a number of fuel molecules.
Studies performed more than 50 years ago first highlighted
the avidity of osteoblasts for glucose. Isolated osteoblasts or
bone tissue explants from mice, rats, rabbits, and humans all
used glucose to produce lactate even under aerobic conditions
(30–34). More contemporary studies indicated that glucose
acquisition is mediated by glucose transporter-1 (35) and
that metabolic programming of glucose utilization is adjusted
according to the stage of differentiation (28, 36). Cells of
the osteoblast lineage also consume a significant amount of
glutamine which is required for skeletal stem cell specification,
can be catabolized by the tricarboxylic acid cycle to generate
ATP, and serves as a regulatory signal to maintain endoplasmic
reticulum health during stages of heightened protein synthesis
(37, 38).

While lipid metabolism yields significantly more ATP than
glucose or glutamine catabolism, its role in osteoblast function
remains more controversial. Recent studies have highlighted
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FIGURE 2 | Lipid- flux between the adipocyte and osteoblast. White adipose tissue is the primary storage depot of lipids during excess consumption, which are

subsequently released when energy expenditure exceeds caloric intake. Esterified fatty acids are stored in the adipocytes as triglycerides and are hydrolyzed by the

rate limiting enzyme, adipose triglyceride lipase (ATGL), into diglycerides. Diglycerides are hydrolyzed into monoglycerides by hormone sensitive lipase (HSL) and

further into fatty acids by monoacyglycerol lipase (MGL), which are then released into circulation. Adipocyte uptake of glucose is metabolized to acetyl-CoA and used

for de novo fatty acid synthesis. These newly synthesized fatty acids are another lipid source for the osteoblast. LDL-derived fatty acids and uptake of circulating free

fatty acids via CD36/FATPs are vital energy sources for the osteoblast. These internalized free fatty acids are converted into acyl-CoA by fatty acyl-CoA synthase. Very

long chain fatty acids (VLCFAs) (more than 22 carbons) are first shortened by the peroxisome. Acyl-CoA is transported to the mitochondrial matrix by a carnitine

exchange system in order to undergo β-oxidation. The product, acetyl-CoA is transferred to the TCA cycle and electron transport chain for generation of ATP. This

figure was created using Servier Medical Art image templates under a Creative Commons Attribution 3.0 Unported License.

the importance of fatty acid catabolism for normal bone
formation (39, 40), but detrimental effects of lipids on osteoblast
performance are also well-known (41, 42). In this review, we
discuss the dual effects of lipids on osteoblast function and the
maintenance of bone mass and strength. We provide a brief
overview of the trafficking and metabolism of lipids in target
tissues like bone. We then describe studies which highlight the
importance of fatty acids metabolism for the accrual of bonemass
and the mechanisms that regulate fatty acid utilization. Finally,
we discuss the effects of dyslipidemia on osteoblast function
and the potential for this condition to desensitize osteoblasts to
anabolic signals.

OVERVIEW OF LIPID METABOLISM

The lipid molecules that support cellular metabolism are
primarily derived from three sources: ingested fat, lipoproteins
produced by the liver, and non-esterified fatty acids released by
white adipose tissue (Figure 1). Postprandial triglycerides and
cholesterol esters are broken down in the intestinal lumen by
cholesterol esterases, pancreatic lipases, and bile salts. These
molecules are then taken up by the enterocyte of the small
intestine, re-esterified, and packaged with lipid-soluble vitamins,
and apolipoproteins into chylomicrons. Chylomicrons enable

water-insoluble fats and cholesterol to move through the
lymphatic system and into the circulatory system. Engagement
of the chylomicron by lipoprotein lipase (LPL) on capillary
endothelium results in the hydrolysis of triglycerides and the
delivery of fatty acids to target tissues (43, 44). The chylomicron
remnants containing cholesterol and apolipoproteins are then
cleared by the liver (45).

In healthy individuals, the liver exhibits a nearly constant lipid
flux. Chylomicron remnants and free fatty acids are taken up
by the liver, while a portion of the circulating glucose taken up
by the organ is used for de novo lipogenesis. Lipid molecules
from each of these sources can be used to generate ATP in the
liver or they can be packaged along with apolipoprotein (Apo) B-
100, ApoC, and ApoE into very low-density lipoproteins (VLDL)
on the endoplasmic reticulum. VLDL are released into the
circulation and metabolized by target tissues in a manner similar
to that of chylomicrons, with LPL hydrolyzing triglycerides to
fatty acids that can be imported by cells. In this case, the
remaining lipoprotein particle is further metabolized to low
density lipoprotein (LDL), which can be taken up bymany tissues
via the LDL receptor (44).

