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Abstract: Hearing loss (HL) is the most common sensory impairment, and it is characterized by a
high clinical/genetic heterogeneity. Here we report the identification of dual molecular diagnoses
(i.e., mutations at two loci that lead to the expression of two Mendelian conditions) in a series of
families affected by non-syndromic and syndromic HL. Eighty-two patients who displayed HL as a
major clinical feature have been recruited during the last year. After an accurate clinical evaluation,
individuals have been analyzed through whole-exome sequencing (WES). This protocol led to the
identification of seven families characterized by the presence of a dual diagnosis. In particular, based
on the clinical and genetic findings, patients have been classified into two groups: (a) patients with
HL and distinct phenotypes not fitting in a known syndrome due to mutations at two loci (e.g., HL
in association with Marfan syndrome) and (b) patients with two genes involved in HL phenotype
(e.g.,, TMPRSS3 and MYH14). These data highlight for the first time the high prevalence of dual
molecular diagnoses in HL patients and suggest that they should be considered especially for those
cases that depart from the expected clinical manifestation or those characterized by a significant
intra-familiar variability.

Keywords: hereditary hearing loss; whole-exome sequencing; dual molecular diagnosis

1. Introduction

The identification of the molecular basis of a genetic disorder is the central goal of
modern medical genetics. In fact, the definition of the correct molecular diagnosis offers a
series of benefits that have a tremendous impact on human life, such as understanding the
pathological mechanisms, the implementation of preventive strategies, the development of
personalized treatments, etc.

Recently, next-generation sequencing (NGS) technologies, and in particular whole-
exome sequencing (WES), have been introduced in the diagnostic routine of Mendelian
diseases, revolutionizing the approach of the study of genetic disorders. The possibility to
screen multiple genes simultaneously in an unbiased method allowed the identification
of the molecular cause of many rare diseases, especially those characterized by high
genetic heterogeneity.

The pathologies that benefited the most from the introduction of NGS technologies
are those characterized by high genetic heterogeneity and different models of inheritance
such as hearing loss (HL).
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HL is the most prevalent sensory impairment in both childhood and adulthood [1].
According to the World Health Organization (WHO), over 430 million people (i.e., more
than 5% of the world’s population) have disabling HL, and this number is estimated to
almost double by 2050 (https://www.who.int/news-room/fact-sheets/detail /deafness-
and-hearing-loss, accessed on 24 November 2021). It is extremely heterogeneous both from
the clinical and genetic point of view and can be classified in many categories according to
different parameters, such as (1) the degree and configuration of loss, (2) the location of
the damage causing the impairment, and (3) the age of onset. At least 50% of congenital or
childhood HL is attributable to genetic causes, leading to hereditary hearing loss (HHL) [2].

HHL can be further classified as syndromic (SHL), when HL is accompanied by other
clinical features and non-syndromic (NSHL) [3]; it is estimated that SHL accounts for ~30%
of the total cases, while NSHL for the remaining ~70%. However, some reports are now
calling into question these percentages, describing several cases of apparent NSHL, which
should instead be classified as SHL [4,5]. As regards genetics, to date, about 123 genes
(51 autosomal dominant (DFNA) genes, 77 autosomal recessive (DFNB) genes, 5 X-linked
genes) have been reported as causative of NSHL (Hereditary Hearing Loss Homepage;
http:/ /hereditaryhearingloss.org/, accessed on 24 November 2021), and more than 400
syndromes associated with HL [6].

Thanks to the application of a multi-step approach, here we describe the identification
of an additional peculiar scenario, the one of dual molecular diagnosis in patients affected
by HHL, i.e., the presence of pathogenic variations at two distinct loci that lead to the
expression of two Mendelian conditions, which segregate independently.

2. Materials and Methods
2.1. Samples Collection

During the last year, a total of 82 subjects affected by HL have been recruited at the IR-
CCS “Burlo Garofolo” in Trieste and at the Policlinico S.Orsola-Malpighi in Bologna (Italy).

