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Cancer remains a global killer alongside cardiovascular disease. A better understanding of cancer biology has trans-
formed its management with an increasing emphasis on a personalized approach, so-called “precision cancer medi-
cine.” Imaging has a key role to play in the management of cancer patients. Imaging biomarkers that objectively inform
on tumor biology, the tumor environment, and tumor changes in response to an intervention complement genomic and
molecular diagnostics. In this review we describe the key principles for imaging biomarker development and discuss the
current status with respect to magnetic resonance imaging (MRI).
Level of Evidence: 5
Technical Efficacy: Stage 5

J. MAGN. RESON. IMAGING 2018;48:13–26.

Cancer affects 14.1 million new patients yearly and is

the second most common killer disease worldwide.1

Clinicians have long recognized that cancer represents a very

heterogeneous disease. Patients with the same clinical pre-

sentation, tumor type, and stage may respond very differ-

ently to the same therapies and have different oncological

outcomes. A better understanding of the extent of the geno-

mic and molecular heterogeneity within cancers, as demon-

strated in renal cell cancer,2 has led to a refocusing of

clinical management in recent years from a global to a more

targeted approach.3 Currently, cancer therapies aim to be

personalized to the patient’s cancer, either to cure where

there is limited disease, or to extend progression-free sur-

vival (PFS) where disease is advanced, yet maintaining a

good quality of life, so-called “precision cancer medicine.”

The US Food and Administration (FDA) approval of

bevacizumab in 2004 for first-line metastatic colorectal can-

cer, after a Phase III trial demonstrated an improvement in

median PFS of 4 months,4 has paved the way for an

increasing number of licensed molecular targeted therapies.

These include targeted HER-2 (human epidermal growth

factor receptor 2) therapy (trastuzumab) for HER-2 overex-

pressing breast cancer and gastric/gastroesophageal cancer;

targeted EGFR (epidermal growth factor receptor) therapy

(cetuximab) for RAS wildtype colorectal cancer; targeted

EGFR therapy (gefitinib or erlotinib) for EGFR mutated

nonsmall-cell lung cancer; crizotinib for ALK (anaplastic

lymphoma kinase) gene rearrangement nonsmall-cell lung

cancer (present in �5% of adenocarcinomas); and multiki-

nase inhibitors (pazopanib, sorafenib, sunitinib) or mamma-

lian target of rapamycin (mTOR) inhibitors (everolimus) for

advanced renal cell cancer.

Trials of these therapies have highlighted the need for

better diagnostics to support patient stratification for ther-

apy as well as a rethink of how we gather evidence for novel

therapeutics that may only work for a subgroup of patients.

There has been burgeoning development of precision diag-

nostics as a consequence. For single agents targeted to

clearly defined genetic “driver” alterations, companion diag-

nostics improve the selection of patients for therapy, eg,

HER-2 expression to guide trastuzumab therapy and O6-

methylguanine-DNA-methyltransferase (MGMT) methyla-

tion to guide temozolomide therapy. There has also been

increasing interest in genomic analysis to guide therapy with

the move from single to multiagent regimens and also to

improve prognostication, eg, oncotype DX in breast cancer

that predicts the likelihood of recurrence from a 21-gene

signature as well as the likelihood of response to

chemotherapy.

While the advantages of genomic analysis and molecu-

lar analysis to improve patient stratification and to assist

drug development is clear, in practice there have been con-

tinuing challenges to implementation. Some putative bio-

markers may be invalid, as shown with EGFR expression

for cetuximab.5 Cancers are also temporally and spatially

heterogeneous, ie, a biopsy or assay may only reflect a

moment in time, or one of a number of lesions. This plas-

ticity has been a reason for mixed responses to therapies and

the development of therapy resistance during previously

effective targeted therapy.6 There may also be issues such as

suboptimal methodology, challenging assays, validation, reg-

ulatory issues, and governance or cost that are a challenge

for multicenter clinical trials.

Imaging still has an important role to play in personal-

ized cancer medicine.7 Imaging is performed widely for the

detection and characterization of cancer, for staging, for

monitoring therapy, for detecting disease recurrence, or sur-

veillance; imaging biomarkers hold great potential for opti-

mizing patient care. The role of magnetic resonance

imaging (MRI) has evolved within oncological practice in

recent years. Previously reserved as an adjunctive problem-

solving tool, the primary use of MRI has increased, such

that MRI is now the primary imaging assessment tool for

many cancers and plays an important part in management

decisions. It is the initial imaging modality for diagnosing

prostate cancer and myeloma; for staging rectal, cervical,

and endometrial cancer; and for response assessment in

hepatocellular cancer. In this review we will describe what

constitutes an imaging biomarker, the principles of imaging

biomarker development, and the current status of imaging

biomarkers with respect to MRI.