White adipose tissue is the primary storage depot for excess
calories. Non-esterified fatty acids are taken up by adipocytes,
esterified and stored as triglycerides, while glucose is metabolized
to acetyl-CoA and then used as a substrate for de novo fatty
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acid synthesis. When energy expenditure exceeds caloric intake
or in response to a number of lipolytic hormones, the stored
triglycerides can be hydrolyzed to glycerol and free fatty acids
that are released into the circulation to be used for β-oxidation in
other organs, including the skeleton. Lipolysis is mediated by the
stepwise action of three lipases (illustrated in Figure 2). The rate
limiting enzyme, adipose triglyceride lipase (ATGL), catalyzes
the first reaction by hydrolyzing triacylglycerols at the sn-2
position to diacylglycerol and one fatty acid. Diacylglycerides
are then preferentially hydrolyzed by hormone sensitive lipase
(HSL) at the sn-3 position to yield a second free fatty acid
(46). Monoacyglycerol lipase (MGL) catalyzes the final reaction
generating glycerol and a third fatty acid (47). Most free fatty
acids released into circulation are bound by albumin (48).

The intracellular metabolism of fatty acids taken up by
cells depends on chain length. Short-chain (1-6 carbons) and
medium-chain (7-12 carbons) fatty acids are produced by
the bacterial fermentation of dietary fiber or the ingestion
of dairy products. These lipids are primarily metabolized
by enterocytes or by hepatocytes and are beyond the scope
of this review (47). Long-chain fatty acids (13-21 carbons)
are transported into cells by specific transporters (discussed
below) but have limited solubility in the cytosol. To increase
solubility, trap fatty acids in the cell, and produce a high
energy thioester necessary for the next steps of catabolism,
long-chain fatty acyl-CoA ligases catalyze the formation of
fatty acyl-CoA in a reaction that requires the hydrolysis of
1 ATP to AMP. Acyl-CoA must then be transferred to the
mitochondria by a carnitine exchange system to undergo β-
oxidation. Carnitine palmitoyltransferase 1 (CPT1), the first
and rate-limiting step in this process, is located on the outer
mitochondrial membrane and catalyzes the replacement of CoA
with carnitine. Acyl-carnitines are recognized and transferred by
carnitine-acylcarnitine translocase into the mitochondria matrix
where carnitine palmitoyltransferase 2 (CPT2) reverses the
reaction of CPT1 and regenerates Acyl-CoA. The four reaction β-
oxidation process removes 2 carbons from the carboxy end of the
acyl-CoA to generate acetyl-CoA, 1 NADH and 1 FADH2 that are
transferred to the TCA cycle and electron transport chain for the
generation of ATP (Figure 2). Successive rounds of β-oxidation
are necessary to fully metabolize long-chain fatty acids (49).

Very long chain fatty acids (more than 22 carbons) can
also be used to generate ATP but must be chain-shortened
in peroxisomes before they can enter the mitochondria (50).
Multi-functional peroxisomes encase more than 50 enzymes,
with more than half involved in fat metabolism, in a single
lipid bilayer. As in long chain fatty acid metabolism, very long
chain fatty acids are first converted to acyl-CoAs in the cytosol.
The fatty acyl-CoA is then transported into the peroxisome by
members of the ATP binding cassette transporter D subfamily.
Peroxisomal oxidation also involves four reactions but utilizes
a separate set of enzymes to shorten the fatty acid chain and
is not as efficient at ATP generation as there is no respiratory
chain. Indeed, while the FADH2 produced by one round of
mitochondrial β-oxidation yields 2 ATP, the electrons from
FADH2 produced by peroxisomal oxidation are donated to
oxygen to form H2O2. For this reason, chain shortened fatty

acids can be shuttled to the mitochondria for further metabolism
via β-oxidation.

MECHANISMS OF LIPID UPTAKE BY
OSTEOBLASTS

Although they are smaller than those evident in adipocytes,
most cells contain a lipid droplet that can presumably be used
to generate ATP via β-oxidation. Histological studies indicate
that both mature osteoblasts and differentiating osteoblast
progenitors contain stored lipid (51, 52), but these stored
lipids do not appear to be a major energy source for mature
osteoblast function. Kim et al. (39) ablated the expression of
ATGL in cultures of calvarial osteoblasts and mature osteoblasts
and osteocytes in vivo (Atglflox/flox; Osteocalcin-Cre), which
should eliminate intracellular lipolysis, but did not find a defect
in either in vitro osteoblast performance or bone structure
in vivo. Therefore, osteoblasts appear to require extracellular
lipid sources.

A combination of in vivo and in vitro studies have examined
the uptake of circulating lipoproteins and free fatty acids by the
osteoblast and the skeleton. In perhaps the most comprehensive
study, Neimeier and colleagues (53) modeled postprandial
lipoprotein uptake by intravenously injecting fluorescent- or 125I-
labeled chylomicron remnants into mice. Skeletal uptake was
17% that of liver but was greater than other catabolic organs
including muscle and heart. Importantly, chylomicron remnant
uptake by the osteoblast-/osteocyte-enriched femoral diaphysis
was greater than that of bone marrow, indicating the skeletal
acquisition was not simply carried out by marrow adipocytes.
Osteoblasts also appear to take up of LDL and VLDL and
acquisition can be enhanced by co-administration with ApoE,
but these studies have primarily been performed in cultured
osteoblasts (54–56). Skeletal uptake of fatty acids was assessed
in vivo by Bartelt et al. (57) and Kim et al. (39) after delivering
3H-linoleic acid and 14C-palmitic acid or 3H-bromo-palmitate,
respectively, via oral gavage. Similar to the uptake of chylomicron
remnants, these studies revealed that skeletal acquisition of fatty
acids is comparable to tissues that are more classically associated
with fatty acid metabolism. Together, these studies highlight a
potential role of bone in fatty acid metabolism and postprandial
clearance of fat from the circulation.

