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vascular diseases in general population as well as chronic kidney

disease patients, it has not been clarified whether higher phos�

phate can affect atherosclerotic plaque formation. In this study,

we investigated the effect of prolonged�intake of different

concentrations of phosphate on atherosclerosis formation using

apolipoprotein E�deficient mice. Apolipoprotein E�deficient mice

were fed with high fat diet including 0.6%, 1.2% or 1.8% phos�

phate. After 20�week treatment, atherosclerotic plaque formation

in aorta in 1.8% phosphate diet group was unexpectedly less than

that in the other groups. To elucidate mechanisms of suppression

of plaque formation by high phosphate diet, we hypothesized

that high phosphate diet may modify a profile of monocytes/

macrophages suppressing plaque formation. We confirmed that

elevated peripheral monocytes (CD11b+, F4/80+ cell numbers) in

apolipoprotein E�deficient mice were decreased by feeding with

1.8% P diet. In addition, ex vivo study indicated that high dose of

phosphate induced macrophage apoptosis. These observations

suggest that excess phosphate intake decreased atherosclerosis

formation, at least in part, by changing the profile of peripheral

monocytes or inducing apoptosis of macrophages in apolipoprotein

E�deficient mice.
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IntroductionHigher serum phosphate (P) level, even within the normal
range, has been reported as a risk factor for cardiovascular

diseases (CVDs) in recent epidemiological researches.(1,2) It has
been thought to be a possible mechanism that excessive serum P
can induce vascular calcification.(3–5) On the other hand, there are
a few reports describing relationship between serum P levels
and carotid intima-media thickness, which are used as an indicator
of progression of atherosclerosis.(6–8) However, it is unknown
whether hyperphosphatemia or high P diet intake can induce
atherosclerosis or not.

Atherosclerosis is a chronic inflammatory disease in artery, and
caused by complicated pathogenesis. Both endothelial dysfunction
and infiltrating macrophages in sub intimal layer are primary
pathogenic mechanisms for the development of atherosclerosis.(9)

Indeed, reducing inflammation by nonsteroidal anti-inflammatory
drugs can reduce plaque formation in early to intermediate stage
of atherosclerosis.(10) To date, several animal models have been
established to understand the relationship between risk factors
and atherosclerogenesis. Hypercholesterolemic apolipoprotein E
(ApoE)-deficient mouse is a useful model for studying about

atherosclerosis. It has been reported that increased oxidative stress
inactivated nitric oxide (NO) responsible for endothelial dysfunc-
tion.(11–13) Furthermore, inhibition of NO synthesis aggravated
atherosclerotic plaque formation in ApoE-deficient mice.(14,15) In
our previous study, we demonstrated that high dose P loading
induced endothelial dysfunction by increasing oxidative stress
and decreasing NO production ex vivo and in vitro.(16) Thus we
hypothesized that higher P intake can increase serum P levels,
and accelerate atherosclerotic plague formation by aggravating
endothelial dysfunction in ApoE-deficient mice. In this study, we
examined the effects of different amount of P intake on progres-
sion of atherosclerosis in ApoE-deficient mice.

Materials and Methods

Mice. 5-week-old male C57BL/6.KOR/StmSlc-ApoEshl and
C57BL/6 mice were obtained from Japan SLC (Shizuoka, Japan).
After 1 week of adaptation, mice were divided and fed a western-
type diet (20% Fat; 0.15% cholesterol (w/w)) containing 0.6%
calcium, and 0.6%, 1.2% or 1.8% phosphorus (w/w) respectively
for 7 weeks for flow cytometry or 20 weeks for atherosclerotic
formation analysis. All procedures were approved by the guide-
lines for animal experimentation of the University of Tokushima.