What Constitutes a Biomarker?

The term “biomarker” refers to a characteristic that is mea-

sured objectively, as an indicator of normal biological pro-

cesses, pathological changes, or response to an intervention.8

It includes molecular, histologic, radiographic, or physio-

logic characteristics. In terms of imaging, this may include
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anatomical, functional, and molecular characteristics.7 The

advantages of imaging are its versatility, its widespread use,

its relatively noninvasive nature (facilitating whole body

imaging as well as longitudinal studies in individuals, thus

capturing spatial and temporal heterogeneity), and its inher-

ently quantitative nature. Imaging biomarkers may reflect a

general cancer hallmark, eg, proliferation, metabolism,

angiogenesis, apoptosis; specific molecular interactions; or

agnostic features.9 Imaging biomarkers in cancer patients

include biomarkers for detection (the identification of dis-

ease), prediction (the prediction of risk of disease or thera-

peutic outcome), prognostication (the prediction of

oncological outcome), and response assessment (the evalua-

tion of change with therapy). A number of imaging bio-

markers are well established in clinical practice. Examples

include staging with the American Joint Committee on

Cancer (AJCC) TNM (tumor, node, metastasis) staging sys-

tem (a prognostic biomarker) and objective response assess-

ment by RECIST (Response Evaluation in Solid Tumors)10

in clinical trials (a response biomarker).

Imaging Biomarkers: From Discovery to
Clinical Practice

For new potential imaging biomarkers several steps, often in

parallel and complementary to each other, need to be

undertaken for translation into clinical practice. These can

be divided into the following phases following discovery:

development and evaluation, validation, implementation,

qualification, and utilization, essentially crossing two main

translational gaps, translation into patients and translation

into practice (Fig. 1).

In the initial phase, including development, evaluation,

and validation, the aim is to ensure that the potential bio-

marker is robust and fit for purpose. Technical validation

includes assessment of accuracy, precision, repeatability, and

reproducibility across single and multiple centers; biological

and clinical validation ensure that the biomarkers are linked

to tumor biology, outcome variables, and thus of actual

value in guiding decision-making in patients. During this

phase, initial health economic analysis may also be under-

taken to identify if there are cost barriers to implementa-

tion. Once the biomarker is established, it should be reliable

enough to be implemented in clinical trials to test research

hypotheses.

During the next phase, qualification of the biomarker

may also be undertaken in large prospective trials. Qualifica-

tion aims to confirm that the biomarker is associated with

the clinical endpoint of interest and aims to demonstrate

cost effectiveness and health impact. This supportive evi-

dence is key to the translation into clinical practice and

widespread utilization. Key recommendations have been

proposed in a recent consensus article.11

Advantages of MRI as an Imaging Biomarker

Ideally, there are a number of characteristics an imaging bio-

marker should have (Table 1). MRI has many advantages,

including its superior soft-tissue contrast, high spatial resolu-

tion; its ability to obtain multiple contrasts in a single

examination; and its ability to assess physiology, eg, vascu-

larization, oxygenation, and diffusion. Assessment of the

molecular environment is also achievable, albeit at a lower

sensitivity compared to positron emission tomography

FIGURE 1: Schema highlighting steps taken in developing a potential imaging biomarker
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(PET). A number of MRI biomarkers are already established

or well on their way to being established in clinical practice

for oncological assessments (Table 2). These include BI-

RADS (Breast Imaging Reporting and Data System),12 LI-

RADS (Liver Imaging Reporting and Data System),13,14

and PI-RADS (Prostate Imaging Reporting and Data Sys-

tem)15 for the diagnosis of breast, hepatocellular cancers,

and prostate, respectively, in addition to TNM staging and

RECIST response evaluation. Quantitative biomarkers that

have crossed the first translational gap and are being used to

test hypotheses in research studies and clinical trials include

vascular parameters such as initial area under the gadolin-

ium curve (iAUGC) or transfer constant (Ktrans) from

dynamic gadolinium enhanced (DCE) contrast imaging and

apparent diffusion coefficient (ADC) from diffusion-

weighted MRI (Table 2).