The identity and requirements for specific receptors and
transporters that allow osteoblasts to take up fatty acids and
lipoproteins (Figure 2) need additional study, but experimental
data exists for a number of possible mechanisms. Consistent with
osteoblastic uptake of chylomicron remnants and lipoproteins,
osteoblasts express the low-density lipoprotein receptor (LDLR)
and low-density lipoprotein receptor-related protein-1 (LRP1)
(58, 59). Interpretation of the skeletal phenotypes of mice
engineered to be deficient for LDLR (LDLR−/−) requires care
as studies have reported both reduced (60) and elevated bone
volume (61) relative to wildtype mice. Both in vivo (60) and
in vitro (62) analyses indicate that the actions of the LDLR
are important for osteoblast function as its ablation results in
reductions in the expression of gene markers of osteoblastic
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differentiation. These data accord with the ability of LDL
to stimulate cell growth and sustain responsivity to anabolic
stimuli in osteoblasts cultured under serum-free conditions
(63). The discrepancies in bone volume observed in vivo are
likely be related to the requirement for LDLR during osteoclast
differentiation (60, 61).

LRP1 can facilitate the endocytosis of triglyceride and
cholesterol containing chylomicron remnants in cultures of
osteoblastic cell models (58) and polymorphisms in the gene
encoding this receptor are associated with bone mineral density
(64). However, analysis of an osteoblast-specific knockout mouse
(Lrp1flox/flox; Runx2-Cre) revealed an osteopenic phenotype
but there was no effect on systemic lipoprotein clearance
or osteoblasts’ ability to sequester fatty acids (65). While
the bone phenotype has been attributed to marked increases
in osteoclastogenesis (65), the sustained ability to take up
lipoproteins could be due to the engagement of other LDLR
family members. LRP5 and LRP6 are most typically associated
with the propagation of signaling in response toWnt ligands (66),
but these receptors also have the capacity to bind andmediate the
endocytosis of lipoproteins and chylomicron remnants (67, 68).
Cultured osteoblasts rendered deficient for LRP5 also retained
the ability to take up LDL (56), indicating that combinatorial
genetic studies wherein the expression of multiple LRP receptors
are simultaneously ablated may be necessary to discern receptor
function in lipid particle uptake.

Osteoblasts also take up high density lipoproteins (HDL) and
express Scarb1 (also referred to as SR-B1) (55), themajor receptor
for high-density lipoproteins (69). Some epidemiological studies
suggest a positive correlation between BMD and HDL levels,
but others have reported contradictory results [see (70) for a
comprehensive review]. Interpretation of an association between
HDL and bone mass in animal models has been equally
challenging. Martineau and colleagues (71) reported that Scarb1
null mice display increases in HDL-associated cholesterol and
increases in femoral bone volume and mineralization at 2 and
4 months in association with increases in osteoblast surface and
bone formation rate, which suggests a detrimental effect of HDL
on skeletal homeostasis. However, it remains possible that the
high bone mass phenotype in these mice is due to an increase in
serum adrenocorticotropin (ACTH), which has anabolic effects
on osteoblasts (72, 73). Futhermore, control and Scab1 deficient
osteoblasts exhibited similar levels of HDL-cholesterol uptake
in vitro (71). A follow-up study by this same group reported
that Scarb1 deletion in MSCs increased osteoblastogenesis
but decreased terminal osteocyte differentiation as vertebral
osteocyte density was modestly decreased in the mutant mice
(74). However, a more recent study contradicted these findings
and reported Scarb1 null animals to be osteopenic in the
veterbrae at 16 weeks with decreases in resorption and formation
markers, and diminished osteoblast differentiation markers
both in vitro and in vivo (73). Here too, alterations in bone
volume were attributed to dose dependent effects of ACTH on
bone. Similarly, mice with impaired HDL synthesis displayed
reduced bone mass and impaired differentiation (75) suggesting
a necessity for HDL in osteoblast function. Further in vivo
studies using genetic models with osteoblast specific deletions

are required to further delineate Scarb1 function and a role for
reverse cholesterol transport will need to be considered.

Osteoblasts also express the receptors necessary to take up
and metabolize free fatty acids. CD36 is a two-transmembrane
glycoprotein receptor that binds long-chain fatty acids as well
as oxidized low-density lipoprotein (oxLDL) and facilitates their
transport into the cell (55, 76). While direct studies of its effect
on fatty acid uptake have not yet been completed, CD36 null
mice exhibit a low bone mass phenotype secondary to impaired
bone formation (77) that implies fatty acid uptake is essential
for osteoblast function. The SLC27 family of fatty acid transport
proteins (also referred to as FATP1-6), may also contribute to
osteoblasts acquisition of long-chain fatty acids for oxidation
(76, 78), as multiple family members are expressed by primary
osteoblasts (40).