Plasma and urinary analysis. A blood sample was obtained
via abdominal inferior vena cava with heparin, immediately
centrifuged at 10,000 rpm for 3 min at room temperature and the
plasma was stored at −80°C until measurement. Urine was collected
over a 24-h period and was also stored at −80°C until measure-
ment. Total-Cholesterol (T-Cho), triglycerides (TG), inorganic P,
Ca and creatinine levels in the plasma and/or urine were measured
by using commercially available kits (Wako Pure Chemical
Industries, Ltd., Osaka, Japan). ELISA was performed for mea-
suring plasma FGF23 (KAINOS LABORATORIES, Inc., Tokyo,
Japan), intact parathyroid hormone (iPTH) (Immunotopics Inter-
national, San Clemente, CA) and MCP-1 (Thermo Fisher Scien-
tific, Inc., Rockford, IL). Tissue plasminogen activator inhibitor-1
(tPAI-1), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-
α) were measured with a mouse adipokine plasma multiplex assay
system (Millipore Japan, Tokyo, Japan). 1,25-dihydroxyvitamin D
(1,25-(OH)2D) was measured by the radioreceptor assay (SRL,
Inc., Tokyo, Japan).

en face aorta analysis. The aorta was perfused with phos-
phate buffered saline (PBS) from the left ventricle of the heart and
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used for en face aorta analysis. The aorta from iliac bifurcation to
aortic arch was removed and external fatty deposits outside the
aorta were completely removed. The aorta was cut open by longi-
tudinally and fixed with 4% (w/v) formalin for 30 min. After
Rinsing in distilled water and 60% (v/v) isopropanol, the specimen
was stained with oil red O for 5 min, and then rinsed in 60% (v/v)
isopropanol and distilled water. Picture was taken by TS-CA-
200M camera (SUGITOH Co., Ltd., Tokyo, Japan). Image analysis
was performed with Image Pro Plus (version 6.0; Media
Cybernetics, Bethesda, MD). The amount of lipid deposits in each
sample was measured relative to total area.

Flow cytometry. Anti-mouse Gr-1 (Ly-6G) antibody conju-
gated with eFluor®780, anti-CD11b (M1/70) antibody conjugated
with PE(phycoerythrin)-APC-Cy7 and anti-F4/80 (BM8) antibody
conjugated with eFluor®450 were obtained from eBioscience, Inc.
(San Diego, CA). Peripheral blood leucocytes (500 μl whole
blood per a mouse) were collected via inferior vena cava and
erythrocytes were lysed. Samples were incubated with FcγIII/II
receptor (2.4G2) antibody to block nonspecific antibody binding
for 15 min at 4°C, stained with antibody mixture for 15 min at 4°C
then stained for 7-amino-actinomycin D (7-AAD) (Sigma Aldrich
Japan, Tokyo, Japan) to detect dead cells. Cells were analyzed on
FACS Canto II (Japan Becton Dickinson, Tokyo, Japan). Up to
100,000 events were acquired.

Preparation of intraperitoneal macrophages. To collect
the peritoneal macrophages, non-treatment C57BL/6 mice were
injected i.p. with 4.05% (w/v) thioglycolate medium, and after 3
days, mice were euthanized and i.p. macrophages were collected
with 0.9% (w/v) saline. After washing with saline, macrophages
were centrifuged for 5 min at 1,000 rpm, resuspended with
Dulbecco’s modified Eagle’s medium (DMEM) including 10%
(v/v) of fetal calf serum (FCS) and seeded in 96-well plates
(5 × 104 cells per well) for AlamarBlue assay and on coverslip in
24-well plates (5 × 105 cells per well) for TUNEL staining. After
incubation in humidified 37°C, 5% (v/v) CO2 incubator for several
hours, non-attached cells were removed then macrophages were
used for each experiment.

AlamarBlue assay. Macrophages were starved fresh medium
without FCS overnight and medium was changed 2 h before
stimulation. To evaluate effect of phosphate concentrations in
medium on cellular viability, macrophages were incubated with
DMEM including 10% (v/v) of AlamarBlue reagent (Invitrogen
Japan, Tokyo, Japan) for 4 h. We added appropriate amounts of
sodium phosphate buffer (0.1 M Na2HPO4/NaH2PO4, pH 7.4). Delta
absorbance (570–600 nm) was measured.