Morphology-Based MRI Biomarkers

Current morphology-based cancer biomarkers utilize the

multiple contrasts and high spatial resolution of MRI. T2-

weighted and T1-weighted sequences are part of every cancer

protocol. T2-weighting highlights structures with a longer

T2 relaxation time. Thus, organs with a high water content,

eg, bladder, appear of high signal on T2-weighted imaging,

while cancers typically appear of intermediate signal. T2-

weighted image contrast is encoded by a long echo time

(TE) and long repetition time (TR). Typically, 2D imaging

is performed in axial, sagittal, and/or coronal planes using a

fast/turbo spin echo sequence. 3D imaging can be

performed using a 3D T2w-TSE with optimized flip angle

evolution along the echo train (eg, Siemens SPACE, Philips

VISTA, GE CUBE). T1-weighting highlights structures with

a short T1, eg, fat, melanin. T1-weighted image contrast is

encoded by a short TE and short TR. T1w-MRI is acquired

with fast gradient echo sequences in 2D (Siemens FLASH,

Phillips FFE, GE GRE) or 3D (Siemens VIBE, Philips

THRIVE, GE Lava).

Diagnostic Biomarker
A key example of a recently established diagnostic biomarker

is PI-RADS in suspected prostate cancer, currently on version

2.0,15 utilizing multiparametric MRI. The PROMIS trial16,17

has recently published its findings confirming a role for multi-

parametric MRI in the diagnostic pathway of patients with

suspected prostate cancer. This enrolled 740 men, 576 of

whom underwent 1�5T multiparametric MRI followed by

both transrectal ultrasound (TRUS) biopsy and template

prostate mapping biopsy. On template prostate mapping

biopsy, 408 (71%) of 576 men had cancer with 230 (40%);

of 576 patients it was clinically significant. For clinically sig-

nificant cancer, multiparametric MRI was more sensitive

(93%, 95% confidence interval [CI] 88–96%) than TRUS

biopsy (48%, 42–55%; P < 0�0001). Using multiparametric

MRI to triage men might allow 27% of patients to avoid a

primary biopsy and improve detection of clinically significant

cancer. Using a structured reporting scheme such as PI-RADS

standardizes practice, provides an objective score of the likeli-

hood of disease, and helps direct targeted biopsy. Risk scores

to assess the likelihood of clinically significant cancer are

TABLE 1. Key Characteristics and Challenges for MRI Biomarkers

Characteristics Challenges for MRI Developments

Sensitive Signal to noise ratio (SNR)
Contrast to noise ratio (CNR)
Spatial resolution
Artifacts

New sequences

Specific &
biologically
relevant

Targeted versus physiological or
morphological imaging

Evaluation of more targeted imaging, eg, receptor imaging,
targeted nanoparticles

Robust Variance among imaging systems,
manufacturers & practice

Multivendor & multicenter involvement to
standardize data acquisition, reconstruction & analysis

Quantifiable &
reproducible

Variance among imaging systems,
manufacturers & practice

Advanced acquisition and reconstruction to
exploit data redundancy

Single-sequence MRI to acquire several image
contrasts in a coregistered fashion, eg, MR fingerprinting

Cost effective Higher cost compared to computed
tomography (CT) or ultrasound (US)

Reduction in scanner time with faster acquisitions

Journal of Magnetic Resonance Imaging
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defined as PI-RADS 1: very low, PI-RADS 2: low, PI-RADS

3: intermediate, PI-RADS 4: high, to PI-RADS 5: very high.

A meta-analysis has revealed overall high sensitivity and spe-

cificity of 0.74 and 0.88, respectively, for prostate cancer

detection with PI-RADS.18,19 MRI is performed with a multi-

parametric acquisition of at least T2-weighted and diffusion-

weighted sequences20 (Fig. 2). This combines high resolution,

high soft-tissue contrast of T2-weighted imaging with the

diffusion-weighted imaging sensitivity for cancer.21 Addi-

tional dynamic contrast-enhanced sequences provide informa-

tion of wash-in and wash-out characteristics and may provide

additional diagnostic value. A recent study has demonstrated

FIGURE 2: Multiparametric prostate MRI demonstrates a left mid-gland PI-RADS 5 peripheral zone lesion extending beyond the
prostate (a: T2-weighted, b: diffusion-weighted apparent diffusion coefficient map, c: arterial phase dynamic contrast-enhanced
T1-weighted image).

TABLE 2. Established and Validated MRI Biomarkers in Clinical Use

Biomarker Characteristic MRI sequence

Established biomarkers in clinical practice

Detection & characterization

BI-RADS (Breast Imaging
Reporting and Data System)
PI-RADS (Prostate Imaging
Reporting and Data System)
LI-RADS (Liver Imaging
Reporting and Data System)

Lesion morphology T2-weighted, T1-weighted, diffusion
weighted, postcontrast-enhanced imaging

Curve shape Degree of vascularization Dynamic T1-weighted imaging
following intravenous injection of
gadolinium-based contrast agent

Staging

TNM stage Tumor morphology, presence
of nodes, and metastases

T2-weighted, T1-weighted imaging 6
diffusion weighted, postcontrast-enhanced
imaging