REQUIREMENT FOR FATTY ACID
OXIDATION IN OSTEOBLASTS

The effects of specific fatty acids on the functions of the
major bone cells has recently been reviewed elsewere (79).
Direct examination of the requirement for fatty acid oxidation
during postnatal bone acquisition and bone repair has been
examined in two studies. In the first, Kim and colleagues
disrupted the expression of CPT2 in mature osteoblasts and
osteocytes (Cpt2flox/flox; Osteocalcin-Cre) (39). As noted above,
CPT2 catalyzes an obligate step in fatty acid β-oxidation and was
selected for ablation in this model because it is encoded by a
single gene (three isoforms of CPT1 are present in mammalian
genomes). The skeletal phenotype of the mutant mice was
sexually dimorphic, with male mice fed a normal chow diet
exhibiting only a transient decrease in trabecular bone volume in
the distal femur and L5 vertebrae at 6 weeks of age. By contrast,
female mutants exhibited defects in trabecular bone volume in
the distal femur and L5 vertebrae and an expansion of cortical
bone tissue area at both 6 and 12weeks. This discrepancy between
sexes appears to be related to a greater ability to adjust fuel
utilization in males, as male mutants exhibited an increase in
femoral glucose uptake that was not evident in female mutants.
The greater inhibition of osteoblast performance and inhibition
of glucose uptake in CPT2 mutant osteoblasts treated with
estrogen may explain the sex differences in metabolic flexibility.
Interestingly, both male and female CPT2 mutants exhibited
an increase in serum free fatty acid levels, which suggests that
disrupting fatty acid utilization by osteoblasts and osteocytes is
sufficient to alter lipid homeostasis (39).

In the second study, van Gastel et. al. (40) identified a
role for fatty acid utilization during fracture healing and the
specification of skeletal cell fate. During the bone healing process,
endochondral ossification is initiated by periosteal progenitor
cells that differentiate to chondrocytes and form an avascular,
cartilaginous callus. The callus is subsequently invaded by the
vasculature (80) and replaced by bone (81, 82). Blood vessels
are expected to deliver the oxygen, nutrients, and growth factors
necessary to drive bone formation. Through biochemical assays
and the reanalysis of an existing single cell RNAseq study
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of skeletal progenitors (83), Van Gastel et. al. (40) reported
that chondrocytes express low levels of CPT1a and high Glut1
levels as well as elevated lactate production, which suggests that
glycolysis meets the chondrocyte’s energy needs. On the other
hand, osteoblasts expressed high levels of Glut1 and CPT1a,
exhibited higher levels of oxygen consumption, and an increased
ability to metabolize palmitate, indicating a reliance on fatty acid
oxdiation. Importantly, knocking down the expression of CPT1a
prevented the differentiation of skeletal stem cells to osteoblasts
while local injection of free fatty acids during fracture repair
increased the amount of bone formed in the callus and reduced
the amount of cartilage. Mechanistic studies demonstrated that
reduced fatty acid availability increased the activation of FOXO3,
which in turn activated SOX9 and chondrogenic specification.
Taken together, these studies highlight the requirement for fatty
acid β-oxidation for bone-forming osteoblasts in bone repair and
skeletal development.

Evidence for a role of peroxisomal lipid oxidation in bone is
largely based on the phenotypes evident in patients affected by
peroxisomal disorders and global knockout models. Human and
mouse genetic studies have identified 14 peroxin genes (PEX1-
PEX26) that encode proteins necessary for either the formation
of peroxisomes or the transport of cargo into the organelle.
Loss of function mutations in peroxin genes, which occur at
a rate of ∼1 in 50,000 births, result in autosomal recessive
peroxisomal biogenesis disorders (PBD) that affect a number
of organ systems. Individuals with more severe PBD subtypes
often exhibit craniofacial anomalies, short stature, and limb
length discrepancies. Less severe subtypes have been associated
with reductions in bone mineral density and an increased
susceptibility for non-traumatic fractures (84–86). In the mouse,
hypomorphic alleles for Pex7 leads to a reduction in longitudinal
growth and impaired ossification of the digits (87), while a global
knockout resulted in delayed ossification at multiple skeletal sites
(88). Additional mouse genetic studies will be necessary to fully
delineate the role of peroxisomes in skeletal tissue maintenance
and function.

PATHWAYS REGULATING FATTY ACID
OXIDATION

If fatty acid metabolism is used to generate the ATP necessary
for osteoblast function, then metabolic flux in this pathway
should be regulated by the signals that drive bone formation.
Indeed, two of the most potently anabolic pathways, Wnt
signaling and parathyroid hormone signaling, appear to drive
fatty acid oxidation.

