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Purpose. The aim of this study was to assess the effect of melatonin in the proliferation of neural progenitors, melatonin
concentration, and antiapoptotic proteins in the hippocampus of adult mice exposed to 96 h REM sleep deprivation (REMSD)
prophylactic administration of melatonin for 14 days. Material and Methods. Five groups of Balb/C mice were used: (1) control, (2)
REMSD, (3) melatonin (10 mg/kg) plus REMSD, (4) melatonin and intraperitoneal luzindole (once a day at 5 mg/kg) plus REMSD,
and (5) luzindole plus REMSD. To measure melatonin content in hippocampal tissue we used HPLC. Bcl-2 and Bcl-xL proteins
were measured by Western Blot and neurogenesis was determined by injecting 5-bromo-2-deoxyuridine (BrdU) and BrdU/nestin
expressing cells in the subgranular zone of the dentate gyrus were quantified by epifluorescence. Results. The melatonin-treated
REMSD group showed an increased neural precursor in 44% with respect to the REMSD group and in 28% when contrasted with
the control group (P < 0.021). The melatonin-treated REMSD group also showed the highest expression of Bcl-2 and Bcl-xL as
compared to the rest of the groups. Conclusion. The exogenous administration of melatonin restores the tissue levels of sleep-
deprived group and appears to be an efficient neuroprotective agent against the deleterious effects of REMSD.

1. Introduction consequences on brain function, especially when it occurs

during the stage of rapid eye movement (REM) sleep. REM
Sleep deprivation (SD) is common event in the modern  stage is considered essential for preserving context memory
society that affects children, teenagers, adults, and old peo-  and facilitating long-term consolidation of visual discrimi-
ple [1, 2]. SD is a stressor phenomenon that has adverse  nation tasks and emotional memory [3, 4]. In general, it is
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widely accepted that sleep facilitates brain restoration and
tissue detoxification by removing oxidants produced during
wakefulness [5]. SD induces the production of free radi-
cals which causes oxidative damage mediated by imbalance
between reactive oxygen species (ROS) and the endogenous
antioxidant system [6, 7] in the brainstem and hippocampus
(8, 9].

The subgranular zone (SGZ) of dentate gyrus (DG) in
the adult hippocampus is a crucial target of SD effects
because, in this, regions in new neurons (neurogenesis) are
generated throughout life [10-12]. The incorporation of these
newborn cells into the existing neuronal circuitry has been
associated with the optimization of memory processes and
cognitive functions [13]. Experimental evidence indicates
that SD produces a significant reduction in the number of
new neurons in the SGZ, which may impair learning and
memory performance [10, 14-22].

Circadian rhythms are induced by the daily light-dark
cycle [11, 12] and are regulated by the pineal gland, a small
endocrine gland that controls the rhythmic production of
melatonin. This hormone mediates its effects through the cell
membrane receptors MT1 and MT2 [23, 24] and regulates
antioxidant enzymes [25, 26] by switching on/off intracel-
lular signaling cascades [27, 28], as well as by scavenging
oxygen free radical [29-33]. In addition, melatonin promotes
neurogenesis under diverse conditions, such as ovariectomy,
pinealectomy, aging, or circadian disruption [17, 34-40].
In this study, we used a prophylactic administration of
melatonin for 14 days (before and during 96 hours of REMSD)
to determine if melatonin exerted a protective effect in neural
precursor cells. Our results show a significant improvement
in the survival of neural precursors in the melatonin-treated
REMSD group with respect to the REMSD untreated group.
These findings were associated with an increased expression
of antiapoptotic proteins Bcl-2 and Bcl-xL in the melatonin-
treated REMSD group.

2. Materials and Methods

2.1. Animals. 50 adult male mice Balb/C (23-26 g) were used
for this study. Animals were maintained in a temperature-
controlled environment on a 12 h light-dark cycle with light
on at 08:00 h, with room temperature of 24°C + 2, and with
free access to food and water. Animals started melatonin
and luzindole (once daily) treatment for 14 days before 96 h
REMSD and during SD until the end of the experiment. Mice
were randomly distributed in five groups (n = 10 mice per
group): (1) control, (2) REMSD, (3) melatonin + REMSD,
(4) luzindole + melatonin + REMSD, and (5) luzindole +
REMSD. For HPLC and Western Blot analyses, five animals
per group were sacrificed by decapitation to obtain fresh
and unfixed tissue. The rest of the animals received a single
injection of BrdU (100 mg/kg) 2 hours before sacrifice by
intracardiac perfusion. Sacrifices were made immediately
after the end of REMSD exposure. All the experiments were
designed to minimize the number of animals used in every
experiment. The procedures described herein were carried
out in accordance with the regulation indicated by the Ethics
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Committee of the University of Guadalajara and following
NIH regulations.