Response

RECIST (Response Evaluation Criteria
In Solid Tumors)

Change in tumor size T2-weighted imaging

Validated biomarkers in clinical
cancer research

Apparent diffusion coefficient (ADC) Cellularity Diffusion-weighted imaging, at least
2 b-values

Initial area under the gadolinium
curve (iAUGC)
Transfer constant (Ktrans)

Perfusion
Permeability

Dynamic T1-weighted imaging following
intravenous injection of gadolinium-based
contrast agent

Dregely et al.: MRI Biomarkers in Oncology

July 2018 17



an increase in the probability of cancer detection of 16%,

16%, and 9% for PI-RADS category 2, 3, and 4 lesions,

respectively, with DCE-MRI.22

Prognostic Biomarker: Staging
Staging is an important imaging biomarker for patient strat-

ification. MRI is the primary staging modality for a number

of cancers including rectal cancer. In addition to TNM-

Stage grouping, which provides an indication of relative 5-

year overall survival (Stage I [localized, T1/2], node nega-

tive: 95%; vs. Stage IV [metastatic, any T,N]: 11%), MRI

also has a predictive role in terms of likely involvement of

the resection margin and PFS23–25 (Fig. 3).

Response Biomarker: RECIST
RECIST criteria provide a standardized, objective assessment

of response to therapy in clinical trials.10 Classification of

response is divided into four categories (complete response,

partial response, stable disease, progressive disease) based on

size change of specified measurable target lesions (>1 cm)

or nodes (>1.5 cm short axis) (Table 3). From a regulatory

perspective, RECIST remains the key response biomarker in

clinical trials and is used as a surrogate endpoint.

Validated MRI Biomarkers Requiring
Qualification

Diffusion-Weighted MRI
ADC is a biomarker that has crossed the first translational

gap and is used to test research hypotheses in clinical tri-

als.26 The biophysical basis of diffusion-weighted imaging is

the microscopic displacement of water molecules (Dx u 30

lm in Dt 5 50 msec) due to thermal Brownian motion. In

cancers the tumor environment restricts this motion, thus a

measurement of the effective displacement, the ADC, gives

important microscopic information. Tumor ADC from b-

values less than 1000 s/mm2 effectively provide a measure

of the extracellular space; although cell size, cell arrange-

ments, cell density, integrity of cell membranes, glandular

structures, extracellular space viscosity, and tortuosity will

influence this measurement. Studies have correlated ADC

with histological grade in a number of cancers.27–30

The diffusion image contrast is encoded by using a

gradient pair (Stejskal-Tanner gradient26), which can be

either a bipolar gradient pair in gradient echo or the same

polarity in spin echo. This gradient causes a change in the

resonant Larmor frequency of a spin isochromat, leading to

the following phase accumulation u:

/5

ðt
0

Dxdt 05 c

ðt
0

~G ðt 0Þ �~rðt 0Þdt 0

where ~G is the applied gradient waveform applied for a

duration t, ~r is the spatial position of the spin

TABLE 3. Response Categorization Based on Changes in Target and Nontarget Lesions

RECIST

Categorization Target lesions Nontarget lesions

Complete response (CR) Disappearance of all target lesions
(TL). All nodes <10 mm,
ie, nonpathological

Disappearance of all nontarget lesions.
All nodes <10 mm, ie, nonpathological

Partial response (PR)
Stable disease (SD)

>30% decrease in the sum of TL diameters
Neither PR nor PD

Non CR/PD: Persistence of
�1 nontarget lesion

Progressive disease (PD) >20% increase in the sum of TL diameters.
Absolute increase of at least 5 mm.
New lesions

Unequivocal progression of existing
nontarget lesions
New lesions

Target lesions: Up to 5 measured, 2 maximum per organ.

FIGURE 3: T2-weighted axial image demonstrates a T3N1 rectal
cancer extending beyond the rectal wall but not involving the
potential resection margin
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isochromat, and c the gyromagnetic ratio. Thus, spins,

which move during the application of the gradient pair, will

not be properly rephased. This loss in phase coherence sec-

ondary to spatial displacement causes a reduction in the sig-

nal. For random spin diffusion motion in an image voxel,

this signal cancellation is related to the variance of the

Gaussian phase distribution </2> and the product bD:

S5S0e2h/2i5S0e2bD

Where S is the diffusion-weighted signal and S0 is the signal

without diffusion weighting.

Thus, the degree of attenuation depends on the dimen-

sionless product of the diffusion coefficient D (in mm2/sec)

and the b-value (in sec/mm2). The b-value is used to control

the diffusion-weighted contrast with higher diffusion weight-

ing at higher b-values. Typically, b-values of 0–1500 s/mm2

are applied in clinical practice and ADC is obtained from

monoexponential fitting of the signal loss (Fig. 4). In practice,

other factors contribute to signal loss including T2-relaxation

and bulk motion. In a given voxel, ADC will reflect the rela-

tive contribution of the different compartments.