TUNEL staining. Apoptosis in situ detection kit (Wako) was
used for TUNEL assay. Macrophages on coverslip were fixed
with 4% (w/v) formalin and permeablized with permeablization

solution (0.1% (w/v) sodium citric acid and 0.1% (v/v) Triton X-
100). Applying TdT reaction solution for 10 min at 37°C, washing
with PBS, peroxidase (POD)-conjugated antibody for 10 min at
37°C, washing with PBS then positive staining cells were visual-
ized with diaminobenzidine (DAB) solution.

Statistical analysis. All data were expressed as the means ±
SD. Statistical analysis was analyzed with student’s t test for
non-parametric comparison between two groups, or analysis of
variance (ANOVA) with post hoc test by Fisher’s protected least
significant difference (PLSD) test for multiple comparisons.
p<0.05 was considered significant.

Results

Effects of prolonged higher P intake on Ca�P and lipid
metabolisms. ApoE-deficient mice were fed with western diet
including 0.6% Ca, and 0.6%, 1.2% or 1.8% P for 20 weeks. In
normal condition, serum Ca and P concentrations are strictly
regulated by parathyroid hormone (PTH), Fibroblast growth
factor 23 (FGF23) and 1,25-(OH)2D, thus excess P can be
immediately excreted into the urine. To confirm effects of pro-
longed much amount of P intake on kidney function and mineral
metabolism in ApoE-deficient mice, we assayed plasma and
urinary concentrations of markers related on Ca and P metabo-
lisms. All groups did not show any significant difference in
plasma P, and plasma and urinary Ca levels while urinary P level
corrected by creatinine in 1.8% P group was significantly higher
than that in the other groups (Table 1). Plasma intact PTH level in
1.2% P group was significantly higher than that in 0.6% P group,
and plasma FGF23 in 1.8% P group was significantly higher than
that in the other groups but plasma 1,25-(OH)2D levels in all
groups were not significantly different. Considering all various
markers together, Ca and P metabolisms were normally regulated
in ApoE-deficient mice in response to dietary P modifications.

As abnormal blood lipids are important risk factors for athero-
sclerosis, we examined effects of different amount of P intake on
lipid metabolism. There was no significant difference among
groups on plasma TG and T-Cho levels. Therefore, dietary P
intake did not affect blood lipid concentrations in ApoE-deficient
mice.

Atherosclerotic formation in aorta and atherosclerotic
indicators in plasma. We evaluated atherosclerotic plaque
formation by staining enface aorta with Oil red O. Despite our
hypothesis which higher P intake can progress atherosclerotic
formation, surprisingly, 1.8% P intake significantly suppressed
the development of atherosclerotic plaque compared with lower P
intake (Fig. 1a). Especially, lesions in thoracic and abdominal
aorta decreased in 1.8% P group.

Table 1. Fasting blood and urine chemistry relating on P, Ca and lipid metabolisms, and kidney function in
ApoE�deficient mice fed with high fat diet for 20 weeks. Plasma was collected after overnight fast. Urine
was collected for 24 h. All urinary markers were normalized by creatinine. TG; triacylglyceride, T�Cho; total
cholesterol, Crea; creatinine. Values shown are means ± SD. *p<0.05 vs 0.6% P, **p<0.05 vs 1.2% P.