2.2. Drug Preparation for Continuous Administration and
Intraperitoneal Injection

2.2.1. Melatonin Treatment. Melatonin (Sigma-Aldrich Co.,
St. Louis, MO, USA) was prepared and changed every third
day in a minimum volume of 1% absolute ethanol and tap
water to reach a concentration of 10 mg/kg of body weight
(b.w.) per day [40, 41]. During treatment, melatonin was
placed in a drinking water and protected from direct light
with aluminum foil. Melatonin chronic administration is well
supported by Ramirez-Rodriguez et al. and Silva et al. [35, 36,
42]; they administered melatonin as far as 9 months with no
side effects reported like drowsiness.

2.2.2. Luzindole Treatment. Luzindole antagonist MT1 and
MT2 melatonin receptors [23] (Santa Cruz Biotechnology,
USA) were prepared daily in a minimum volume of ethanol
1% and sterile water for intraperitoneal injections. Luzindole
was used at 5mg/kg of b.w. per day [43]. Luzindole was
administered once daily with an intraperitoneal injection at
17:30 h. For the group with both melatonin and luzindole,
melatonin was given by an oral cannula 30 minutes after
injection of luzindole. With respect to luzindole treated mice
we do not observe any unusual behavior.

2.3. REM Sleep Deprivation. To select REMSD time, we
analyzed corticosterone serum levels at various time points
of SD: 24 h, 48 h, 72 h, and 96 h and we found basal corticos-
terone levels at 96 h of SD [44]. Mice were deprived of REM
sleep using the inverted flowerpot technique [45, 46]. Briefly,
REM sleep-deprived mice were placed on inverted flowerpots
2.5 cm in diameter and 20 cm in height surrounded by water
in a 180 cm diameter tank. Water level was within 7 cm of
the top of the flower pot. The control group was maintained
in a plexicage in the same room with similar conditions but
out of the water tank since it has been demonstrated that
large platforms in tanks make animals lose 80% of sleep time
[47]. This paradigm suppresses REM sleep since the decrease
in muscle tone during this phase makes animals fall into
the water. This technique is well accepted as a model for
depriving rodents of REM sleep without the requirement for
electroencephalography (EEG) monitoring [48]. Mice inside
the container were always able to reach either food, melatonin
bottle, or tap water according to each experimental group.
Water temperature was controlled at 23 + 3°C.

The application of the melatonin, luzindole, and REMSD
is shown in the time points diagram (Figure 1).

2.4. Tissue Samples. Once the period of REMSD was com-
pleted, after 19:00 pm, some of the animals were decapitated.
Immediately after that, the brain was dissected on ice to
obtain the hippocampal tissue. Brain tissue samples were
stored at —80°C for further analysis. Mice for immunofluo-
rescence were deeply anesthetized with a lethal dose of pen-
tobarbital and were transcardially perfused with phosphate
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FIGURE 1: Timeline. Square 1. Animals were kept one week in the adaptation stage. Square 2. Animals begin with melatonin/luzindole
treatments for 14 days. Square 3. 96 h REMSD. Square 4. REMSD is finalized and sacrifice by decapitation or intracardiac perfusion is

performed on animals.

buffer (PB) of 4% paraformaldehyde. Brains were fixed for
24 h in this same solution. Afterwards, brain specimens were
cutat 35 um using a vibratome (Leica, Microsystems) starting
from rostral Bregma, —1.34, to caudal Bregma, —2.92mm
[49]. Tissue storage was done in PBS plus 0.3% sodium azide
until used.