A number of studies have evaluated ADC as a

response biomarker in a number of tumor types across dif-

ferent therapies in research studies including the multicenter

setting. These studies have shown that a common pattern is

an increase in ADCmean to a varying extent with different

therapies. This may occur within days of starting treatment;

a higher change in ADCmean is also associated with a patho-

logical good response.31–39

The variability of ADC in clinical studies has been

reported to be relatively low at �15%40 and in ice-water

phantom studies as low as 3%.41 Nevertheless, there are

considerations to be made in the trial setting42 and techni-

cal challenges to acquiring robust diffusion-weighted bio-

markers and qualification as a biomarker.26 TR should be

sufficiently long to avoid underestimation of ADC due to

T1 saturation effect; TE should be minimized to achieve

better signal-to-noise ratio (SNR), to minimize motion and

susceptibility artifacts. Good fat suppression is required to

minimize ghosting artifacts; short tau inversion recovery

(STIR) may be preferred to spectral presaturation attenu-

ated by inversion recovery (SPAIR) or chemical shift selec-

tive water-only excitation techniques, where a large field of

view is necessary at 1.5T, as STIR is less sensitive to B0

field inhomogeneities. Geometric distortion and susceptibil-

ity artifacts caused by eddy currents related to EPI may be

improved by shortening the echo train length, eg, through

adapting the receiver bandwidth to reduce the echo spacing,

use of parallel imaging, zoomed excitation, or readout seg-

mented imaging.

Dynamic Contrast-Enhanced MRI
DCE MRI refers to the rapid acquisition of a time series of

T1w images before, during, and after intravenous adminis-

tration of a gadolinium-based contrast agent. Gadolinium

contrast agents are small hydrophilic molecules with a short

circulation half-life, typically <1 hour. These contrast agents

shorten the T1-relaxation rate, and thus cause signal

enhancement related to the delivery and leakage rate of

FIGURE 4: The T2 axial oblique image (a) of a rectal cancer, diffusion-weighted images with increasing b-weighting 0 (b), 100 (c),
500 (d), and 800 s/mm2 (e), and corresponding ADC0-800 map (f) is shown. Signal loss is demonstrated within the rectal cancer
with increasing b-weighting. The signal loss is greater for normal tissue than for the cancer.
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contrast agent within the tissue of interest, providing a sur-

rogate measure of angiogenesis.

While qualitative assessment of curve shape is an estab-

lished imaging biomarker, eg, for the evaluation of suspected

breast and prostate cancer, the use of quantitative vascular

parameters remains in the domain of clinical trials. In terms of

qualitative assessment, three distinct curve shapes are recog-

nized: Type 1) slow rising enhancement (benign); Type 2) rapid

enhancement with a plateau (may be malignant); and Type 3)

rapid enhancement followed by rapid washout (malignant).

For assessing quantitative parameters, baseline T1 map-

ping is required usually with a dual flip angle 3D T1-weighted

spoiled gradient recalled echo acquisition (e.g., 28/188) with

other parameters remaining constant.

The baseline T1 value (T10) is estimated from fitting

the signal intensity of the images acquired with different

flip angles to the following equation:

S5
S0ð12E1ÞsinðaÞ

12E1cosðaÞ

where S is acquired T1-weighted signal, a represents the

applied flip angle in each acquisition, S0 is the T1 fully

relaxed signal, and E15e
2TR
T10 , where TR is the sequence repe-

tition time. Contrast agent administration, typically 0.1

mmol/kg body weight, is followed by a dynamic acquisition

for up to 5 minutes with a temporal resolution on the order

of 3–5 seconds between acquisitions. Contrast agent concen-

tration may be estimated with the following equation:

1

T 1ðtÞ5
1

T10
1r1C

where T1(t) represents the T1 change over time due to the

contrast agent, T10 represents the T1 of the tissue at base-

line, r1 represents the T1 relaxivity of the contrast agent,

and C represents the unknown contrast concentration.

The Tofts and Kermode model43 is applied most commonly

to determine Ktrans (a product of flow and transfer permeability):

dCtðtÞ
dt

5K transCpðtÞ2kepCtðtÞ

where Ct(t) and Cp(t) represent the contrast agent concentra-

tion in tissue and plasma as a function of time, respectively,

Ktrans represents transfer constant, kep represents the rate con-

stant; or as an extended model to account for the contrast agent

in the vasculature, when vascular volume cannot be neglected.

