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Abstract

Motivation: Research on epigenetic modifications and other chromatin features at genomic regulatory elements
elucidates essential biological mechanisms including the regulation of gene expression. Despite the growing
number of epigenetic datasets, new tools are still needed to discover novel distinctive patterns of heterogeneous
epigenetic signals at regulatory elements.

Results: We introduce ChromDMM, a product Dirichlet-multinomial mixture model for clustering genomic regions
that are characterized by multiple chromatin features. ChromDMM extends the mixture model framework by profile
shifting and flipping that can probabilistically account for inaccuracies in the position and strand-orientation of the
genomic regions. Owing to hyper-parameter optimization, ChromDMM can also regularize the smoothness of the
epigenetic profiles across the consecutive genomic regions. With simulated data, we demonstrate that ChromDMM
clusters, shifts and strand-orients the profiles more accurately than previous methods. With ENCODE data, we show
that the clustering of enhancer regions in the human genome reveals distinct patterns in several chromatin features.
We further validate the enhancer clusters by their enrichment for transcriptional regulatory factor binding sites.

Availability and implementation: ChromDMM is implemented as an R package and is available at https://github.
com/MariaOsmala/ChromDMM.

Contact: maria.osmala@aalto.fi

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

For over a decade, next-generation sequencing technologies have
produced massive data amounts to quantify chromatin features,
including nucleosomal histone modification locations, transcription-
al regulatory factor (TRF) binding sites and chromatin accessibility
(Boyle et al., 2008; Mardis, 2007; Park, 2009). These chromatin-
feature signals are routinely formed as counts of aligned sequencing
reads at consecutive non-overlapping genomic windows (or bins)
along the entire genome or a short DNA stretch. These coverage sig-
nals at regulatory elements, such as enhancers, are often investigated
to understand the underlying biological mechanisms in the regula-
tion of gene expression. Moreover, the signals can be visualized as
heatmaps by aligning them within a genomic window centred at the
loci (see Fig. 4 as an example). The average aggregate patterns of the
coverage signals, illustrated on top of the heatmaps, reveal the pos-
itional correlations and recurrent patterns in the signals. However,
the set of analysed genomic regions can be biologically heteroge-
neous; in other words, it consists of multiple unknown subclasses.

Therefore, the aggregate plot derived from all regions falsely dis-
plays the superposition of several different chromatin signatures.
Consequently, we need a clustering method to reveal the subclasses.

The clustering method must consider the following properties of
the chromatin-feature data. First, the data are heterogeneous con-
taining sparse count data as well as varying coverage intensities and
patterns. Second, the anchor positions of regulatory elements are
typically uncertain; genomic regions need shifting, that is, the cover-
age signals need alignment with respect to each other to refine the
aggregate patterns. Third, chromatin features can be asymmetric
concerning the anchor points due to directional biomolecular mech-
anisms, such as transcription. Therefore, the coverage signals need
strand-orientation (flipping).

Several methods have been proposed for the epigenetic data clus-
tering, such as hierarchical clustering (Kundaje et al., 2012; Nielsen
et al., 2012) and k-means (Groux and Bucher, 2019; Heintzman
et al., 2007; Ye et al., 2011). The hierarchical clustering tool CAGT
by Kundaje et al. (2012) groups chromatin profiles at functional
genomic elements into clusters using k-medians algorithm. This

VC The Author(s) 2022. Published by Oxford University Press. 3863

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 38(16), 2022, 3863–3870

https://doi.org/10.1093/bioinformatics/btac444

Advance Access Publication Date: 4 July 2022

Original Paper

https://orcid.org/0000-0003-0128-4896
https://orcid.org/0000-0001-9579-2909
https://github.com/MariaOsmala/ChromDMM
https://github.com/MariaOsmala/ChromDMM
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac444#supplementary-data
https://academic.oup.com/


procedure is followed by merging redundant clusters through the
hierarchical agglomerative clustering utilizing either correlation or
Euclidean distance. CAGT implements profile flipping but no shift-
ing. Some clustering methods such as ChromaSig (Hon et al., 2008),
CATCHprofiles (Nielsen et al., 2012) and ChExMix (Yamada et al.,
2019) examine the chromatin-feature enrichment in the entire gen-
ome instead of clustering predefined sets of genomic elements.
ChromaSig (Hon et al., 2008) is a clustering method that imple-
ments both shifting and flipping, and it assumes that the read counts
are normally distributed. CATCHprofiles (Nielsen et al., 2012) is
another hierarchical clustering approach combined with pairwise
alignment. CATCHprofiles merges, aligns and orients the most simi-
lar profile pairs to remaining profiles iteratively based on correlation
or Euclidean distance. This results in a very exhaustive search.
ChExMix (Yamada et al., 2019) is designed to cluster the ChIP-seq
or the higher resolution ChIP-exo (Rhee and Pugh, 2011) and ChIP-
nexus (He et al., 2015) read count footprints together with the DNA
sequence information at the TRF binding sites. The footprints and
DNA motifs are not equal at all binding sites, for example, due to
the TRF of interest interacting with distinct sets of other regulatory
proteins. ChExMix models read counts as being generated by a mix-
ture of binding events and their subtypes along the entire genome.
The model is formulated as a probabilistic mixture model with
multinomial component distributions and assuming sparsity-
inducing Dirichlet priors on the mixture weights and binding event
subtypes. The multinomial parameters, that is, the binding event
positions, are assumed to follow a Bernoulli distribution. The model
parameters are estimated using expectation–maximization (EM) al-
gorithm, and as a result one obtains the responsibility of each bind-
ing subtype at each binding event in generating each sequenced read.
ChExMix also considers the orientation of the footprints and allows
small shifting.

