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Stimulus dependent diversity and stereotypy in the
output of an olfactory functional unit
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Olfactory inputs are organized in an array of functional units (glomeruli), each relaying

information from sensory neurons expressing a given odorant receptor to a small population

of output neurons, mitral/tufted (MT) cells. MT cells respond heterogeneously to odorants,

and how the responses encode stimulus features is unknown. We recorded in awake mice

responses from “sister” MT cells that receive input from a functionally characterized,

genetically identified glomerulus, corresponding to a specific receptor (M72). Despite

receiving similar inputs, sister MT cells exhibit temporally diverse, concentration-dependent,

excitatory and inhibitory responses to most M72 ligands. In contrast, the strongest known

ligand for M72 elicits temporally stereotyped, early excitatory responses in sister MT cells,

consistent across a range of concentrations. Our data suggest that information about ligand

affinity is encoded in the collective stereotypy or diversity of activity among sister MT cells

within a glomerular functional unit in a concentration-tolerant manner.
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Objects in the world are represented by complex patterns
of activity in peripheral sensory neurons. Prior to
reaching cortical areas, these representations are

transformed and reformatted. One of the central challenges in
sensory neuroscience is to understand the functional role and
computational logic of these transformations in extracting salient
information about the environment.

In mammals, the olfactory bulb is the single interface between
primary olfactory sensory neurons (OSNs) and higher brain
regions such as piriform cortex. OSNs carry information about
odors to the olfactory bulb via a vast array of glomeruli. Each
glomerulus is a functional unit, collecting input from OSNs that
express a single olfactory receptor gene1 and that share similar
response properties2. Each glomerulus provides exclusive excita-
tory input to a set of 10–20 mitral/tufted (MT) cells, which
project to higher brain areas3. The output of a given MT cell
depends not only on the response of the glomerulus providing
its input but also on the activity of the complex network of
inhibitory interneurons within which it is embedded3.

It is still not understood how odor information is represented
by MT cells. As an odor is inhaled, a unique subset of glomeruli is
activated, resulting in a spatiotemporal pattern that evolves over
the course of the respiration cycle4,5. Once this input reaches the
MT layer, however, there is substantial heterogeneity among
cellular responses. The population of MT cells responds to a given
odor with various combinations of temporally patterned
excitation and inhibition6,7. Recent observations from
anesthetized animals suggest that MT cells that are connected to
the same glomerulus (sister MT cells) respond to odors with
variable excitation, inhibition, and response timing8–10. However,
it is not clear how the complexity and diversity of MT responses
relate to specific attributes of the odor stimulus. What determines
whether sister MT cells show uniform or divergent responses to a
given odorant? Are these response properties stable under
natural variation in the odor signal, such as changes to odor
concentration? Given that sister MT cells do not always behave in
a unified way, what information can this subpopulation of cells
convey about an odor?

Here we provide an answer to these questions by assessing the
odor representation at the input and output of a glomerular
functional unit in awake mice. Using a combination of mouse
genetics, electrophysiology, and imaging, we define the functional
properties of inputs to a genetically tagged glomerulus, and then
use optogenetics to identify MT cells that get input from this
glomerulus. We observe, for the first time, stimulus-dependent
diversity or stereotypy among sister MT cell responses in awake
animals. We find that relative ligand affinity for a given odorant
receptor is a major determinant of whether the MT cells respond
in a uniform manner, and whether individual cell responses are
consistent across concentrations. Our results directly link a
fundamental stimulus property with a robust, concentration-
invariant response feature, and suggest a novel way of looking at
olfactory coding.

Results
Inputs and outputs of the M72 glomerulus. To study how a
single channel in the olfactory bulb, an ensemble of MT cells
connected to the same glomerulus, processes stimulus informa-
tion, we characterized the inputs and outputs of the mouse M72
glomerulus.