0.6% P 1.2% P 1.8% P

Plasma

P (mmol/l) 1.55 ± 0.17 1.52 ± 0.17 1.35 ± 0.24

Ca (mmol/l) 2.13 ± 0.28 2.17 ± 0.25 2.15 ± 0.16

Intact PTH (pg/ml) 26.8 ± 7.26 35.8 ± 17.3* 31.3 ± 9.67

FGF23 (pg/ml) 138 ± 23.6 216 ± 27.6 958 ± 197*,**

1,25�(OH)2D (pg/ml) 119 ± 62.1 88.8 ± 32.5 51.5 ± 8.84

TG (mmol/l) 1.51 ± 0.58 1.84 ± 0.38 1.76 ± 0.34

T�Cho (mmol/l) 16.3 ± 3.85 17.5 ± 3.49 18.2 ± 4.01

Urinary

P (mol/mol Crea) 45.8 ± 11.2 85.6 ± 6.75* 136 ± 18.4*,**

Ca (mol/mol Crea) 0.57 ± 0.23 0.55 ± 0.17 0.82 ± 0.45
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To elucidate the mechanism of suppression of atherosclerosis
formation in 1.8% P group, we analyzed plasma tissue plasminogen
activator inhibitor-1 (tPAI-1), monocyte chemoattractant protein-1
(MCP-1), tumor necrosis factor-α (TNF-α) and interleukin-6
(IL-6) concentrations. Plasma tPAI-1 levels were significantly
decreased in 1.2% P and 1.8% P groups compared with 0.6% P
group (Fig. 1b). Plasma MCP-1 levels were significantly decreased
in 1.8% P group compared with the other groups. Plasma TNF-α
and IL-6 did not show any significant difference among all groups.

Dietary phosphate affected peripheral blood monocytes
in vivo. As shown above, high P diet intake unexpectedly sup-
pressed atherosclerosis formation. Next we investigated effect of
dietary P intake on peripheral blood monocytes, because mono-
cyte recruitment is a primary event for atherosclerogenesis. We
fed ApoE-deficient and C57BL/6, as a control, mice with high fat
diet including 0.6% or 1.8% phosphorus for 7 weeks and the blood
leukocytes were analyzed by flow cytometry. Intraperitoneal
CD11b positive and F4/80 positive cells, which indicate mono-
cytes, were significantly increased in ApoE-0.6% P group than
C57BL/6-0.6% P (WT-0.6% P) group (Fig. 2). On the other hand,
the cell numbers in ApoE-1.8% P group were reduced as same as
that in WT-0.6% P group.

Effects of P intake on intraperitoneal macrophage apop�
tosis in vitro. As reason for alteration of peripheral blood
monocyte cellularity, we took into considerations of effects of
dietary P intake on haematocyte differentiation and/or monocyte
apoptosis. In this study, we investigated whether dietary P intake
can induce monocyte apoptosis; because there are several reports
which higher dose P stimulation can induce apoptosis in some cell
lines, such as endothelial cells, osteoblasts and chondrocytes.(17–19)

First, we used AlamarBlue reagent to assess whether extracellular

P concentrations can affect macrophage viability. High P loading
dose-dependently decreased the metabolic activity of thioglycolate-
elicited macrophages (Fig. 3a). Since ApoE-deficient mice show

Fig. 1. Atherosclerotic lesion area and plasma cytokine levels in ApoE�deficient mice fed with high fat diet for 20 weeks. (a) Whole aortas were
stained with Oil red O to reveal lipid deposits and atherosclerotic lesion area was quantitated as the ratio of the total lipid deposits area to the total
surface area. (b) Tissue plasminogen activator inhibitor 1 (tPAI�1), monocyte chemotactic protein�1 (MCP�1), Tumor necrosis factor�α (TNF�α),
Interleukin�6 (IL�6) were measured as atherosclerotic indicators. Values shown are means ± SD. *p<0.05 vs 0.6% P, †p<0.05 vs 1.2% P.

Fig. 2. F4/80 positive cell numbers in peripheral leukocytes of WT
(C57BL/6) and ApoE�deficient mice fed with high fat diet for 7 weeks.
Peripheral leukocytes were labeled with anti�CD11b antibody conjugat�
ed with PE�Cy7 and anti�F4/80 antibody conjugated with eFluor®450 to
determine the number of monocytes and analyzed by flow cytometry.
Values shown are means ± SD. *p<0.05 vs WT�0.6% P, †p<0.05 vs ApoE�
0.6% P.
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increased oxidative stress,(20) thioglycolate-elicited macrophages
were stimulated by high P loading under oxidative stress condi-
tion, and apoptosis was analyzed by TUNEL staining to confirm
whether high concentrations of P can stimulate macrophage
apoptosis. Macrophage apoptosis was enhanced by high P loading
under oxidative stress (Fig. 3b).