All the participants underwent an accurate clinical evaluation. In particular, a complete
medical history has been collected to exclude HL due to infections, trauma, or other
non-genetic causes. All the patients underwent pure tone audiometric testing (PTA) or
auditory brainstem response (ABR) (based on the probands’ age) to define the degree of
HL according to the international guidelines described by Clark (1981) [7]. Neurological
and ophthalmological examinations, electrocardiogram, kidney ultrasonography, brain
magnetic resonance imaging (MRI) and computerized tomography (CT) scan, and thyroid
function assessment were performed as well.

Based on the clinical findings, patients have been classified as likely NSHL (N = 67) or
likely SHL (N = 15). Moreover, based on the inheritance pattern, familial cases were further
categorized as: presumed autosomal recessive (N = 4), presumed autosomal dominant
(N =14), or sporadic cases (N = 64).

Written informed consent was obtained from all the participants; in the case of mi-
nors, their next of kin provided written informed consent. The study was conducted in
accordance with the tenets of the Helsinki Declaration and was approved by the Ethics
Committee of IRCCS-Burlo Garofolo of Trieste and of Policlinico S.Orsola-Malpighi of
Bologna (Italy) (code 242/07, approved in 2007).

All the patients underwent a multi-step approach for the molecular diagnosis of HHL,
summarized in Figure 1.

For all the patients enrolled in the study, the presence of mutations in the GJB2, GJB6,
and MT-RNR1 genes were previously excluded. In particular, the entire coding region
of the G/B2 gene was sequenced by the Sanger method (primers available upon request).
DNA was analyzed on a 3500 Dx Genetic Analyzer (Thermo Fisher, Waltham, MA, USA),
using ABI PRISM 3.1 Big Dye terminator chemistry (Thermo Fisher) according to the
manufacturer’s instructions. Subsequently, GJB6 deletions (i.e., D1351830-D1351854) were
screened by multiplex PCR, as previously described [8], and the A1555G mtDNA mutation
was tested by restriction fragment-length polymorphism (PCR-RFLP) analysis using BsmAI
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as restriction enzyme, followed by visualization on an agarose gel stained with Midori
Green Advance (Nippon Genetics).
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Figure 1. Schematic representation of the multi-step approach applied in the present study. During
the last year, a total of 82 patients displaying HL have been enrolled. All of the patients underwent a
careful clinical evaluation to distinguish between non-syndromic HL and syndromic HL. Afterward,
individuals were screened for mutation in GJB2, G/B6, and MT-RNR1 genes and for deletions in
STRC-CATSPER2 and OTOA genes. Subsequently, whole-exome sequencing has been applied,
allowing the identification of a series of dual molecular diagnoses.

2.2. Multiplex Ligation Probe Amplification (MLPA)

MLPA analysis was performed for the identification of deletion/duplication in STRC,
CATSPER2, and OTOA genes. The SALSA® MLPA® probe mixes P461-A1 DIS (MRC-
Holland, Amsterdam, The Netherlands) were employed, according to the manufacturer’s
instructions. Coffalyser. Net software was used for data analysis in combination with the lot-
specific MLPA Coffalyser sheet. The following cutoff values for the dosage quotient (DQ) of
the probes were used to interpret MLPA results: 0.80 < DQ < 1.20 (no deletion/duplication),
DQ = 0 (deletion), and 1.75 < DQ < 2.15 (duplication).

2.3. Whole-Exome Sequencing (WES)

WES was completed on an Illumina NextSeq 550 instrument (Illumina, San Diego, CA,
USA) using the Twist Human Core Exome + Human RefSeq Panel kit (Twist Bioscience,
South San Francisco, CA, USA), according to the manufacturer’s protocol.

Briefly, 50 ng of genomic DNA was enzymatically fragmented. After an end repair and
dA-tailing reaction, each fragment was ligated to a universal adapter and then amplified
using the Unique Dual Index primers (Twist Bioscience, South San Francisco, CA, USA).
Afterward, the samples were hybridized with the Twist Human Core Exome and the
Human RefSeq Panel, which allows covering 99% of the protein-coding genes. Finally, the
hybridized fragments have been captured, amplified, and sequenced.