CtðtÞ5vpCpðtÞ1 K trans

ðt
0

Cp ðt 0Þexp
2K transðt2t 0Þ

ve

� �
dt 0

where Ct(t) and Cp(t) represent the contrast agent concentra-

tion in tissue and plasma, respectively, Ktrans represents

transfer constant, kep represents the rate constant; vp repre-

sent the fractional plasma volume; and ve the fractional

extracellular extravascular volume.

In the last 15 years, over 110 studies in 2268 patients

have utilized quantitative DCE-MRI as a biomarker in clini-

cal studies and trials reflecting the use of DCE-MRI to

assess vascular activity in drug development,44 in particular

to assess the effect of antiangiogenic or antivascular therapy

(Fig. 5). Consistent reduction in the initial area under the

gadolinium curve (iAUGC) and Ktrans have been found for

a number of therapies including VEGF-targeted agents (bev-

acizumab) and multikinase inhibitors (pazopanib, sunitinib,

sorafenib), as early as a few hours after dosing.

Nevertheless, the variability of Ktrans in clinical studies

remains a major issue (>50%), and baseline reproducibility

has been utilized in clinical trials on an individual basis in

order to be able to determine whether the measured change

is related to therapeutic effect. Accurate determination of

the arterial input function (AIF), which characterizes con-

trast agent arrival in a feeding blood vessel within the

tumor, remains a challenge to accurate quantification. As an

alternative to subject-specific direct measurement of AIF

(subject to flow artifacts, nonlinear effects of high contrast

agent concentrations, and partial volume effects),

population-based AIFs45 or reference tissue-based methods46

have been advocated. Accurate T1-mapping also remains a

challenge, as B1 inhomogeneity, particularly at 3T and

higher field strengths, limit the accuracy of T1-estimates

derived from the typically employed variable flip angle tech-

nique. Recent developments propose to include B11 for

T1-mapping.47 To overcome the challenge of achieving both

high spatial and temporal resolution for the DCE data

acquisition, advanced methods have been proposed, such as

combining parallel imaging, compressed sensing and non-

Cartesian sampling,48 view sharing,49 and motion

compensation.50

Emerging MRI Biomarkers

Further emerging quantitative biomarkers are undergoing

evaluation (Table 4), related to the following techniques:

intravoxel incoherent motion (IVIM), diffusion kurtosis

imaging, blood and tissue oxygenation level-dependent MRI

(BOLD/TOLD), MR elastography, and relaxometry imag-

ing. There has also been growing interest in extracting addi-

tional agnostic features from standard and quantitative MRI

sequences, so-called radiomics.9

Pseudodiffusion and Intravoxel Incoherent Motion
Bulk water motion in capillaries can also cause phase disper-

sion in diffusion-weighted MRI.51,52 The loss in signal is

similar to that seen with true diffusion and more marked at

low b-values. Diffusion-weighted MRI always measures

both, but the relative contribution depends on the choice of
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b-values. The contribution of true diffusion and perfusion

towards signal loss can be defined as follows:

SðbÞ5ð12fvÞe2bD1fve2bD�

where S is the acquired diffusion-weighted signal, b represents

the b-value, fv represents the fractional volume of flowing

water molecules within capillaries; (12fv) is the fraction of

molecules undergoing true diffusion; D represents tissue

TABLE 4. Emerging Biomarkers Undergoing Validation in Research Studies

Emerging biomarkers Measure/biological correlate MRI sequence

f, D* Pseudoperfusion Multiple low b-value diffusion weighted imaging (intravoxel
incoherent motion, IVIM)

Kurtosis (Kapp) Microstructural
complexity

Diffusion kurtosis imaging (DKI)

R2*
R1
DR2*
DR1

Relaxation rate
Oxygenation

Blood oxygenation level dependent imaging (BOLD)
Tissue oxygenation level dependent imaging (TOLD)
6 oxygen/carbogen challenge

Elasticity
Viscosity

Tissue mechanics and
viscoelastic parameters

Elastography: motion sensitive sequence to encode
shear wave propagation

Specific metabolites,
eg, Choline

Metabolite concentration Spectroscopy

T1
T2

Relaxation time
Microenvironment

Multiecho relaxometry imaging

Texture features Heterogeneity Any

FIGURE 5: T2-weighted (a) and corresponding transfer constant maps (Ktrans, b) before and after three cycles of therapy with an
antiangiogenic and triplet chemotherapy. A decrease in tumor vascularization is noted following three cycles of therapy.
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diffusion coefficient and D* the pseudodiffusion coefficient. D*

the pseudodiffusion coefficient associated with blood flow is

about 10 3 1023 mm2/sec in the brain and 70 3 1023 mm2/

sec in the liver compared to D, which is 1 3 1023 mm2/sec.