1.8% P diet intake decreased F4/80+, Gr�1+cells in peri�
pheral blood in ApoE�deficient mice. Activation of monocytes
plays an important role in the development of atherosclerosis.
Peripheral leukocytes from 7-week fed ApoE-deficient and
C57BL/6 mice were analyzed by flow cytometry. We found that
CD11b positive, F4/80 positive and Gr-1 positive cells (including
inflammatory monocytes) were 2-fold as large as Gr-1 negative
cells (resident monocytes) in ApoE-0.6% P group but not the
other groups (Fig. 4).

Discussion

Inhibition of NO production aggravated atherosclerosis in
ApoE-deficient mice.(14,15) Excess P loading can induce endothelial
dysfunction by decreasing endothelial nitric oxide production,(16)

increasing oxidative stress,(16,17) or inducing apoptosis.(17) Therefore,
we hypothesized that P loading can synergistically aggravated
atherosclerosis in ApoE-deficient mice, however, excessive P
intake ameliorated atherosclerosis in aorta in ApoE-deficient
mice, unexpectedly.

We considered that the unexpected effect of high P loading on
the development of atherosclerosis must be independent on endo-
thelial dysfunction. Because, there was no significant difference
between 1.8% P diet and 0.6% P diet groups in acetylcholine-
dependent vasodilation of thoracic aortic ring in ApoE-deficient
mice (our unpublished observation). The observation suggests that

Fig. 3. Effects of P on thioglycolate�elicited macrophages. (a) Thioglycolate�elicited intraperitoneal macrophages from WT mice were stimulated
with different concentrations of P, and their cellular metabolic activity was measured with AlamarBlue reagent. Metabolic activity of cells was
expressed as delta OD (570–600 nm). (b) Cells were stimulated with different concentrations of P under oxidative stress condition (0.05 mM
hydrogen peroxide). Apoptotic cells were detected by TUNEL. TUNEL positive staining cell numbers were corrected by total cell numbers in the field
of vision. Values shown are means ± SD. *p<0.05 vs 0.9 mM, †p<0.05 vs 2 mM.

Fig. 4. Gr�1 (LY�6G) positive or negative cell numbers in peripheral
leukocytes of WT (C57BL/6) and ApoE�deficient mice fed with high fat
diet for 7 weeks. Peripheral leukocytes were labeled with anti�CD11b
antibody conjugated with Cy7, anti�F4/80 antibody conjugated with
eFluor®450 and anti�Gr�1 (LY�6G) antibody conjugated with eFluor®780
to determine the number of resident monocytes (Gr�1 negative) and
inflammatory monocytes (Gr�1 positive) and analyzed by flow cyto�
metry. Open column; WT�0.6% P, dotted column; WT�1.8% P, closed
column; ApoE�0.6% P, hatched column; ApoE�1.8% P. Values shown are
means ± SD. *p<0.05 vs WT�0.6% P, †p<0.05 vs ApoE�0.6% P.
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endothelial function in ApoE-deficient mice has been impaired as
shown in previous study,(21) and dietary P intake did not addition-
ally affect endothelial function. Generally, recruitment and migra-
tion of monocytes across endothelium are very important events as
much as endothelial dysfunction in atherosclerosis formation. Liu
et al. reported that reduction of macrophage apoptosis accelerated
atherosclerosis.(22) In addition, other researchers demonstrated
that macrophage apoptosis in early stage of atherosclerosis
development was very efficient and diminished plaque formation
but not advanced stage.(23–25) Therefore, we investigated the effect
of high P loading on monocytes/macrophages.