A probabilistic mixture model designed to cluster chromatin-
feature signals at regulatory elements was introduced by Nair et al.
(2014). The model is denoted as ChIP-partitioning and it considers
the above-mentioned requirements for the chromatin-feature clus-
tering method. ChIP-partitioning models the statistical variation in
the coverage signals using independent Poisson distributions. Nair
et al. (2014) demonstrated that ChIP-partitioning outperforms the
hierarchical and k-means clustering methods, particularly when
clustering low-coverage count data. However, next-generation
sequencing data are typically overdispersed; the data variation is
larger than expected by the Poisson distribution. Therefore, many
overdispersed models have been proposed, for example, for
RNA-seq data analysis (Robinson et al., 2010). Moreover, previous
studies on clustering chromatin features do not provide rigorous
probabilistic methods for clustering multiple chromatin features
simultaneously. The previous methods also lack a principled method
for determining the unknown number of clusters.

We propose a probabilistic clustering method ChromDMM that
exploits the discrete, sparse, heterogeneous and overdispersed nature
of the sequencing data. ChromDMM builds on the mixture of
Dirichlet-multinomial compound distributions originally proposed
for clustering microbial data (Holmes et al., 2012). We extend the
model to account for the presence of multiple epigenetic coverage
signals at the same genomic locus, so that each mixture component
exhibits a set of Dirichlet-multinomial compound distributions. We
also extend the model with the profile shifting and flipping features
that can probabilistically account for the inaccuracies in the posi-
tions and strand-orientations of the clustered genomic elements. In
addition, owing to the regularization of the mixture component
parameters, ChromDMM can smooth the chromatin-feature pat-
terns at successive bins along the genomic regions. Finally, our prob-
abilistic model can naturally utilize the well-known model selection
methods to determine the optimal number of clusters. The following
Section 2 presents the ChromDMM model and its inference in de-
tail. Section 3 analyses the performance of ChromDMM on simu-
lated and real chromatin-feature data and compares its performance
against ChIP-partitioning (Nair et al., 2014) and SPar-K (Groux and
Bucher, 2019).

2 Materials and methods

The data for a chromatin feature across N genomic loci is
represented as a N�L matrix X ¼ ½x1; . . . ;xN �T , where xi ¼
½xi1; . . . ;xiL�T denotes the data for the ith genomic window. The
length of xi is defined by the size of the genomic locations W and
resolution B as L ¼W=B. For example, data extracted in W¼2000
base pair (bp) windows centred at the anchor points with the reso-
lution B¼40 bps results in coverage signals of length L¼50. The
element xij denotes the number of sequencing reads whose starting
position (50 end) is aligned to bin j of locus i. To be exact, xij

denotes, for example, the histone modification ChIP-seq read counts
minus the sequencing-depth normalized control counts (see
Supplementary Section S4.2). Collectively, the data for M chromatin
features are represented as a N � ML matrix X� ¼ ½Xð1Þ;Xð2Þ;
. . . ;XðMÞ� ¼ ½x�1; . . . ; x�N �

T , where x�i ¼ ½x
ð1Þ
i

T ; . . . ; x
ðMÞ
i

T �T denotes a
vector of length ML that contains the M chromatin feature vectors
of a single genomic locus i.

2.1 Product Dirichlet-multinomial mixture model
The read counts x across the L bins are naturally modelled by the multi-
nomial distribution with parameters p ¼ ½p1; . . . ;pL�T (

PL
j¼1 pj ¼ 1).

We further assume the multinomial parameters p are distributed accord-
ing to a conjugate Dirichlet distribution with hyperparameters a.
Marginalizing out the multinomial parameters from the joint distribu-
tion of x and p results in an overdispersed Dirichlet-multinomial com-
pound distribution parameterized by a. The Dirichlet-multinomial
distributions can be utilized as the component distributions in a mixture
model for the probabilistic clustering.