FASTQ files have been processed through a custom pipeline, called Germline-Pipeline,
developed by enGenome s.r.l. (https://www.engenome.com/, accessed on 24 November
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2021). This workflow has been designed for Illumina paired-end sequencing data and
allows the identification of germline variants such as single-nucleotide variants (SNVs),
short insertion/deletions (INDELs), exon-level copy number variations (CNVs) starting
from sequence reads. The pipeline includes a series of steps, such as FASTQ trimming,
FASTQ quality check, FASTQ mapping, mark of duplicates, base quality score recalibration,
and variant calling.

A final VCF file containing SNV, INDELs, and CNV events has been generated.

The VCF files generated through the secondary analysis have been analyzed on
Engenome Expert Variant Interpreter (eVai) software (evai.engenome.com), which allows
variant annotation and interpretation. In particular, eVai combines artificial intelligence
with the American College of Medical Genetics (ACMG) guidelines [9] to classify and
prioritize every genomic variant, suggesting a list of possible related genetic diagnoses.

SNVs leading to synonymous amino acids substitutions not predicted as damaging,
not affecting splicing, or highly conserved residues were excluded, as well as SNVs/INDELs
with quality score (QUAL) < 20 and called in off-target regions.

A comparison between the identified genetic variants and data reported in NCBI
dbSNP build153 (http:/ /www.ncbi.nlm.nih.gov/SNP/, accessed on 24 November 2021) as
well as in gnomAD (http://gnomad.broadinstitute.org/, accessed on 24 November 2021),
led to the exclusion of those variants previously reported as polymorphism. In particular, a
minor allele frequency (MAF) cutoff of 0.005 for recessive forms and 0.001 for the dominant
ones was used.

The pathogenicity of known genetic variants was evaluated using ClinVar (http:
/ /www.ncbinlm.nih.gov/clinvar/, accessed on 24 November 2021), Deafness Variation
Database (http:/ /deafnessvariationdatabase.org/, accessed on 24 November 2021), and
The Human Gene Mutation Database (http:/ /www.hgmd.cf.ac.uk/ac/index.php, accessed
on 24 November 2021).

Several in silico tools, such as PolyPhen-2 [10], SIFT [11], Pseudo Amino Acid Pro-
tein Intolerance Variant Predictor (for coding variants SNVs/INDELs) (PaPI score) [12],
Deep Neural Network Variant Predictor (for coding/non-coding variants, SNVs) (DANN
score) [13] and dbscSNV score [14] were used to evaluate the pathogenicity of novel variants.

Finally, on a patient-by-patient basis, variants were discussed in the context of pheno-
typic data at interdisciplinary meetings, and the most likely disease-causing SNVs/INDELSs
were analyzed by direct Sanger sequencing.

Sanger sequencing was also employed to perform the segregation analysis within
the family.

3. Results

Among the 82 cases analyzed, a total of seven patients presented with a dual molecular
diagnosis (8.5%). Based on both the genetic and clinical findings, patients have been classi-
fied into two main categories: (1) those with distinct phenotypes, i.e., HL plus other clinical
features due to mutations in different genes, (2) patients with overlapping phenotypes,
i.e., HL due to the contribution of two distinct loci.

In particular, five families belong to the first class of patients (i.e., Family 1, 2, 3, 4, 5),
while the remaining two belong to the second one (i.e., Family 6, 7).

3.1. Family 1. Hearing Loss and Myopathy

Fam 1 (Figure 2A), an Italian non-consanguineous family, came to genetic counseling
for the presence of an apparent NSHL in the proband, an 11-year-old boy.
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Figure 2. Pedigrees, clinical and genetic data of the families carrying a dual molecular diagnosis.
The figure illustrates all the pedigrees of the HL families with a dual molecular diagnosis, with the
indication of the main clinical features and the genes involved in the phenotype (i.e., Families 1-7,
which correspond to Figure 1, (A-G). dRTA = distal renal tubular acidosis. * Individual carrier of two
in cis missense variants in the MYOI5A gene.

The audiometric evaluation revealed a mild-moderate HL across all frequencies and
normal hearing in both parents (Supplementary Table S1). Family history highlighted the
presence of myopathy of unknown origin in the mother (confirmed by muscle biopsy),
presenting with muscular weakness of the left arm, myotonic firing, and progressive
involvement of the inferior part of the body. The maternal aunt reported a similar condition,
and the mother outlined the presence of muscle and joint pain also in the proband.