2.5. Determination of Melatonin Levels in Hippocampal Tissue.
Hippocampal melatonin levels were measured in all groups.
After hippocampi defrost (20 mg each one approx.) each
tissue was sonicated in 400 uL of 0.1M phosphate buffer
containing 0.15M NaCl, pH 7.4, and centrifuged at 3000 xg
for 10 minutes at 4°C. An aliquot of the supernatant was
frozen at —80°C for protein determination. Another super-
natant aliquot (320 yL) was mixed with 1 mL chloroform and
320 uL of 0.1 M acetate-acetic buffer, pH = 4.6, shaken for 20
minutes, and centrifuged at 9000 xg for 10 minutes at 4°C.
The organic phase was washed with 0.1N NaOH solution.
Five hundred microliters of this mixture was evaporated
to dryness in a concentrator 5301 (Eppendorf, AG). The
residue was dissolved in 100 uL of an HPLC mobile phase and
measured with HPLC Shimadzu (Shimadzu Corporation,
Duisburg, Germany), with a 4.6 x 150 mm reverse-phase CI8
Sunfire Column (Waters Corporation, Milford, MA, USA)
[50]. After stabilizing the column with the mobile phase,
40 uL of each sample was injected onto the HPLC system. The
mobile phase consisted in 0.1 M sodium phosphate, 0.1 mM
ethylenediaminetetraacetic acid, and 25% acetonitrile, pH
5.2, at a flow rate of 1mL/minute. A standard curve for
melatonin was constructed in the range between 200 and
1500 pg/mL of melatonin standard. 5-Fluorotryptamine was
used as the internal standard. The fluorescence of the samples

was measured with a fluorescence detector (Shimadzu, RF-
10A XL, Shimadzu Corporation), with excitation/emission
wavelengths of 285/345 nm, respectively. Melatonin concen-
tration was expressed in pg/mg of tissue protein.

2.6. Antibodies. All antibodies were diluted in PBS 0.1M
containing 10% goat serum. The primary antibodies for
immunofluorescence used in this study were monoclonal rat
anti-BrdU MCA2060 (Abd Serotec, Bio-Rad Laboratories,
Inc., 1:400.) monoclonal mouse and anti-nestin MAB353
clone rat 401 (Millipore, Merck KGaA, Darmstadt, Germany
1:100). Secondary antibodies were as follows: Alexa Fluor
488 for BrdU label and Alexa Fluor 594 for nestin label
(Invitrogen™, Thermo Fisher Scientific Inc., 1:1000). For
Western Blot, we used the following: anti-bcl2 rabbit poly-
clonal (Novus Biologicals, LLC, USA, 1:1000), anti-Bcl-xL
mouse monoclonal (Sigma-Aldrich Co., St. Louis, MO, USA,
1:1000), and anti-B-actin (Santa Cruz Biotechnology, USA,
1:2500). Secondary antibodies included biotinylated anti-
rabbit and anti-mouse (Vector Laboratories Ltd., Southfield,
MI, 1:1000).

2.7, Immunofluorescence. For immunofluorescence double-
labeling for BrdU and nestin antibodies, tissues were pre-
treated with 2 N HCL for 10 min at 37°C followed by 10 min in
boric acid 0.1 M (pH 8.5) at room temperature. Subsequently,
tissues were washed in PBS-Triton-X-100 0.03% three times
for 5 minutes and blocked with goat serum 10%. Primary
antibodies were incubated overnight at 4°C. After three
times, of 5 min washing, they were incubated with secondary
antibodies for 1 hour at room temperature. Finally, tissues
were washed exhaustively and mounted with Vectashield



Mounting Medium with DAPI (Vector Laboratories Ltd.,
Southfield, MI) and quantified in a fluorescence microscope
Carl Zeiss Microlmaging GmbH with Colibri lighting system
and Carl Zeiss AxioVision SE64 Rel Software (Goéttingen,
Germany).

2.8. Quantification of BrdU/Nestin Labeled Cells. One parallel
series of every sixth free-floating brain section was used for
fluorescence double-immunolabeling of BrdU and nestin.
Progenitor cells were counted using a 40x objective through-
out the rostrocaudal extent of the subgranular zone (SGZ)
which is structurally located between granular cell layer and
hilus of the DG of both sides. Counting was done as described
earlier, with a modified optical dissector method. The cells
appearing in the uppermost focal plane were omitted to avoid
oversampling [51]. The resulting numbers were multiplied by
six to obtain the estimated total number of BrdU and nestin
labeled cells per SGZ. All quantifications were performed
blinded to group assignment.