Compared with the standard Dirichlet-multinomial mixture
model (Holmes et al., 2012), we implement two extensions.
First, we assume that the likelihood of x� is a product multinomial
distribution, each multinomial with the chromatin-feature-specific
parameters pðmÞ. This enables modelling several chromatin features
simultaneously. Second, we assume the parameters p� ¼ ðpð1Þ; . . . ;
pðMÞÞ to have a mixture prior with K mixture components; each
component k is a product of M Dirichlet distributions again with the
chromatin-feature-specific hyperparameters ak ¼ ½að1Þk ; . . . ; a

ðMÞ
k �. Let

the parameters of the product-Dirichlet mixture for all K mixture
components and M chromatin features be represented as a L � KM
matrix a� ¼ ½að1Þ1 ; . . . ; a

ð1Þ
K ; . . . ; a

ðMÞ
1 ; . . . ; a

ðMÞ
K �. The mixture prior for

p� is

pðp�ja�; pÞ ¼
XK

k¼1

pk

YM
m¼1

Dirichlet ðpðmÞjaðmÞk Þ;

where p ¼ ðp1; . . . ; pKÞ denotes the mixture weights. Holmes et al.
(2012) showed that compounding the multinomial distribution with
the Dirichlet mixture prior results in an analytically tractable likeli-
hood. Similarly, in the case of the product-multinomial with the
product-Dirichlet mixture prior, the parameters of the product-
multinomial can also be marginalized analytically to derive a closed-
form expression for the likelihood of X� as (see Supplementary
Section S1.4 for a detailed derivation)

pðX�ja�;pÞ ¼
YN
i¼1

XK

k¼1

pk

YM
m¼1

Dirichlet�multinomial ðxðmÞi ja
ðmÞ
k Þ: (1)

Instead of seeking to obtain the maximum-likelihood estimates for
the model parameters, we adopt the Bayesian approach by introduc-
ing a prior distribution for the component parameters a�.

To account for the correlations between the (expected) read
counts at consecutive bins along the chromatin signal, we define a
regularized Gamma hyperprior for the mixture component parame-
ters a� as

pða�Þ /
YM
m¼1

YK

k¼1

CðhðmÞk jgh; �hÞ
YL
j¼1

CðaðmÞkj jg; �Þ; (2)

where all aðmÞkj have their own independent Gamma prior with fixed
shape g and rate � parameters, and the regularization terms
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h
ðmÞ
k ¼

XL

j¼2

ðaðmÞkj � aðmÞk;j�1Þ
2 (3)

also have their own independent Gamma prior with shape gh and
rate �h parameters. Inclusion of the regulatory terms in the prior
favours smooth mixture component parameters. A more detailed ex-
pression of the proportional distribution of the prior pða�Þ is shown
in Supplementary Equation (S9) and an example of the effect of the
regularization is demonstrated in Supplementary Section S1.6.

Mixture models involve the latent cluster membership variables
z; each observed x�i is associated with a corresponding unobserved
categorical latent variable zi. The variable zi ¼ ðzi1; . . . ; ziKÞT is a K-
dimensional indicator vector: if sample i originates from cluster k,
zik ¼ 1; otherwise zik ¼ 0. The variables zi are collected in a N�K
matrix Z ¼ ½z1; . . . ; zN �T . The proposed model is parameterized by
h ¼ ða�; pÞ and is presented as a directed acyclic graph in
Supplementary Fig. S1 together with the distributions of individual
components.

2.2 The EM algorithm
The posterior log pðX�jhÞ þ log pðhÞ cannot be maximized directly.
Instead, the MAP estimates for h and the probabilistic cluster assign-
ments are obtained by an iterative approach, the EM algorithm
(Bishop, 2006). For the derivation of the EM algorithm assume a
distribution for Z, qðZÞ. Then, the Jensen’s inequality provides a
lower bound for the posterior distribution

log pðh�jX�Þ � EqðZÞ½log pðh;ZjX�Þ�
¼ EqðZÞ½log pðX�;ZjhÞ� þ pðhÞ þ constant;

where log pðX�;ZjhÞ is the complete data log-likelihood and the
constant term is independent on h. Assuming some initial estimates
for the parameters hold and defining qðZÞ ¼ pðZjX�; holdÞ, the lower
bound (without the constant term) is

Qðh; holdÞ ¼ EpðZjX� ;holdÞ½log pðX�;ZjhÞ� þ log pðhÞ

¼
XN
i¼1

XK

k¼1

E½zik�
XM
m¼1

log pðxðmÞi jhÞ

þ
XN
i¼1

XK

k¼1

E½zik� log pk þ log pða�Þ þ log pðpÞ;

where the expectation is wrt the posterior probabilities of the
cluster assignments conditional on the current parameter estimates
hold, that is, E½zik� ¼ pðzik ¼ 1jx�i ; holdÞ. The likelihood term
pðxðmÞi jhÞ is the Dirichlet-multinomial compound distribution for the
mth chromatin feature. For a detailed derivation, see Supplementary
Section S1.8.In the EM algorithm, E-steps and an M-steps are
repeated, until convergence of the lower bound Qðh; holdÞ. In the E-
step, the posterior probability that a sample i belongs to a cluster k
given the current parameter estimates hold is obtained using the
standard Bayes rule as

pðzik ¼ 1jx�i ; holdÞ ¼ pðzik ¼ 1jholdÞpðx�i jzik ¼ 1; holdÞPK
k0¼1 pðzik0 ¼ 1jholdÞpðx�i jzik0 ¼ 1; holdÞ