The family trios underwent our multi-step approach for the molecular diagnosis of HL.
The analysis of CNVs in STRC, CATSPER2, and OTOA genes through MLPA revealed the
presence of a homozygous STRC (NM_153700.2) deletion in the proband (Supplementary
Figure S1A, Table 1), inherited from the parents (both heterozygous).
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Table 1. List of dual molecular diagnoses identified by WES and MLPA. The table displays the main clinical features and the variants detected in the probands with

a dual molecular diagnosis. Hom = homozygous; Het = heterozygous; NA = not available.The * symbol indicates a stop codon in the protein, according to the

HGVS nomenclature guidelines.

Gene 1 Gene 2
. Clinical Protein . cDNA Protein .
Family ID Phenotype Gene cDNA Change Genotype Change Inheritance Gene Change Genotype Change Inheritance
Hearing loss and STRC 5 maternal + COL9A3
1 myopathy (NM_153700.2) gene deletion Hom NA paternal (NM_001853.4) c.1378G > A Het p-(Gly460Ser) maternal
Hearing loss, distal c242T >C Het p-(Leu81Pro) maternal
renal tubular ATP6V1B1 FBN1
2 acidosis (dRTA) (NM_001692.4) (NM_000138.5) c4930C>T Het p-(Argl644*) maternal
and Marfan c687+1G> A Het NA paternal
syndrome
c3742C>T Het p-(Arg1248Trp) maternal
Het
Hearing loss and MYOI15A c.6370C>T (in cis with p-(Arg2124Trp) paternal KLHL7
3 retinitis ¢.5473G > A el
pigmentosa (NM_016239.3) Het ) (NM_001031710.2) c458C>T Het p-(Alal53Val) paterna
c.5473G > A (in cis with p-(Vall825Met) paternal
¢.6370C > T)
Hearing loss and TMPRSS3 c1211C>T Het p-(Pro404Leu) maternal KCNT1
4 epilepsy (NM_024022.2) .208delC Het p.(His70Thrfs*19)  paternal (NM_0208223) ~ ©2800G>A Het p(Ala934Thr)  denovo
Hearing loss and
periventricula STRC . maternal + FLNA "
5 nodular (NM_153700.2) gene deletion Hom NA paternal (NM_001456.3) c.1159C> T Het p-(GIn387%) maternal
heterotopia
. TMPRSS3 c413C> A Het p-(Ala138Glu) paternal MYH14
6 Hearing loss (NM_024022.2) c977C>T Het p.(Pro326Leu)  maternal (NM_024729.3) ~ <160C>A Het p(Argd4Ser)  maternal
: EYA4 * USH2A c2276G >T Het p-(Cys759Phe) paternal
7 IR o (NM_004100.5) c714C> A Fet PR maternal  \\2069332)  .11864G > A Het p.(Trp3955+) maternal
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As the second step, the family trio has been sequenced by WES to investigate the
molecular basis of the familiar myopathy.

Data analysis revealed the presence of a likely pathogenic missense variant in COL9A3
(NM_001853.4) (Supplementary Figure S1B, Table 1), a gene causative of epiphyseal dyspla-
sia, type 3, with or without myopathy (MIM#: 600969, ORPHA: 166002) with an autosomal
dominant pattern of inheritance. The c.1378G > A, p.(Gly460Ser) variant locates in the
exon 27 and affects a highly conserved residue. It is predicted as damaging by the in silico
tools used during data analysis and was found at the heterozygous state both in the mother
and the proband, likely explaining the clinically diagnosed myopathy. Segregation analysis
in the maternal aunt showed the presence of the variant in her too.

3.2. Family 2. Hearing Loss, Distal Renal Tubular Acidosis (ARTA), and Marfan Syndrome

Fam 2 (Figure 2B), an Italian non-consanguineous family, came to the geneticist’s
attention for a suspect of familiar Marfan syndrome.