2.9. Western Blot Analysis. Immediately after 96 h of SD, mice
(n = 5 for each group) were sacrificed by decapitation and
hippocampus samples were dissected and immediately frozen
to be stored at —80°C until use. Then, hippocampus samples
were homogenized in lysis buffer (PBS 0.1M and protease
inhibitor cocktails), and the total protein concentration was
determined using the Lowry protein determination (Bio-
Rad Laboratories, Inc.). Samples were loaded on 12% SDS-
polyacrylamide gels, separated by electrophoresis, and then
transferred to nitrocellulose membranes (Amersham GE,
Little Chalfont, UK). Immunodetection was performed with
diaminobenzidine tetrahydrochloride method (DAB, Sigma-
Aldrich, St. Louis, MO). Membranes were blocked with 5%
nonfat milk for 1 h and then incubated with primary antibod-
ies overnight at the indicated dilutions: anti-Bcl-2, anti-Bcl-x,
and anti-B-actin and with secondary antibodies biotinylated
for 2 hours at room temperature. Afterwards, they were
treated with avidin-biotin complex, 1:100 (Vector Laborato-
ries Ltd., Southfield, MI), and developed with DAB. To nor-
malize the signals of Bcl-2 and Bcl-xL, the corresponding sig-
nals of 8-actin were measured on the same blots. We analyzed
densities with Image]J software (NIH, USA). Mann-Whitney
U tests were performed to compare differences between
expression levels in the different groups for each protein.

3. Statistical Analysis

Analyses were carried out with SPSS version 20 and Graph-
pad Prism version 5.01 software. Results are presented as
means + SD. Statistical analyses of the data were performed
using the Kruskal-Wallis nonparametric test and Mann-
Whitney U test. The level of significance was set at P < 0.05.

4. Results

Melatonin and luzindole administration were well tolerated
and no side effects were observed throughout the study.
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FIGURE 2: Hippocampal melatonin under REMSD. Bars express
means + standard deviation. Statistical analysis showed significant
differences between groups: control group versus LZD + MEL +
REMSD; only REM sleep deprivation and LZD + REMSD (P <
0.046) Mann-Whitney U test. Furthermore, the MEL + REMSD
group revealed a higher concentration of melatonin in comparison
to the control, REMSD, LZD + MEL + REMSD, and LZD + REMSD
groups ("P < 0.05); Mann-Whitney U test. REMSD: REM sleep
deprivation, MEL: melatonin, and LZD: luzindole.

4.1. Melatonin Concentration Varies in Hippocampus Homo-
genate under REMSD Exposure. This far, there are no reports
that determine melatonin concentration in hippocampus
homogenates under REMSD conditions in wild-type animals.
Our results show that the control group (non-sleep-deprived
animals) had statistically significant differences in the con-
centration of melatonin (30.62 + 0.23pg/mL, P < 0.04)
with respect to the REMSD group (12.94 + 5.2 pg/mg), the
group luzindole + melatonin + REMSD (19.37 + 3.05 pg/mg),
and the group luzindole + REMSD (22.27 + 2.5 pg/mg)
(Figure 2). Animals that received oral melatonin showed
higher concentrations of melatonin (40.71 + 1.8 pg/mg, P <
0.05) and presented significant differences when compared
to controls, the REMSD group, and the luzindole groups
(luzindole + melatonin + REMSD and luzindole + REMSD).

4.2. Melatonin Protects Survival of Neuronal Precursors in
SGZ. Melatonin has been shown to promote neurogenesis in
both in vitro and in vivo experimental conditions, but these
effects have not been investigated in REMSD [22, 52-54]. The
quantification of BrdU-positive cells for the control group
(351 £ 60 cells per SGZ) showed no significant differences
when compared to the REMSD group (273 + 79 cells per
SGZ). In contrast, the melatonin + REMSD group (483 + 55
cells per SGZ, P < 0.021) showed a statistically significant
difference when compared to the REMSD (273 + 79 cells per
SGZ) and control group (351 £ 60 cells per SGZ). This change
represents 44% and 28% reduction of BrdU-positive cells,
respectively. The luzindole + melatonin + REMSD group had
426 +70 cells per SGZ, which corresponds to ~18% less BrdU-
expressing cells with respect to the melatonin + REMSD
group. However, the only significant difference was obtained
with respect to the REMSD group (P < 0.043). In contrast,
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FIGURE 3: Number of BrdU label cells in dentate gyrus of hip-
pocampi tissues. Bars express means + SD. () Statistical differences
were found for the control group versus MEL + REMSD and REMSD
versus MEL + REMSD groups (“* P < 0.021). A statistical difference
was found for REMSD versus LZD + MEL + REMSD groups (*P <
0.043). Mann-Whitney U test.

the melatonin + REMSD and the luzindole + melatonin +
REMSD group showed an increase in the number of BrdU-
positive cells as compared to the sleep deprivation group
(Figure 3). Luzindole + REMSD was administered to observe
whether melatonin concentrations may change in hippocam-
pal tissue. The present findings of this group indicate that
luzindole did not have a significant effect in melatonin levels.
Thus, we decided to exclude group of the cell analysis to keep
the use of animals as minimum as possible.