Wnt Signaling
The anabolic effects of Wnt signaling on skeletal development,
repair, and homeostasis have been well-studied (89, 90), and
a number of studies have now demonstrated that the pathway
coordinates the intermediary metabolism of the osteoblast with
the energetic demands of bone formation (38, 91–93). LRP5
and LRP6 act as co-receptors for the Frizzled receptors that
propagateWnt signals and lead to the stabilization and activation

of β-catenin (66). While the osteoblast-specific ablation of
either receptor (Lrp5flox/flox; Osteocalcin-Cre and Lrp6flox/flox;
Osteocalcin-Cre) results in decreases in bone mineral density
and vertebral trabecular bone volume (94), Frey et al. (56)
found that the LRP5 mutants also exhibited increases in fat
mass and serum triglycerides and free fatty acids, suggestive
of a disruption in fatty acid utilization. Indeed, analysis of
gene expression in cultured osteoblasts by microarray revealed
that LRP5-deficient osteoblasts exhibited a downregulation of
multiple genes involved in mitochondrial long-chain fatty acid
β-oxidation. The effects of these changes in gene expression on β-
oxidation were confirmed by examining the oxidation of oleate,
which was reduced in LRP5 deficient osteoblasts when compared
to control. Expression of LRP5 with a gain of function mutation
(Lrp5G171V) in osteoblasts produced the opposite phenotype, as
the transgenic mice exhibited increases in bone volume and
oxidative gene expression as well as decreases in fat mass, serum
triglycerides, and fatty acids.

Subsequent genetic studies revealed that Wnt-mediated
regulation of fatty acid oxidation proceeds via a β-catenin-
dependent mechanism. Frey et al. (95) found that only Wnt
ligands that increase the abundance of β-catenin in cultured
osteoblasts, increase the capacity to fully oxidize oleate to carbon
dioxide. Since constitutive ablation of β-catenin in osteoblasts
results in early lethality (96) in vivo, the generation of an
inducible β-catenin knockout mouse (Ctnnbflox/flox; Osteocalcin-
CreERT2) was necessary to examine the transcription factor’s
effects on fatty acid oxidation. In this model, the temporal
ablation of β-catenin resulted in high-turnover bone loss as
well as increased fat mass and the development of insulin
resistance. Additionally, the expression of genes involved in long-
chain fatty acid oxidation and the ability to oxidize oleate were
reduced in β-catenin deficient osteoblasts in vitro, while serum
fatty acid levels were increased in the mutants in vivo. These
studies have expanded the role of canonical Wnt-signaling to
influencing fatty acid utilization and coordinating whole-body
energy homeostasis.

As indicated above, a number of contemporary studies
suggest that Wnt signaling also regulates glucose and glutamine
utilization by the osteoblast. Wnt signaling through LRP5
increased aerobic glycolysis in the ST2 bone marrow stromal
cell line (93) and mice engineered to overexpress Wnt7b in
osteoblasts exhibit dramatic increases in bone volume, but
simultaneously ablating the expression of Glut1 completely
inhibited the increase in bone accrual (92). Similarly, Wnt
signaling induced glutamine catabolism via the TCA cycle (38)
which in turn stimulated the expression of genes involved in
protein sysnthesis. Interestingly, these effects were mediated by
the activation of mTOR and not β-catenin (92, 93, 97). Thus,
the metabolic actions of Wnt signaling appear to depend on the
specific downstream pathways that are activated.

Parathyroid Hormone Signaling
Parathyroid hormone (PTH) is a master regulator of serum
calcium that signals in the bone, kidney, and intestine to
increase calcium levels. Intermittent administration of human
recombinant PTH (1-34) is now used to reduce the occurrence
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of vertebral and non-vertebral fractures and increased bone
mineral density in postmenopausal osteoporotic women (98).
This therapeutic effect is mediated by PTH’s ability to decrease
apoptosis of mature osteoblasts (99), activate preexisting
bone lines cells (100, 101), and stimulate osteoprogenitor
recruitment (102).

The first indication that PTH might influence fatty acid
oxidation were completed by Adamek et al. (103). In this
study, PTH increased palmitate oxidation in specific cell
populations isolated from bone by enzymatic digestion, while
1,25-Dihydroxycholecalciferol administration produced a more
dramatic effect in multiple cell fractions. A greater reliance of
lipids was suggested by Catherwood et al. (63) who demonstrated
that the inclusion of LDL or VLDL in a basic medium was
sufficient to support the proliferative response of rat ROS17/2.8
to PTH. In a more recent work, Esen et al. (104) used Seahorse
technology, radiolabeled metabolites, and MC3T3-E1 cells to
examine the effect of PTH on osteoblast metabolism. These
studies demonstrated that PTH stimulates glucose uptake and
increases lactate production but reduces the shuttling of glucose-
derived carbon to the TCA cycle. These findings suggest that the
increased rate of oxygen consumption after PTH administration
is due to the oxidation of another fuel source, perhaps fatty
acids imported from serum. While additional studies will
be necessary, this paradigm is congruent with findings from
Maridas et. al (105) that tracked the transfer of fatty acids
from adipocytes to bone marrow stromal cells as well as the
established ability of PTH to induce lipolysis in adipocytes (106).
Likewise, the reduction in marrow adipose tissue volume after
intermittent PTH treatment suggests that marrow adipocytes
represent an energy reserve that provides fatty acids to fuel
the anabolic activity of osteoblasts (105, 107). The finding
that PTH can increase bone mass even under conditions of
caloric restriction suggests that the relationship between PTH
activity and metabolism is more complex and worthy of further
study (105).