In particular, both the proband, a 10-year-old girl, and the mother showed a series of
clinical features attributable to Marfan syndrome (e.g., long, narrow face, micrognathia,
disproportionate tall stature, arachnodactyly, etc.). In addition, an accurate clinical evalua-
tion that included hematological and biochemical tests revealed the presence of metabolic
acidosis (pH 7.25), hyperchloremia, and hypokalemia in the proband, suggesting a clinical
diagnosis of distal renal tubular acidosis (ARTA). Furthermore, the proband displayed a
congenital progressive asymmetric HL (moderate to severe in the right ear and severe to
profound in the left one) (Supplementary Table S1).

The family trio was analyzed through WES, which highlighted the presence of: (1) a
nonsense mutation already described as causative of Marfan syndrome (MIM#: 154700,
ORPHA: 558) [15] in FBN1 (NM_000138.5) (c.4930C > T, p.(Argl1644*)), at the heterozygous
state both in the proband and the mother, and (2) two compound heterozygous mutations
already described as causative of dRTA and HL (MIM#: 267300, ORPHA: 18) [16,17], the
c.242T > C, p.(Leu81Pro) and the c.687 + 1G > A, in the ATP6V1B1 gene (NM_001692.4) in
the proband (Supplementary Figure S1C,D, Table 1).

3.3. Family 3. Hearing Loss and Retinitis Pigmentosa

Fam 3 (Figure 2C) came to genetic counseling for a problem of hearing loss and retinitis
pigmentosa (RP) in the proband, a 30-year-old Italian woman with severe congenital
deafness (Supplementary Table S1) and the onset of RP at the age of 25 years. The first
diagnostic hypothesis was that of Usher syndrome; however, the collection of the family
history revealed the presence of RP also in the father and paternal grandmother (onset
at approximately 20 years in both), suggesting an autosomal dominant inheritance of
this trait.

WES of the family trio revealed the presence in the proband of three missense variants
in the MYOI5A gene (NM_016239.3) (Supplementary Figure S1E, Table 1), which is known
to be associated with sensorineural non-syndromic autosomal recessive deafness (DNF3B,
MIM#: 600613). The first one is the ¢.3742C > T, p.(Arg1248Trp) mutation, inherited from the
mother and already reported as pathogenic of autosomal recessive NSHL [18]. The other
two variants, namely ¢.6370C > T, p.(Arg2124Trp) and c¢.5473G > A p.(Val1825Met), are both
inherited from the father. None of them is already described as clearly pathogenic; however,
they affect highly conserved residues, are rare (MAF: 0.004% and 0.012%, respectively), and
are predicted as damaging by all the in silico tools used during data analysis. Furthermore,
a distinct mutation affecting one of these residues (p.(Arg2124GIn)) was identified as the
cause of NSHL in a family described in the literature [19].

Additionally, WES led to the identification in the proband and in her father of a known
heterozygous pathogenic mutation in KLHL7 (NM_001031710.2) (c.458C > T p.(Alal53Val))
(Supplementary Figure S1F, Table 1) already described in a family with late-onset autosomal
dominant RP [20] (MIM#: 612943).
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3.4. Family 4 Hearing Loss and Epilepsy

The proband of Fam 4 (Figure 2D) is a 27-year-old Italian woman, a unique child of non-
consanguineous healthy parents, with unremarkable family history. At 18 months of age, she
was diagnosed with a congenital profound sensorineural hearing loss (Supplementary Table S1).
Sequencing analysis of the gene GJB2 (coding for connexin-26) and analysis for the deletion
involving delG]JB6-DS1351830 of GJB6, coding for connexin 30, were negative. Despite
implantation of the bilateral external prosthesis, her developmental milestones were char-
acterized by a cognitive delay with predominant language impairment. When she was
nine years old, she presented with seizures with sudden arousal, eye opening, diffuse rigid-
ity, and limbs jerks arising from sleep. Based on EEG pattern and video-polysomnography
(which documented up to 40 motor events/night mainly characterized by asymmetric
tonic posturing), a diagnosis of sleep-related hypermotor epilepsy was made. In the
hypothesis of a syndrome associating HL and epileptic encephalopathy, arrayCGH anal-
ysis was performed without identifying any copy number variation. WES was then per-
formed on the family trio. Data analysis revealed the presence in the proband of a de
novo heterozygous mutation in KCNT1 (NM_020822.3) (c.2800G > A, p.(Ala934Thr)) [21]
(Supplementary Figure S1G, Table 1). KCNT1 mutations are a known cause of dominant
epileptic encephalopathy (MIM#: 614959), and the same mutation was previously described
as pathogenic [22]. Segregation analysis by Sanger sequencing confirmed that the mutation
occurred as de novo in the proband, being absent in the patient’s parents.