In this study, we demonstrated that peripheral CD11b+, F4/80+
cell numbers were decreased by 1.8% P intake compared with
0.6% P in ApoE-deficient mice and high concentrations of dietary
P induced thioglycolate-elicited macrophage apoptosis under
oxidative stress condition. These effects suggest that the effect of
excess P intake on peripheral blood would be anti-atherosclero-
genesis by inducing monocyte/macrophage apoptosis under
oxidative condition.

Recent studies reported that blood monocytes include two func-
tional subsets, inflammatory and resident monocytes.(26–28) Despite
no significant difference between atherosclerosis formation at the
time of 7-week feeding with 0.6% or 1.8% P diet (data were not
shown), excess P intake reduced only inflammatory monocytes in
peripheral blood. However, we could not determine whether P
induced apoptosis in inflammatory monocytes or affected mono-
cytes subsets. The changed profile of monocytes may account
for the decreases in inflammatory and atherosclerogenic factors
such as tPAI-1, MCP-1, TNF-α in ApoE-deficient mice fed with
1.8% P diet. In addition, the decreases in those inflammatory and
atherosclerogenic factors may have a protective effect on athero-
sclerogenesis by suppressing endothelial dysfunction. Because
previous studies have reported that deficiency of MCP-1, TNF-α
or PAI-1 reduced atherosclerosis formation,(29–32) and have indi-
cated that these cytokines play an important role in plaque pro-
gression. Thus, these possible mechanisms could be underlying on
the decrease in atherosclerotic plaque formation in ApoE-deficient
mice fed with 1.8% P diet.

This study has some limitations. At least, we cannot exclude the
effects of high P intake on the development of atherosclerosis
other than that on monocytes/macrophages. For instance, FGF23
may be a possible candidate. In 1.8% P intake group, plasma
FGF23 levels were very high compared with the other groups.
FGF23 is responsible for P and vitamin D metabolisms and known
as a predictor of chronic kidney disease.(33) Recent studies have
reported that FGF23 null mice were smaller in kidney size and
occurred vascular calcification(34,35) whereas FGF23 overexpres-
sion prevented progression of chronic kidney failure in rats.(36) In
this study, we could not investigate the effects of FGF23 on the
development of atherosclerosis. To understand the effect of high
P loading on the development of atherosclerosis, further study
must be needed.

High P diet intake can induce endothelial dysfunction and must
be a risk factor for atherosclerosis in normal condition. On the
other hand, high P diet intake may prevent atherosclerosis forma-
tion in enhanced atherosclerogenic condition such as ApoE-
deficient mice. Although we cannot fully understand the role of
high P loading in vascular disease model such as ApoE-deficient
mice at this time, the actual mechanism must be complicated.
Epidemiologically, whereas hyperphosphatemia is positively
associated with cardiovascular event in general population as well
as CKD patients,(1,27) it can be negatively associated with blood
pressure.(1,37) We have no direct evidence, however, such contra-
dictory effects of high P diet intake may help us to understand
the complicated pathogenesis of cardiovascular disease in CKD
patients.

In conclusion, prolonged excess P intake unexpectedly can
ameliorate atherosclerosis formation in ApoE-deficient mice, at
least in part, by changing the profile of peripheral inflammatory
monocytes. To understand the role of high P diet intake in athero-
sclerogenesis in more detail, pathogenic conditions, the difference
of tissue or organ, treatment period and dose, etc. should be
considered in further investigations.
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ApoE apolipoprotein E
CKD chronic kidney disease
DMEM Dulbecco’s modified Eagle’s medium
ELISA enzyme-linked immunosorbent assay
FCS fetal bovine serum
FGF23 fibroblast growth factor 23
IL-6 interleukin-6
MCP-1 monocyte chemoattractant protein-1
NO nitric oxide
1,25-(OH)2D 1,25-dihydroxyvitamin D
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tPAI-I tissue plasminogen activator inhibitor-1
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