Assessing fv and D* may be feasible for patients with

poor renal function, an allergy precluding intravenous

administration of contrast agent, or at high risk of develop-

ing nephrogenic systemic fibrosis.53

However, one of the issues highlighted to date is the

poor test–retest variability of f and D*,54 on the order of

>100% in some cancers, eg, rectal.55 There also appears some

contention as to technical/biological correlates: while some

studies have shown a relationship between IVIM and DCE-

MRI parameters,56–58 others have not in some cancers, eg,

hepatocellular carcinoma.59 One also has to be aware that

flow from glandular secretions, eg, pancreas, may be difficult

to separate from micro-capillary perfusion. A potential appli-

cation is as a diagnostic biomarker, where current characteri-

zation may be a challenge, eg, pancreas.60,61

Apparent Diffusional Kurtosis
Diffusion kurtosis imaging characterizes non-Gaussian diffu-

sion behavior at high b-values ranging from 1000–3000 sec/

mm2. A polynomial decay model is fitted to an acquisition

using at least three b-values to obtain Dapp and Kapp repre-

senting the heterogeneity of the cellular microstructure. The

diffusion signal Si for a given b-value bI is given by:

Si5S0
�ebIDapp1

1
6Db2

I D2
appKapp

where S0 is the signal without diffusion weighting, Kapp is

the apparent diffusional kurtosis, and Dapp is the diffusion

coefficient. Kapp reflects the signal curvature away from a

monoexponential fit. The rationale proposed for assessing

kurtosis is that it may better reflect the tumor intracellular

microstructure,62,63 although it will also be influenced by

extracellular properties. Higher kurtosis may be noted where

there are higher intracellular interfaces; for example,

increased nuclear-cytoplasmic ratio of tumor cells.64 Prelimi-

nary studies in prostate cancer have suggested potential as a

diagnostic biomarker,65 eg, to improve characterization

(grading),66,67 although not all studies have confirmed addi-

tional advantages over monoexponential ADC.68,69 Studies

have also suggested its potential as a response biomarker. A

study in hepatocellular carcinoma has suggested that Kapp

performs better than ADC in detecting viable disease

posttreatment.70

Tumor Elasticity and Viscosity
Magnetic resonance elastography (MRE) quantifies the vis-

coelastic properties of tissue by assessing its elastic response

to an applied force, similar to palpation in clinical practice.

The applied force consists of harmonic mechanical waves,

ranging typically between 20 and 80 Hz in frequency and

propagated into the human body by a vibrating transducer

applied to the body surface. The consequent tissue motion

is captured using rapid motion-sensitive MRI sequences.

Through mathematical inversion algorithms, the local shear

wave properties can be derived from the periodical varia-

tions in MRI signal; the local viscoelastic parameters (elas-

ticity and viscosity) are then calculated using the complex

shear modulus equation.71 The underpinning experimental

observation for the application of MRE to cancer is that

malignancy increases stiffness through collagen deposition in

the extracellular matrix and raises interstitial pressure levels

from its abnormal vasculature.72 MRE has shown promising

potential for the characterization of focal lesions (benign vs.

malignant) in multiple organs, including the liver,73

breast,74 pancreas,75 and kidney.76 It may also serve as a

potential biomarker of treatment resistance.

Tumor Oxygenation
Tumor oxygenation may be measured indirectly by BOLD

and TOLD-MRI techniques. With BOLD MRI, endogenous

hemoglobin acts as a paramagnetic contrast agent that

increases the transverse relaxation rate (R2*) in blood and sur-

rounding tissue. R2* is measured from multiple spoiled gradi-

ent recalled echo images with increasing echo times. R2* is

calculated from the gradient of a straight line fitted to a plot

of ln-signal intensity to TE. Higher R2* reflects higher deoxy-

hemoglobin levels and lower blood oxygenation. R2* may

have a role as a response biomarker. One study has shown that

R2* is inversely correlated to blood volume and increases in

breast cancer treated with two cycles of neoadjuvant chemo-

therapy with greater changes in patients with pathological

response.77 However, BOLD measurements will be affected

by the underlying tissue relaxivity and will be affected by

hemorrhage and susceptibility artifacts.