SKELETAL CONSEQUENCES OF
DYSLIPIDEMIA

The Centers for Disease Control (CDC) reports that 95
million adults age 20 and older have high cholesterol (>200
ng/dL) while about 25% have elevated triglyceride levels (108).
The aforementioned preclinical studies suggest a requirement
for fatty acid oxidation for normal skeletal development
and homeostasis, but epidemiological studies suggest that
dyslipidemia has detrimental effects on bone (109–114). Elevated
triglycerides, hypercholesterolemia and increased LDL are
associated with higher risk of osteoporosis (111, 114) while
increased LDL has been associated with non-vertebral fractures
(115). Likewise, the National Health and Nutrition Examination
Survey (NHANES III) reports that 63% of osteoporotic patients
have hyperlipidemia (116). Studies from elite endurance athletes
suggest that even short term exposure to a diet rich in fat can
elicit a catabolic state in bone with an increase in markers of bone
resorption and decreases in bone formation markers at rest and

following high-intensity exercise (117). The inverse relationship
between hyperlipidemia and osteoporosis is further noted by
the use of statins, a class of drugs used to lower cholesterol
by blocking 3-hydroxy-3-methyl-glutaryl-CoA reductase, which
was associated with an increase in BMD but no improvement
in fracture risk (118–120). The sections below describe effects of
dyslipidemia on osteoblast function and skeletal homeostasis in
rodent models (Figure 3).

Effect of Dyslipidemia on Bone Structure
and Remodeling
Over the last decade a combination of high fat diet (HFD) feeding
models and hyperlipidemic mouse models have been used to
investigate the effects of dyslipidemia on skeletal homeostasis.
In addition to the development of hypertriglyceridemia, these
models exhibit a host of metabolic defects, including but
not limited to adipose hyperplasia, hyperinsulinemia, insulin
resistance, central leptin resistance, and hepatic steatosis
[reviewed in (121)], that can alter the balance of bone remodeling
and influence bone strength. The consensus from the majority
of these studies is that HFD feeding leads to a deterioration of
trabecular bone mass at multiple skeletal sites in the axial and
appendicular skeleton (60, 116, 122–126). A hypercholesteremic
diet produces a similar effect on trabecular bone parameters
(127). Reports on the effects of HFD on cortical bone parameters
are more variable. Tencerova and colleagues (125) reported that
12 weeks of HFD increased cortical porosity and decreased
cortical thickness in the tibia of male C57Bl/6J mice. These
phenotypes would be expected to reduce bone strength and
indeed a reduction in maximum force and energy to failure
were noted in the femur by Picke et al. (128) when a similar
HFD feeding paradigm was employed. By contrast, Silva et al.
(129) found that HFD had minimal effects on cortical bone
material properties and modestly increased cortical bone area
and strength in mice derived from a Large-by-Small advanced
intercross, wherein inbred mouse strains with extreme body sizes
were crossed. However, this study did note a discrepancy in
the relationship between the expansion of femoral tissue area
with increasing body mass in HFD fed mice. This finding would
appear to be in agreement with the minimal effects of a HFD
on cortical bone geometry in female C57Bl/6J until data were
normalized to body mass (130). In all likelihood, the differences
observed in the cortical bone envelope are due to the balancing
of detrimental effects of metabolic dysfunction with increased
mechanical loading secondary to weight gain.

Histomorphometric analyses and serum measurements of
bone turnover markers consistently demonstrated that trabecular
bone loss in HFD and hyperlipidemic mice is secondary to a
reduction in osteoblast numbers and function as well as an
increase in the abundance of osteoclasts (122, 124, 127, 131, 132).
Consistent with this finding, a HFD induces a decrease in the
expression of the key osteogenic transcription factors RUNX2
and OSTERIX in the bone (60, 124, 132, 133) and impairments
in proliferation and colony forming capacity in bone marrow-
derived mesenchymal stem cells (BM-MSCs) (125). Additionally,
osteoclast precursors isolated from HFD fed mice exhibit
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FIGURE 3 | Skeletal deficits elicited by HFD-induced hyperlipidemia. A high fat diet (HFD) induces extensive systemic metabolic and skeletal changes including

increases in circulating low density lipoprotein (LDL) and triglycerides (TG). This hyperlipidemic state impacts many nuances of osteoblast function and homeostasis

including decreases in Wnt signaling and PTH responsiveness, insulin resistance, and increased RANKL. This results in decreased osteoblast activity and increased

osteoclast activity ultimately contributing to poor skeletal health. This figure was created using Servier Medical Art image templates under a Creative Commons

Attribution 3.0 Unported License.

an increased ability to form TRAP-positive osteoclasts after
treatment with M-CSF and RANKL (134). The extensive effects
of high fat intake were further revealed in gene expression
profiling experiments performed by You et al. (135). In this study,
3 months of a high fat/high cholesterol diet led to the down-
regulation of 2,200 genes and the up-regulation of 992 genes
in RNA samples isolated from whole femur. Downregulated
genes were implicated in a number of pathway associated with
bone formation including the TGF-ß/BMP2 pathway and the
Wnt pathway, while up-regulated genes were associated with
the control of bone resorption. Strikingly, comparative cluster
analysis of these data with changes in gene expression in
ovariectomized rats, a model of osteoporosis, revealed the co-
regulation of more than 1,300 genes, suggestive of a convergence
of pathogenic pathways.