Additionally, two likely pathogenic variants in TMPRSS3 (NM_024022.2), a gene known
for being causative of autosomal recessive deafness (MIM#: 601072, ORPHA: 90636), were
identified in the proband. In particular, the proband carried a pathogenic frameshift deletion
(c.208delC, p.(His70Thrfs*19)) inherited from her father and a pathogenic missense mutation
(c.1211C > T, p.(Pro404Leu)) on the maternal allele (Supplementary Figure S1H, Table 1);
both the mutations were previously described as causative of childhood NSHL [23,24].

3.5. Family 6. Familiar Hearing Loss

Fam 6 (Figure 2F) is an Italian non-consanguineous family characterized by a likely
dominant NSHL.

A careful anamnesis revealed the presence of NSHL in the proband, in the older
brother, and in the mother.

In particular, the proband, a nine years old boy, developed moderate bilateral symmet-
ric HL at the age of three that worsened during the years, becoming severe to profound at
the medium and high frequencies. The brother (22 years old) showed a similar audio profile,
despite being diagnosed later (concomitantly with the proband). The mother (46 years old)
displayed a milder phenotype, with a moderate HL at the medium and high frequencies,
diagnosed at the age of 25 (Supplementary Table S1). Moreover, the maternal grandfather
reported hearing loss, too, developed during the third decade of life (audiometric test
not available).

Further clinical assessments did not reveal any other relevant features.

The proband was first screened for mutations in connexin genes, for the mitochondrial
mutation A1555G, and for the presence of CNV in STRC, CATSPER2, and OTOA genes,
with negative results.

WES was then performed on the family trio. Data analysis revealed the presence in
the proband of two likely pathogenic variants in the TMPRSS3 gene, known for being
causative of autosomal recessive deafness (MIM#: 601072, ORPHA: 90636), together with a
likely pathogenic variant in MYH14, a gene described for causing autosomal dominant HL
(MIM#: 600652, ORPHA: 90635) (Supplementary Figure S11,] Table S1).

As regards TMPRSS3 (NM_024022.2), the ¢.413C > A, p.(Alal38Glu) mutation in
exon 5 and the c¢.977C > T, p.(Pro326Leu) variant in exon 10 have been identified. The first
mutation, inherited from the father, is already described as causative of childhood NSHL by
both the HGMD Professional database [25] and Deafness Variation Database. The second
variant, inherited from the mother, is not reported in any public database; it affects a highly
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conserved residue and is predicted as damaging by all the in silico tools used during the
tertiary analysis.

Concerning MYH14 (NM_024729.3), the c.160C > A, p.(Argb4Ser) variant in exon 2
was detected at the heterozygous state in both the proband and the affected mother. The
variant affects a highly conserved residue, is predicted as damaging, and is not described
in any public database.

Sanger sequencing confirmed the presence of all the variants also in the affected brother.

Furthermore, two additional families, Family 5 (Figure 2E, belonging to the first group
of patients) and Family 7 (Figure 2G, belonging to the second group of patients), have
already been described in our previous work [5].

Briefly, Family 5 came to genetic counseling for a mild-moderate HL and periventricu-
lar nodular heterotopia, the latter being present both in the proband and in the mother. Our
multi-step approach led to the identification of a homozygous deletion in the STRC gene
in the proband, explaining the HL phenotype, while WES pointed out a nonsense variant,
ie., c¢.1159C > T, p.(GIn387%), in FLNA gene (NM_001456.3) (Table 1), a gene causative
of periventricular nodular heterotopia in an X-linked dominant fashion (MIM#: 300049,
ORPHA: 98892) [26].

The second family, Family 7, was characterized by a likely dominant NSHL, with the
presence of HL in the proband, in the mother, in the maternal uncle, and maternal grandfather.