;

where pðx�i jzik ¼ 1; holdÞ ¼
QM

m¼1 pðxðmÞi jzik ¼ 1; holdÞ is the likeli-
hood of the sample i conditioned with cluster k, that is, the product
Dirichlet-multinomial distribution. The term pðzik ¼ 1jholdÞ corre-
sponds to the mixture weight pk. In the M-step, as a closed-form
solution of a� that maximizes Qðh; holdÞ is unattainable, the lower
bound is maximized wrt a� using Broyden–Fletcher–Goldfarb–
Shanno (BFGS) method provided in R (Broyden, 1970). In addition,
the component parameters aðmÞkj are constrained to be positive by a
reparameterization k

ðmÞ
k ¼ log am

k and by re-defining the prior for k�

accordingly using the multivariate change of variables method. For
more details on deriving the equations for the model inference, see
Supplementary Sections S1.7–S1.15. The steps of the EM algorithm
are summarized in Algorithm 1. In the initilization, the cluster

membership probabilities E½zik� are obtained with the soft k-means
clustering (MacKay, 2003) on concatenated chromatin features (see
details in Supplementary Section S4.1). For a given number of
clusters, the EM algorithm is run multiple times each with different
random initialization. Note that it is trivial to parallelize the compu-
tation across the multiple runs as well as across varying numbers of
clusters.

2.3 Chromatin feature profile shifting and flipping
We extend the product Dirichlet-multinomial mixture model with
shifting and flipping features. For profile shifting, we first define the
maximum amount of shifting, for example, 400 bp, both upstream
and downstream. With a given bin size (e.g. B ¼ 40bp), this results in
S ¼ 2�400bp

40bp þ 1 ¼ 21 possible shift states, where the shift state s ¼ Sþ1
2

corresponds to no shift. In addition, the length of the Dirichlet param-
eters a

ðmÞ
k is extended from L to Lþ S� 1. When evaluating the likeli-

hood model from Equation (1) for a shift state s, we use the
corresponding L-length subset of the extended Dirichlet parameters
for each mixture component k, denoted as a�ks ¼ ða�k;s; a�k;sþ1; . . . ;
a�k;sþL�1Þ. For profile flipping, we either compute the likelihood model
definition with a shift state s (using again the L-length subset of the
Dirichlet parameters) if f¼1, or reverse the order of the Dirichlet
parameters if f¼2. Formally, we denote the shifting and flipping-
aware likelihood model for a single genomic locus as pðx�ja�sf ;pÞ.

For each locus, we can define prior probabilities for the shift and
flip states. The prior shift state probabilities for the genomic locus i

are denoted as ni ¼ ðni1; . . . ; niSÞ, where
PS
s¼1

nis ¼ 1. If the genomic

loci and their anchor points are defined using ChIP-seq summits,
then the prior for shift states can be defined, for example, as a
pyramid-shaped prior that has the highest probability at the ChIP-
seq peak summit (corresponding to no-shift state) and linearly
decreasing the prior to zero beyond the maximum shift state.
Similarly, we can define prior flip state probabilities fi for each locus
i, where fi1 þ fi2 ¼ 1.

In ChromDMM with the shifting and flipping features, the latent
cluster membership variables are re-defined as follows: ziksf ¼ 1 if
the sample i originates from the cluster k, has shift state s and has
strand-orientation f; otherwise, ziksf ¼ 0. These latent variables are
stored in N � K� S� 2 matrix (or tensor) Z. We show in
Supplementary Section S2.3 that the EM algorithm can be derived
similarly as in Section 2.2, resulting in the following lower bound
for the posterior distribution of parameters h

Algorithm 1: EM algorithm for ChromDMM

Input: Data X� for all M chromatin features, the number of

clusters K, hyper-parameters ðg; �; gh; �hÞ
Output: MAP estimates ĥ and pðZjX; ĥÞ

1 Parameters h ¼ ðkð1Þ1 ; . . . ; k
ð1Þ
K ; . . . ; k

ðMÞ
1 . . . ; k

ðMÞ
K ; pÞ;

2 //Initialisation to obtain hold

3 Initialise E½zik� using soft k-means on concatenated data;

4 Initialise kðmÞjk by argmaxk�Qðh; holdÞ using BFGS;

5 //The EM algorithm loop

6 while the lower bound Qðh; holdÞ not converged do

7 //E-step:

8 Compute pðZjX; holdÞ, i.e., EðzikÞ;
9 //M-step:

10 kð�;newÞ ¼ argmaxk�Qðh; holdÞ using BFGS

11 Update mixing weights p: pnew
k ¼ 1

N

PN
i¼1 E½zik�

12 h ¼
�
kð�;newÞ; pnew

�

13 end
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Qðh; holdÞ ¼
XK

k¼1

log pk

XN
i¼1

XS

s¼1

X2

f¼1

E½ziksf �

þ
XN
i¼1

XS

s¼1

log nis

XK

k¼1

X2

f¼1

E½ziksf �

þ
XN
i¼1

X2

f¼1

log fif

XK

k¼1

XS

s¼1

E½ziksf �

þ
XN
i¼1

XK

k¼1

XS

s¼1

X2

f¼1

E½ziksf �
XM
m¼1

log pðxðmÞi ja
ðmÞ
ksf Þ

þlog pðhÞ;

where E½ziksf � ¼ pðziksf ¼ 1jx�i ; holdÞ. Note that the above mixture
model can be applied (i) only with shifting, (ii) only with flipping or
(iii) with both shifting and flipping. In the case of (i), we simply
drop the index f and the corresponding sums and in the case of (ii),
we simply drop the index s and the corresponding sums. For more
details on the derivations of equations needed to infer the shifting
and flipping-aware model, see Supplementary Section S2.

After learning the model parameters with the EM algorithm, we
infer the final cluster assignment ~ki for each sample i by marginaliz-
ing the shift and flip states. Similarly, we choose the final flip and
shift states, ~f i; ~si, that maximize the posterior given the optimal clus-
ter ~ki by marginalizing the shift and flip states, respectively,

~ki ¼ argmax
k

XS

s¼1

X2

f¼1

pðziksf ¼ 1jx�i Þ; (4)

~f i ¼ argmax
f

XS

s¼1

pðzi ~kisf
¼ 1jx�i Þ; (5)

~si ¼ argmax
s

X2

f¼1

pðz
i ~kisf
¼ 1jx�i Þ: (6)

2.4 Choosing the number of clusters and identifiability

aspects
For probabilistic clustering methods, the Bayesian model selection is
commonly used to guide the selection of an appropriate number of
clusters K. While the exact computation of the marginal likelihood
is impractical, we can directly apply the commonly used approxima-
tive methods, such as the Bayesian information criterion (BIC)
(Schwarz, 1978) or the Akaike information criterion (AIC) (Akaike,
1973).

There are inherent unidentifiability issues in ChromDMM
results. Firstly, as in any clustering method, the inferred cluster
labels can be switched between two clusters without affecting the
clustering accuracy. Secondly, unless informative prior for strand-
orientation is provided, the flip state indexes (1 or 2) can always be
reversed. For biological interpretation, the aligned and flipped pro-
files need to be visualized after clustering and compared with the
underlying directionality of the genomic region, such as direction of
transcription 30 ! 50 or 50 ! 30, if known. The learned shift state is
also affected by the learned flip state. While evaluating the perform-
ance of ChromDMM and other methods on simulated data, we con-
sider these aspects.

3 Results

3.1 Clustering simulated data
3.1.1 Data simulation and choice for hyperparameters

We used simulated data to investigate the clustering accuracy of
ChromDMM, ChIP-Partitioning and SPar-K when the data contain
varying number of chromatin features and varying read coverages.
For comparison, we repeated some experiments on the simulated
data presented by Nair et al. (2014). We simulated data containing
two clusters using the R-code presented in Nair et al. (2014) (see

their Supplementary Material, page 13). We generated 1000 samples
per cluster using low-coverage parameter values f¼0.5 and f¼1.
We found that at these low-coverage parameter values, most of the
simulated profiles were zero vectors. Thus, we first generated
10 000 samples for both clusters and randomly selected 1000
non-zero vectors for both clusters. The data generation was repeated
100 times. An example of simulated dataset is presented in
Supplementary Fig. S8. The cluster-wise aggregate profiles are
Gaussian-shaped with varying location of the mean and variance.

To generate more realistic simulated data, we first clustered data
for four chromatin features (H3K4me1, H3K27ac, RNA polymerase
II and MNase-seq) at 1000 enhancers from the ENCODE project
(The ENCODE Project Consortium, 2012) by ChromDMM requir-
ing the inference of both the shift and flip states. For more details,
see Supplementary Methods S4.2. From the fitted model, we chose
the Dirichlet parameters a

ðmÞ
k for two clusters. These parameters

were used to sample the multinomial parameters p
ðmÞ
i and finally the

profiles x
ðmÞ
i by varying the chromatin-feature-specific coverage be-

tween 10, 20, 50 and 100. For each experiment, we simulated 100
datasets. We used the area under receiver operations characteristics
(AUC) curve as the performance measure for the clustering accur-
acy. For more details and the visualization of a simulated dataset
with a coverage of 100, see Supplementary Section S4.4.