To dissect the effects of altered lipid metabolism from other

metabolic derangements in these models, in vitro culture systems

wherein cultures of primary osteoblasts or osteoblast-like cell

lines are treated with exogenous lipids have proven helpful

(124, 135–139). The common finding in these studies is that

the exposure to sufficient quantities of cholesterol, palmitate

or oxidized LDL [a product of LDL interaction with reactive
oxygen species (140)] reduces the proliferation of osteoblastic

cells, induces cell death, and impairs osteoblast differentiation.
These same stimuli induce an increase in the expression of
RANKL by osteoblasts and enhance osteoclastic differentiation
(127). Together these studies suggest that elevated lipid levels or
the presence of oxidized lipids alone are sufficient to diminish
osteoblast function and in turn lead to an imbalance in anabolic
and catabolic processes in the skeleton.

HYPERLIPIDEMIA’S IMPACT ON
ANABOLIC PATHWAYS OF THE
OSTEOBLAST

The precise mechanisms by which exogenous or oxidized lipids
impair osteoblast function are not completely understood. One
potential explanation is the development of an inflammatory
state that is thought to contribute to metabolic dysfunction
in other tissues. In support of this idea, genetic ablation of
the inflammatory cytokine TNFα inhibits bone loss associated
with a HFD and the detrimental effects of palmitate on
osteoblast differentiation (124). Additionally, a dual impact of
lipids on inflammation has been noted. While polyunsaturated
omega-3 fatty acids are thought to be beneficial to bone
health (79, 141–144), and have anti-inflammatory affects
(145), omega-6 fatty acids have been reported to be pro-
inflammatory (146), leading to pathological bone remodeling
and contributing to bone fracture and osteoporosis (79). In
addition to inflammatory effects, a combination of in vitro
and in vivo evidence suggests that dyslipidemia desensitizes
osteoblasts to anabolic stimuli, including those that regulate
lipid utilization.

Wnt Signaling
In additional to regulating the utilization of fatty acids
by osteoblasts, Wnt/β-catenin signaling is vulnerable to the
detrimental effects of HFD feeding. At the most proximal end
of the signaling pathway, dyslipidemia appears to result in an
increase in the expression of several secreted antagonists of
Wnt signaling. Increases in the abundance of both Dkk1 and
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Sclerostin in serum have been reported in mice fed a HFD, while
the latter was also found to be increased in the serum of ob/ob and
db/dbmice (128, 147–149). Similar increases have also been noted
in obese humans and were accompanied by increases in Dkk-
2 and secreted Frizzled-related proteins (150). At the distal end
of the pathway, obesity and high fat diet feeding were associated
with a reduction in β-catenin protein levels in the femur (151,
152). In a more extreme example, HFD feeding of the ApoE−/−

atherosclerosis mouse model, which induces marked decreases in
osteoblast numbers and an inhibition of bone formation, resulted
in widespread reductions in the expression of Wnt ligands and
target genes at multiple skeletal sites (131). The mechanisms
underlying these changes in transcription are not yet known.

Aside from changes in gene expression, Wang et al. (153)
documented an interaction between the Wnt co-receptor LRP6
and oxidized phospholipids and oxidized LDL, produced as
a result of an increase in reactive oxygen species. In this
study, HFD fed mice exhibited consistent decreases in the
numbers of osteoblast progenitors and the abundance of LRP6
at the cell surface in this cell population. Additional studies
revealed that oxidized phospholipids and oxidized LDL induced
the endocytosis of LRP6 and rendered cells resistant to the
propagation of Wnt signaling. Considering the requirement for
LRP6 function for the maintenance of normal bone mass (94),
this mechanism may partially explain the ability of antibodies
that neutralize oxidized phospholipids to attenuate bone loss due
to a HFD (154).

Parathyroid Hormone Signaling
As indicated earlier, supplementation of basal, serum-free
medium with LDL is sufficient to rescue responsivity to PTH
(63). However, an overabundance of serum lipid can attenuate
intermittent PTH-induced bone formation as evidenced by
studies in the hyperlipidemic Ldlr−/− and Apoe−/− mouse lines.
Intermittent PTH did not increase total bone mineral density or
bone mineral content in the femur of these models, and PTH-
induced increases in multiple parameters of trabecular bone
structure were diminished or abolished in Ldlr−/− mice (155).
Later studies suggested that PTH resistance is likely to be due
to the accumulation of oxidized lipids as administration of the
D-4F peptide, which reduced lipid oxidation products, restored
the anabolic effect of PTH (156–158). Given the requirement for
LRP6 for normal PTH signaling (157, 159), resistence to PTH
may also be mediated by oxidized LDL-induced internalization
of LRP6 (157).