WES data analysis revealed the presence of: (1) a nonsense variant segregating in all the
affected family members in EYA4 (NM_004100.5) (c.714C > A, p.(Tyr238*)), a gene known for
being causative of autosomal dominant NSHL (MIM#: 601316, OPRHA: 90635), and (2) two
pathogenic mutations in USH2A gene (NM_206933.2) at the compound heterozygous state
(i.e., c.11864G > A, p.(Trp3955*) and ¢.2276G > T, p.(Cys759Phe)), which is known for being
causative of Usher syndrome type 2A (MIM#: 276901, ORPHA:886) in the proband, a girl
of three years old (Table 1).

4. Discussion

The presence of dual molecular diagnoses is becoming a more and more frequent
finding in all genetic conditions. In fact, several reports demonstrated that this scenario
occurs in a relatively large percentage of cases, ranging from 4.6% to 8.9% of the patients
who received a molecular diagnosis [27-29]. Moreover, some previous works suggest
that patients with multiple diagnoses might be under-recognized, hypothesizing that the
frequency of multiple diagnoses could be even higher [28].

Data here presented confirmed the presence of dual molecular diagnoses also in HL
patients suggesting they can occur in a large percentage of cases. In particular, among the
82 families recruited during the last year, seven display a dual diagnosis, for an overall
percentage of 8.5% of the total cases and 17.9% of all the patients who received a molecular
diagnosis. Of course, we should take into account that these results have been obtained
from a small sample size, which might be enriched by complex scenarios. All the cases
have been selected from a larger group of patients enrolled in our institute, excluding GJB2-
positive patients, and dual diagnoses might be more frequent in individuals displaying a
variety of clinical features. In this light, to clearly define the contribution of dual diagnosis
in the etiopathogenesis of HHL, it is necessary to expand the number of analyzed samples.
However, these results point out the complexity of the molecular basis of HHL, highlighting
that the identification of a single molecular diagnosis might not be conclusive for all the
cases, thus requiring a deeper data evaluation.

Based on this evidence, it appears clear that even in the genomic era, it is still
fundamental to have extensive knowledge of the investigated phenotype in order to
critically interpret the sequencing findings. For this reason, sequencing data analysis
should be performed by a multidisciplinary team of geneticists, clinicians, radiologists,
and otolaryngologists that altogether cooperate with the final aim of defining the correct
molecular diagnosis.
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The examples mentioned above suggest that possibility of a dual molecular diagnosis
in HHL families should be taken into consideration in the following cases:

(1) in the presence of patients with clinical features that do not fit into a known model/
syndrome. In this case, the possible scenarios include the identification of a novel
syndrome, with a new gene involved, or, as shown in patients of Fam 1, 2, 3, 4, 5, the
presence of dual independent genetic causes;

(2) in the presence of families with a high intra-familial phenotypic variability. As shown
for the probands of Family 6 and 7, the differences in the degree or onset of HL might
be the consequence of concomitant genetic causes that modulate and worsen the
clinical manifestation.

The knowledge of the genetic background responsible for HL is extremely valuable
in many ways: it helps in elucidating the biology of the hearing system, and, more impor-
tantly, has relevant practical outcomes, influencing the clinical management of the patients,
providing recurrence risk estimation and paving the way for the development of future
personalized therapeutic approaches.

Overall, the examples described here point out the emerging role of dual molecular
diagnosis in patients affected by both SHL and NSHL, suggesting that alternative inheri-
tance scenarios should be taken into account, especially for those cases that depart from the
expected clinical manifestation. Moreover, given the high proportion of dual diagnosis here
detected, the recommended approach for the study of the genetics of HL should include
NGS technologies, which are able to provide an unbiased screen of our genome.

We conclude that, once the most common forms of SHL are excluded, the frequency of
dual molecular diagnosis can be as high as 10% in the remaining cases. Furthermore, dual
molecular diagnosis can explain a small but relevant proportion of families with clinically
heterogeneous NSHL thus should be carefully considered for the early diagnosis and the
clinical management of the patients.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/
10.3390/biomedicines10010012/s1, Figure S1: Genetic findings of the families carrying a dual molec-
ular diagnosis and protein sequence alignment across species, Table S1: Audiometric features of all
the patients and relatives enrolled in the study.
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