We performed hyperparameter sweeps on the simulated data
to determine robust default values for the ChromDMM model.
Briefly, for the Gamma prior for the Dirichlet parameters aðmÞkj (para-
meterized by hyperparameters g and �), we observed that the results
were not sensitive to hyperparameter values and conclude that the
choice of g ¼ 1:1 and � ¼ 0:1 results in a good performance
(Supplementary Fig. S5). We also performed the prior predictive
checks using the ancestral sampling of the data from prior hyper-
parameters and demonstrated that the amount of variation gener-
ated from the prior is comparable to the variation in the real data
(Supplementary Fig. S6). Similarly, we chose the hyperparameter
values for the regularization term hm

k . The Gamma prior with mean
1 and variance 0.1 corresponding to hyperparameters gh ¼ �h ¼ 10
resulted in a robust clustering performance (see Supplementary Fig.
S7 and Supplementary Section S4.5 for more details). We set the
above hyperparameter values as defaults, but a user can, for ex-
ample, perform prior predictive checks for his/her data and adjust
the hyperparameters, if necessary.

We investigated the ability of AIC and BIC to choose the correct
number of clusters (two) for the simulated data. We fitted
ChromDMM with varying the number of clusters (from 1 to 3). The
proportions of cluster numbers selected by AIC and BIC in 100
simulated datasets are presented in Supplementary Fig. S16a for
1000 samples and in Supplementary Fig. S16b for 6000 samples. We
conclude that AIC and BIC detect the correct number of clusters
more reliably when the coverage of the chromatin modifications
and/or the number of samples increases, although BIC tends to
underestimate the number of clusters. The computation times of the
three methods (with default parameters) to cluster simulated data
containing two clusters and two chromatin features both with cover-
age 100 were: half an hour (ChromDMM), ca. 10 min (ChIP-
Partitioning) and seconds (SPar-K).

3.1.2 ChromDMM infers accurate clusters

We compared ChrommDMM against ChIP-partitioning and SPar-K
(both applied with the default parameters) in clustering simulated
data that were generated as in Nair et al. (2014). The clustering per-
formance of ChromDMM exceeded the performance of ChIP-
partitioning and SPar-K (Fig. 1). Similarly as in Nair et al. (2014),
we also report the Pearson correlation coefficients between the true
cluster-wise aggregate patterns and the inferred aggregate patterns
(Supplementary Fig. S9). In general, the correlations are similar to
values obtained by Nair et al. (2014). For the first cluster, the corre-
lations obtained by ChromDMM are lower than for ChIP-
partitioning, whereas for the second cluster, the correlations
obtained by ChromDMM are slightly higher.

We compared ChrommDMM against ChIP-partitioning and
SPar-K in clustering more realistic simulated data that contained two
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clusters and two chromatin features (H3K4me1 and RNA POL II).
The clustering performance of ChromDMM exceeded the perform-
ance of ChIP-Partitioning (Fig. 2 and Supplementary Fig. S10).
SPar-K performed poorly in these comparisons, particularly when the
coverages were low (Supplementary Fig. S11). Similar results were
obtained on data containing only a single feature (Supplementary
Fig. S12). For comparison, Figure 2 and Supplementary Fig. S10 pre-
sent also results for an experiment where ChromDMM was fitted ei-
ther on concatenated chromatin profile data or without the
regularization term. The regularization improved the clustering per-
formance especially when the coverage for the first chromatin feature
(H3K4me1) was low, whereas the use of non-concatenated chroma-
tin profile data resulted in only a marginal improvement in this simu-
lation setting.

3.1.3 Clustering accuracy improves with the number of features

We experimented with the number of chromatin features; beginning
from a single feature (H3K4me1), the number of features was
increased to four by adding RNA Pol II, H3K27ac and MNase-seq.
Supplementary Fig. S13a shows how the clustering accuracy
increases together with the number of chromatin features for a sig-
nal coverage of 10. Supplementary Fig. S13b presents similar results
for a varying coverage, where the coverage of the first set of chroma-
tin features was 10 (H3K4m1, H3K27ac) and the coverage of the se-
cond set of chromatin features was 50 (RNA Pol II, MNase-seq).
We conclude that for ChromDMM and ChIP-partitioning, the clus-
tering performance increases as a function of the number of chroma-
tin features, whereas for SPar-K the improvement is less consistent.
Regardless of the number of chromatin features, ChromDMM
obtains the best performance.

3.1.4 ChromDMM infers accurate shift and flip states

The simulated data were also artificially shifted and flipped as
described in Supplementary Section S4.4. Briefly, the random shifts
were constrained to be multiple of the data resolution (B¼40 bp)
and drawn from the Skellam distribution with mean zero and a vari-
ance that included the randomly sampled shifts between –400 and
þ400 bp. Similarly, the flip states were sampled randomly with
equal probability for both strand-orientations. For more details, see
Supplementary Algorithm S3.