To identify neuronal precursor cells in the SGZ, we cola-
beled our brain sections with anti-nestin antibody (Figure 4).
The control group had 297 + 4 cells per SGZ as compared
to the melatonin + REMSD group (444 + 3 cells per SGZ,
P < 0.021). The melatonin + REMSD group also showed a
statistical difference with the REMSD group (237 + 24 cells
per SGZ; P < 0.021). The luzindole + melatonin + REMSD
group showed no significant differences as compared to the
other groups (390 + 48 cells) (Figure 5). In summary, the
REMSD group had a decrease of 45.8% and the control group
had a decrease of 33% in the number of progenitor cells when
compared to the melatonin + REMSD group.

4.3. Western Blot of Antiapoptotic Proteins. To analyze
whether the changes in the number of SGZ progenitors
were associated with antiapoptotic mechanisms, we analyzed
the expression of Bcl2 and Bcl-xL (Figure 6). Our findings
indicate that the expression of Bcl-2 protein in the melatonin
group was significantly increased as compared to the other
groups (P < 0.021) (Figure 6(a)). We also observed a
significant increase in the expression of Bcl-xL in the group
that received melatonin (P < 0.021; Figure 6(e)).

5. Discussion

Sleep deprivation is one of the most stressful agents
with serious physical and psychological repercussions for

sleep-deprived individuals. It has been postulated that one
of the functions of REM sleep is to maintain longevity,
survival, and integrity of neurons [14-16, 55-58]. Our hypoth-
esis focuses on the possibility of generating a neuroprotec-
tive effect on neural precursors in the hippocampal SGZ
by administrating melatonin [59]. This neuroindole is a
pleiotropic molecule that is used to treat several pathologic
conditions, which has well-known antioxidant properties
and regulates the metabolism of neural cells via melatonin
receptors, MAPK/ERK signaling, histone acetylation, neu-
rotrophic factors, basic helix-loop-helix (bHLH) factors, and
the nuclear factor erythroid 2-related factor 2 (Nrf2) [60-62].

Under conditions of sleep deprivation, 15 mg/kg mela-
tonin reverses the levels of some oxidative stress markers,
such as NO, MDA, and SOD activity [63]. Kumar and Singh
demonstrated that melatonin treatment significantly restored
the levels of glutathione, preserved catalase activity, and
attenuated lipid peroxidation in 72 h SD mice [64].

To the best of our knowledge, this is the first study that
explores the effects of the prophylactic administration of
melatonin in REMSD conditions. Chronic administration of
melatonin is able to disrupt circadian homeostasis without
affecting animals’ behavior [40, 41]. However, in our study,
we cannot discard that REM sleep deprivation may contribute
to developing anxiety-like behaviors by disrupting circadian
rhythm but, even in that case, melatonin can ameliorate
these stress levels as shown by previous reports [65-67].
Therefore, previous and current evidence help support the
notion that melatonin may be considered as a possible
therapeutic strategy when SD occurs [68].

Melatonin regulates circadian rhythms and promotes
sleep via G protein-coupled receptors (MT1 and MT2)
and nuclear receptors (RZR/RORa) in the suprachiasmatic
nucleus [69, 70]. Besides, melatonin controls the flow of elec-
trons by stopping the respiratory chain electron leakage and
scavenging oxygen free radicals. These chemical properties
appear to provide significant neuroprotection in neurode-
generative disease, neuroinflammation, and aging [71, 72].
We determined whether the prophylactic administration of
melatonin by oral cannula modified the tissue levels of this
hormone in the hippocampus of sleep-deprived animals. As
expected the group that received oral melatonin had the
highest concentration in the hippocampus as compared to
the other groups. In contrast, the melatonin monotherapy did
not modify the levels of this hormone in the brain tissue, nor
the number of neuronal progenitors BrdU/nestin in the group
of luzindole + melatonin + REMSD. The beneficial effects of
melatonin might be mediated through MT1/MT2 receptors,
because this neuroindole exerts its effects by modifying the
mitochondrial homeostasis maintenance and preventing the
expression of apoptotic genes [65, 73, 74].