Insulin
The importance of insulin signaling in the osteoblast is revealed
by the increased risk of fracture and decreased BMD in type
1 diabetes [reviewed in (160–162)], increased fracture risk
despite an increase in BMD in type 2 diabetes (163, 164), and
studies utilizing genetic mouse models in which insulin receptor
expression is manipulated. The latter demonstrates that insulin
receptor signaling is required for proliferation, survival, and
osteoblast differentiation, as well as the ability of the osteoblast
to contribute to the regulation of whole-body metabolism
(165–167). As in skeletal muscle and adipose, dyslipidemia

appears to lead to insulin resistance in the osteoblast. Wei and
colleagues (168) demonstrated that mice fed a HFD exhibited
reduced IRS1/2 phosphorylation in osteoblasts after insulin
stimulation in vivo and that stearate treatment in vitro led
to SMURF-mediated ubiquitination of the insulin receptor.
HFD did not reduce trabecular bone volume in this study
(perhaps due to a reduced number of osteoclasts), but multiple
markers of bone formation were reduced which suggests that
skeletal insulin resistance may contribute to bone loss associated
with dyslipidemia.

PEROXISOME
PROLIFERATOR-ACTIVATED RECEPTOR γ

(PPARγ)

A final mechanism by which hyperlipidemia could impact
osteoblast performance and skeletal homeostasis is through the
activation of PPARγ , a transcriptional regulator of adipogenesis
that can be activated by elevated lipid levels. In bone, the nuclear
receptor influences bone remodeling by stimulating adipogenic
differentiation of mesenchymal stem cell at the expense of
osteoblastogenesis and by stimulating osteoclastogenesis (169–
171). HFD-fed rodents exhibit increased PPARγ gene expression
likely leading to defects in osteoblastogenesis (124, 151).
Additionally, HFD caused an increase in callus adiposity
attributed to increased PPARγ expression and was associated
with decreased osteoblast surface during late stages of healing
post-fracture (172). One potential explanation for these finds is
the ability of PPARγ to interfere with anabolic Wnt/β-catenin
signaling (173–175). These effects are critically important for the
targeting of PPARγ function in the treatment of type 2 diabetes.
Thiazolidinediones (TZDs), synthetic PPARγ ligands, are used
to increase insulin senstivity (176–178) but do so at the expense
of skeletal health. Long term use of these agonists increased risk
of fractures in women (179, 180) and decreased bone formation
makers (181) while short term use was sufficient to decrease bone
formation markers, total hip bone density, and lumbar spine
bone density (182).

It is important to note that genetic ablation of PPARγ has
beneficial effects on bone and body composition. Akune and
colleagues (169) reported that PPAR+/− exhibit an increase
in trabecular bone volume secondary to a doubling of the
osteoblast surface. When PPARγ expression was ablated in
mature osteoblasts and osteocytes (PPARgflox/flox DMP1-Cre),
the mutant mice exhibited increases in femoral bone mineral
density and trabecular bone volume as well as reduced fat
mass and increased energy expenditure (183). Crosstalk between
osteoblasts and adipocytes in this model was indicated by in
vitro studies wherein the 3T3-L1 adipocyte cell line was treated
with medium conditioned by PPARγ deficient osteoblasts culture
media and exhibited reduced Oil Red O staining than those
exposed to medium conditioned by wildtype osteoblasts (183).
Furthermore, PPARγ ablation in mature osteoblast/osteocytes
protected against HFD-induced metabolic affects by improving
liver steatosis, increasing lean mass, preventing fat mass
increases, maintaining wild-type glycemic control, and improved
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biomechanical strength (183). Therefore, modulating PPARγ’s
function in the osteoblast could be a potential target for
combating bone loss associated with hyperlipidemia.

CONCLUDING REMARKS

In this review, we have attempted to convey the necessity of
lipid utilization by the osteoblast for normal skeletal homeostasis
as well as the potential for dyslipidemia to impair osteoblast
function and lead to an imbalance in bone remodeling.
Mitochondrial long chain fatty acid oxidation is of sufficient
importance for osteoblast function that [1] genetic impairments
in this metabolic pathway lead to alterations in whole body lipid
homeostasis and [2] signaling pathways essential to bone mass
accrual influence fatty acid metabolism. Future studies should
be directed toward more fully delineating the mechanisms of
fatty acquisition by osteoblasts. These studies will require the
development of new genetic mouse models in which transporters
are disrupted specifically in the osteoblasts as global knockout
models exhibit disturbances in metabolism that may indirectly
influence bone remodeling. Determining the mechanisms by
which osteoblasts convey their need for sufficient fatty acid
supply to other tissues is equally vital. In this regard, the
emergence of bone as a hormone-producing tissue is likely to
provide key insights into the responsible endocrine networks.
As we noted above, the detrimental effects of dyslipidemia,

particularly in response to a high fat feeding in rodent models,

on bone mass and the balance of bone formation and resorption
are well-known, but the underlying mechanisms are still poorly
understood. The increased recognition of bone as a lipid-utilizing
tissue is likely to lead to a renewed interest in this area.
Together these studies will provide a deeper understanding of
the intimate interaction between the skeleton and metabolism
and hopefully lead to treatment strategies that simultaneously
reduce the burden of obesity and metabolic disease and preserve
skeletal homeostasis.
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