With TOLD MRI the longitudinal relaxation rate (R1)

is measured. R1 is sensitive to changes in the O2 dissolved in

blood plasma and interstitial fluid. When a hyperoxic gas is

inhaled, the excess oxygen dissolved will result in a higher R1

value. A positive change in R1 will identify areas with fully

saturated hemoglobin. Areas where there is no positive change

in R1 may reflect regions of hypoxia, particularly if perfusion

is present. Current approaches are focusing on the feasibility

of combining R2* and R1 measurement with oxygen chal-

lenge to assess tumor oxygenation.78

Quantitative MRI With or Without Exogenous
Contrast agents
In current clinical practice, a diagnosis based on MRI primar-

ily relies on the qualitative assessment of images. In contrast,

quantitative measurements of tissue properties with or with-

out endogenous contrast agents may provide more accurate

and reproducible information. Without the use of exogenous

contrast agents, relaxometry yields quantitative measurement
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of intrinsic tissue relaxation times T1 and T2,79–82 T2*, proton

density. In addition, important molecular information about

tumor physiology and metabolism (“tumor micro-

environment”) may be obtained from MR spectroscopy

(MRS),83–88 chemical exchange saturation transfer imaging

(CEST),89 and amide proton transfer (APT).90 Further, relax-

ometry with exogenous contrast agents enables imaging of

perfusion, using either gadolinium-based contrast agents91

and dynamic T1w (DCE), as discussed previously, or T2*w

MRI (dynamic susceptibility contrast-enhanced [DSC]).

Superparametric iron oxide (SPIO) nanoparticles in combina-

tion with T2w and T2*w MRI have been developed as imag-

ing probes for targeted molecular MRI, cell tracking, and

drug delivery (“theranostics”).92–94 Alternatively, highly spe-

cific, background-free imaging can be achieved via nonproton

imaging using, eg, F-1995–97 or hyperpolarized agents C-

13.98,99 However, these require hardware modifications to be

able to image the nonproton frequencies.

Novel quantitative methods have also been proposed

to acquire several tissue properties at once.100,101 A method

termed “MR-fingerprinting” utilizes a (pseudo) randomized

acquisition sequence to encode a tissue-specific “Fingerprint”

into an MR time series signal.102 This has recently also

been adapted and applied to cancer imaging.103–105

Finally, to achieve its full potential, a key challenge of

multiparametric MRI is standardization across multiple plat-

forms, which involves the use of phantoms and careful

review of implementation.106

Radiomics
Radiomics is an evolving area in medical imaging whereby a

large number of features are extracted and interpreted using

bioinformatic approaches.9,107 The underlying rationale for

radiomics lies in the supposed relationship between

extracted image parameters and tumor molecular phenotype

and/or genotype. It is known that genotypic heterogeneity

contributes to divergent tumor biological behavior, includ-

ing poor treatment response and a more aggressive pheno-

type. Therefore, there is growing interest in using imaging

radiomic signatures either alone or in combination with

other clinical or -omics data, eg, radiogenomics, to improve

tumor phenotyping (prognostication), to allow tumor subre-

gions with different biological characteristics that may con-

tribute to treatment resistance to be identified/segmented

for therapies, and for the prediction and evaluation of thera-

pies. Radiomic studies have used a number of techniques

including statistical methods (histogram; gray-level co-occur-

rence matrix [GLCM]; gray-level difference matrix

[GLDM], run length matrix [RLM], gray level size zone

matrix [GLSZM], and neighborhood gray tone difference

matrix [NGTDM]) with or without Gaussian or Wavelet

transformation; and fractal-based methods across different

sequences including T2-weighted, diffusion-weighted, and

DCE sequences. Initial radiogenomic studies including MRI

have been performed in breast cancer108–110 renal cell carci-

noma111 and glioma.112,113 Variable reproducibility has

been shown across different classes of features114 and further

validation work is still required for radiomic biomarkers.

Conclusion

� Precision cancer medicine remains a desirable goal for

cancer care.

� MRI offers many advantages as a diagnostic, prognostic,

predictive, or response biomarker in cancer given its capa-

bility of multiple contrast and multiparametric quantita-

tive imaging.

� A key challenge remains to improve the efficiency of bio-

marker translation from discovery to implementation.

Clinical translation for emerging biomarkers remains

slow.

� To overcome issues regarding biomarker measurement

variability across devices and across manufacturers, phan-

toms for quality assurance, standardization of protocols

and availability of reference value databases has helped to

facilitate this, alongside networks and alliances including

the Quantitative Imaging Network (QIN) (http://imag-

ing.cancer.gov/informatics/qin), the Quantitative Imaging

Biomarker Alliance (QIBA) (http://www.rsna.org/qiba/);

the Quantitative Imaging in Cancer: Connecting Cellular

Processes to Therapy (QuIC-ConCePT) (http://www.

quic-concept.eu/) consortium; and the American College

of Radiology Imaging Network (ACRIN).

� With emerging machine-learning approaches, quantitative

MRI biomarkers will no doubt continue to expand to

meet new challenges in the personalized care of oncology

patients.
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