The clustering accuracy of ChromDMM, ChIP-partitioning and
SPar-K was demonstrated on the randomly shifted and flipped simu-
lated data. We experimented with four versions of ChromDMM:
(i) ChromDMM with the regularization term and with the pyramid-
shaped shift state prior, (ii) same as (i) but with concatenated chro-
matin features, (iii) ChromDMM without the regularization term
and with the pyramid-shaped shift prior and (iv) ChromDMM with
a uniform prior for the shift states and with the regularization term.
The clustering accuracies of the methods are presented in Fig. 3a.
Methods considering the concatenated chromatin features, including
ChIP-partitioning and SPar-K, performed poorly in these compari-
sons and notably they failed to improve their performance while
increasing the coverage values. ChromDMM outperformed other
methods and its clustering performance was further improved by
both the informative shift state prior and the regularization, particu-
larly when the coverage of either chromatin feature was low.

The methods were compared with their accuracy to correctly
infer the shift and the flip states of the genomic regions.
ChromDMM and ChIP-partitioning infer the most probable shift
and flip states for each sample i from the latent variable probabilities
shown in Equations (5) and (6), respectively, whereas SPar-K out-
puts the inferred shift and flip states separately. The flip state error
was defined as the proportion of incorrectly inferred flip states in a
given experiment (recall the identifiability aspects from Section 2.4).
Similarly, the shift error for each sample was computed as the abso-
lute difference between the true shift and the inferred shift in nucleo-
tides. The average shift error over all N samples was reported as the
final shift error for a single experiment.

The flip errors for the simulated shifted and flipped data contain-
ing two chromatin features and two clusters are presented in
Supplementary Fig. S14. On average, the flip errors decreased as the
coverages increased and they were lower for the ChromDMM meth-
ods compared with ChIP-partitioning and SPar-K. The flip errors
were only slightly affected by whether the ChromDMM fit was
inferred without the shift prior or without the regularization. The
resulting shift errors for the simulated data are shown in Fig. 3b.
Again, the average shift errors decreased as the coverages increased
and the shift errors were lowest for the ChromDMM methods. The
shift state inference of ChromDMM was further improved by the in-
formative shift prior and the regularization of the mixture compo-
nent parameters a�. In contrast to the other methods, the shift errors
for ChIP-partitioning remained high even with large coverage val-
ues. This likely results from the cluster-assigned patterns drifting
from the profile centre positions, that is, ChIP-partition selects a
profile whose unimodal peak or valley between the two-modal peak
is shifted far from the profile centre and aligns the rest of the profiles
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according to this single profile (Supplementary Fig. S15d). The clus-
ter patterns inferred by SPar-K also drift (Supplementary Fig. S15e),
whereas ChromDMM centres the peaks and valleys to the profile
centres (Supplementary Fig. S15c). This desirable behaviour of
ChromDMM stems partly from the robustness of the probabilistic
treatment and the shift state prior.

Finally, we investigated the ability of AIC and BIC to choose the
correct number of clusters (two) in the simulated shifted and flipped
data (Supplementary Fig. S17). In contrast to the simpler model
studied in Section 3.1, the more complex ChromDMM model with
a high number of parameters is heavily penalized by AIC and BIC,
and thus require higher coverage and larger number of samples to
detect the correct number of clusters.

3.2 Clustering enhancers in ENCODE data
3.2.1 ChromDMM reveals distinctive enhancer clusters

We applied ChromDMM, ChIP-partitioning and SPar-K with the
flip and shift state inference to cluster ENCODE data containing 10
chromatin features extracted at enhancer regions. For the details of
the data, preprocessing and the definition of the enhancers, see
Supplementary Section S4.2 and Osmala and Lähdesmäki (2020).
Based on the ChromDMM fit, the enhancers were assigned to the
most probably clusters and their profiles were re-aligned based on
the inferred shift and flip states, for example for visualization. As a
result, ChromDMM separated enhancers into six clusters, each with
distinctive and refined combinations of chromatin feature patterns.
Three of the six clusters are visualized as heatmaps and aggregated
patterns in Fig. 4 (the full set of clusters and chromatin features are
presented in Supplementary Fig. S18). In contrast, ChIP-partitioning
and SPar-K failed to identify distinctive patterns and to refine the
profile alignment and strand-orientation (Supplementary Figs. S20
and S21).