Our findings indicate that REMSD decreases significantly
the melatonin levels in the hippocampal tissue. A possi-
ble explanation for this event is that REMSD triggers the
production of reactive oxygen or nitrogen species and lipid
peroxidation, as well as decreases in the antioxidant system,
such as glutathione and superoxide dismutase (SOD) [8,
48, 63, 66, 67]. REMSD may also impair the mitochondrial
electron transport that can contribute to brain damage [75].
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FIGURE 4: Representative immunofluorescence images of BrdU/nestin-expressing cells. BrdU and nestin expression in the subgranular zone
of dentate gyrus (DG) of the sleep-deprived group (REMSD) and the MEL + REMSD group. Melatonin treatment increased the number of

neural progenitors in DG as compared with controls. Bars = 10 ym.
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FIGURE 5: Number of BrdU/nestin label cells in dentate gyrus of
hippocampi tissues. Bars express means + SD. (*) We found a
statistical differences for control versus MEL + REMSD and REMSD
versus MEL + REM sleep deprivation groups (*P < 0.021). Mann-
Whitney U test.

Consequently, melatonin can be rapidly consumed by inter-
acting with free radicals generated by REMSD and if the
intensity of the stressor is excessive, the amount of mela-
tonin available in the brain tissue will be significantly

reduced [29]. Hence, melatonin administration seems to
be a feasible approach to restore endogenous tissue lev-
els.

Recent findings showed that the sleep deprivation has
a delayed effect on the cell differentiation in the SGZ
and increases the apoptosis rate in the hippocampal CAl
and CA3 regions [76]. Our data indicate that exogenous
administration of melatonin restores the tissue levels of this
hormone in the hippocampus and increases the number
of neural precursors and reveals a neuroprotective effect of
melatonin against the deleterious consequences of REMSD.
The beneficial effects of melatonin on SGZ precursors may
rely on its capacity to increase the levels of phospho-c-Rafand
phosphoextracellular signal-regulated kinase 1/2 (ERK1/2)
through melatonin receptor [77]. Other studies have reported
neuroprotective effect of melatonin in different animal mod-
els, including irradiation, aging, spinal cord injury, ischemia,
hypoxia, and pinealectomy [34-37, 54, 77-80].

In addition, we explore the role of Bcl-2 and Bcl-xL
that are critical regulators of programmed cell death [81].
After PSD, BAX is translocated to mitochondria that, in
turn, decreases the membrane excitability of CAl pyramidal
neurons. Further evidence indicates that after 24 h of total
SD the Bcl-2/Bax ratio decreases in the prefrontal cortex and
pons [7, 82]. Melatonin can activate Bcl-2 by agonizing MT1
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FIGURE 6: Western Blot analysis. (a) shows Bcl-2 qualitative protein expression. (b) shows Bcl-xL protein expression. (c) shows f-actin protein
expression. Bars express mean + SD. () (d) Relative densities of Bcl-xL. (e) Relative densities of Bcl-2. Bcl-2 and Bcl-xL are overexpressed in
the group with melatonin treatment with a significant difference versus the other groups (*P < 0.021, Mann-Whitney “U” test).

and MT2 receptors or by acting directly at the mitochon-
dria level, where Bcl-2 coordinates the expression of pro-
and antiapoptotic events [28]. Kuhn et al. using transgenic
animals that expressed human Bcl-2 concluded that this
protein promotes neuronal maturation and hippocampal
neurogenesis in the adult brain [83].

In summary, our pharmacological approach showed that
melatonin has neuroprotective effects against sleep depri-
vation. Nevertheless, future studies that analyze the antiox-
idant mechanism of melatonin on neural precursor cells
and identify the cell type affected by sleep deprivation are
required. Besides, the behavioral or cognitive consequences
of melatonin treatment in REMSD conditions remain to be
elucidated.

6. Conclusions

The prophylactic administration of melatonin increases the
number of neural precursor cells in the adult SGZ. These
effects are observed when melatonin is administered before
and during REMSD. Interestingly, melatonin promotes an
increase in the tissue levels of Bcl-2 and Bcl-xL of sleep-
deprived animals. Taken together, our findings indicate that
melatonin is an efficient neuroprotective agent against the
noxious effects of REMSD.
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