The ChromDMM enhancer clusters possess characteristic com-
binations of chromatin feature pattern shapes, spacings and signal
strengths. The first cluster has symmetric and high enrichment of
histone modification and MNase-seq signals with a steep decline of
the signals in the middle of the profiles, indicating a nucleosome-free
region. In addition, the nucleosome-free region is surrounded by a
regular array of well-positioned nucleosomes. In contrast, in the
clusters 2, 3 and 4, the nucleosome-free region and the well-
positioning of the nucleosomes are obscured compared with the
other clusters. Thus, the enhancers in these clusters may possess
closed chromatin or mobile nucleosomes. The clusters 4–6 have

asymmetricity in histone modification enrichment (clusters 4 and 5),
in nucleosome positioning (clusters 5 and 6) and in RNA POL II oc-
cupancy (clusters 4 and 5). The asymmetricity in the RNA POL II
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ChIP-seq signal may reflect the direction of transcription. In add-
ition, in the asymmetric clusters, the histone modifications are
enriched on either of the two nucleosomes immediately flanking the
anchor position (cluster 5) or spread widely (clusters 4 and 6).

3.2.2 Biological validation of the inferred clusters

The enhancer clusters revealed by ChromDMM, ChIP-partitioning
and SPar-K were investigated for the enrichment of the binding sites
of transcription factors (TFs) and other regulatory proteins, collect-
ively referred to as TRFs. The ChIP-seq peaks for 220 TRFs were
downloaded from ENCODE. For each TRF-cluster pair, a signifi-
cance test for the enrichment of a given TRF at the cluster was per-
formed by the GAT tool (Heger et al., 2013). A large majority of the
enrichments were significant according to the q-value threshold
0.01. To reveal differences in the TRF enrichment between clusters,
the fold enrichments were visualized as a heatmap, where the enrich-
ments corresponding to q-value larger than 0.01 were masked out
(see Supplementary Fig. S19 for ChromDMM clusters). The fold
enrichments for TRFs which were significantly enriched in at least
one ChromDMM cluster and simultaneously not enriched in at least
one another cluster are presented in Fig. 5. For more details, see
Supplementary Method S4.3.

The enrichment of TRFs in ChromDMM enhancer clusters
reveals the potential biological significance of the distinctive chro-
matin feature patterns. Clusters 3 and 4 with obscured nucleosome-
free regions and nucleosome positioning have less enrichment of
TRFs than the four other clusters. In contrast, the first cluster with
symmetric and strong signals has an enrichment for a large number
of TRFs. Similarly to cluster 1, cluster 5 with strong asymmetry in
the histone modification and RNA POL II signals has a high TRF
enrichment. Asymmetric cluster 6 with strong average H3K27ac,
H3K9ac and DNase-seq signals differs from the other clusters with
unique enrichment for RNA binding and processing-related proteins
(HNRNPK, FUS) and TFs SMAD2 and YBX3. In addition, clusters
1 and 6 have enrichment for the largest component and core scaffold
of the TFIID basal TF complex (TAF7). Moreover, clusters 1, 5 and
6 are enriched for Scaffold attachment factor B1 (SAFB), a protein
that binds DNA regions that are bound to the nuclear scaffold.
Interestingly, SAFB may be involved in attaching the base of the
chromatin loops to the nuclear scaffold and serving as a molecular
base to assemble a transcriptosome complex in the vicinity of the ac-
tively transcribed genes (Nayler et al., 1998). For comparison, the
TRF enrichments at ChIP-partitioning and SPar-K clusters are
visualized in Supplementary Fig. S22 and S23.

4 Conclusions

Exploring epigenetic datasets provides crucial information on key
biological mechanisms such as gene regulation. An example of such
data mining is the clustering of epigenomic signals and other

chromatin features at regulatory elements, such as enhancers, to re-
veal the combinations of chromatin features with varying signal
magnitudes and profile shapes. To appropriately account for the
sparse, discrete, heterogeneous and overdispersed nature of the
chromatin-feature data, probabilistic clustering methods have been
developed.

We have proposed ChromDMM, a product Dirichlet-
multinomial mixture model that provides a probabilistic method to
cluster multiple chromatin-feature coverage signals extracted from
the same locus. By employing simulated data, we demonstrated that
the accuracy of ChromDMM increases with the increasing number
of chromatin features. This indicates the need for a principled ap-
proach that considers the multiple chromatin features simultaneous-
ly when clustering regulatory elements. Moreover, we demonstrated
that ChromDMM outperforms the previous methods ChIP-
partitioning and SPar-K in clustering accuracy, particularly when
the chromatin-feature coverages are low. In addition, ChromDMM
learns the shift and flip states more accurately compared with ChIP-
partitioning and SPar-K. The accuracy of ChromDMM to infer the
clusters and shift states is further improved by mixture component
parameter regularization and an informative shift state prior.
Finally, we confirmed that BIC and AIC can detect the correct num-
ber of clusters.

We illustrated that ChromDMM identifies clusters with distinct
epigenetic patterns when applied to ENCODE data containing 10
chromatin features quantified at enhancers. Moreover, the identified
clusters are enriched for different sets of TRFs, suggesting that the
clusters may vary in their biological characteristics. ChromDMM
may therefore be a valuable method to reveal potential functionally
distinct subclasses of regulatory elements.
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