First, to characterize the input, we measured the responses of
genetically identified M72-expressing OSNs (M72-OSNs) to a
defined set of M72 ligands in a semi-intact preparation of the
olfactory epithelium11. The dendritic knobs of fluorescently
labeled OSNs from M72-GFP mice12 were targeted for recording

via perforated patch (Fig. 1a,b). The relative sensitivities of M72-
OSNs to each ligand covered a large range of receptor
sensitivities: concentration at half-maximal response (EC50)
values of the seven odorants spanned three orders of magnitude,
from 0.03 to 36 µM (Fig. 1c, Supplementary Table 1). In all
figures, we present odors rank-ordered by the M72-OSN
sensitivity, from least sensitive (high EC50) on the left to most
sensitive (low EC50) on the right.

Second, to confirm that the M72 ligands would drive MT cells
in vivo, we imaged presynaptic OSN activity in identified M72
glomeruli in awake mice (Fig. 1d, e). We used a strain of mice in
which all the OSNs express the calcium activity indicator
GCaMP3, and in which M72-OSNs also express the red
fluorescent protein (RFP). This allowed us to assess the level of
activation of M72 (and surrounding) glomeruli for each of the
odorant stimuli and concentrations used to record MT cell
activity.

Third, to characterize the output of the M72 glomerulus, we
measured responses of M72-MT cells to the same odorants. To do
so, we developed a novel method to identify these cells in awake,
freely breathing animals (Fig. 1f). We used a strain of mice in
which M72-OSNs express a channelrhodopsin2-yellow fluores-
cent protein fusion protein (ChR2-YFP) and are therefore light-
sensitive13. We periodically stimulated the M72 glomerulus with
a 473 nm light pulse while recording extracellular activity in the
olfactory bulb (Fig. 1f). Those cells whose firing rate increased
shortly after light stimulation were considered putative M72-MT
cells (Fig. 1g). The distribution of light-evoked response latencies
had its mode and median at 6 ms (Fig. 1h, see Methods); we
excluded cells with latencies slower than 20 ms as likely being
more than one synapse from the M72 glomerulus. Most of these
putative M72-MT cells were recorded from different animals. To
compare M72-MT cells with the general MT population, we also
recorded generic (i.e., non-M72) cells. No differences were
evident between M72-MT and generic MT cell populations in
the distributions of spontaneous firing rate, preferred sniff phase,
and recording depth (Supplementary Fig. 1). In total, we recorded
N= 53 M72-MT cells and 312 generic MT cells.

Functional characterization of MT cells. MT cell activity is
strongly influenced by the temporal dynamics of respiration6,14

and the duration of odor exposure. In freely breathing, head-fixed
mice, there is considerable variability in sniff frequency and
duration (Fig. 2a, b, c). Such variability causes peri-stimulus time
histograms (PSTHs) of MT cell odor responses to be temporally
smeared (Fig. 2c)6, and makes it difficult to compare MT
responses between different mice with different sniff patterns.
Here we monitored MT responses in relation to the sniff cycle
and focused our analyses on slower sniffs—those with an inha-
lation duration > 100 ms (Fig. 2c)—because they comprised 75%
of all sniffs across all mice, while the rarer, fast sniffs seemed to
mark a distinct behavioral state (Supplementary Fig. 2). MT
responses during fast sniffs showed the same general trends as
during slow sniffs, but the lower number of events precluded a
rigorous analysis (Supplementary Fig. 3). Finally, to avoid
adaptation effects, we restricted our analyses to the first sniff cycle
after odor onset.

To further account for variability due to sniff dynamics, we
developed a statistical model for the responses of MT cells that
factored in both the dependency on the stimulus and on the
pattern of sniffing. We modeled the spiking response of an MT
cell as arising due to an odor-dependent firing rate pattern, a
“snifflet”, that gets temporally dilated as a function of the
duration of each sniff (Fig. 2d). The model fits best when the
temporal dilation is a function of the inhalation duration
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(Supplementary Fig. 4). To characterize how each cell responds to
each odor, we estimate the corresponding snifflet from the
observed spiking data (Fig. 2e), which we accomplish using fast
Bayesian methods15,16. This snifflet representation factored out
the variability in sniff duration, allowing us to compare activity
across cells and across mice.

From this point forward, we characterize the odor-evoked MT
cell responses by comparing the corresponding snifflets. Our
results, however, do not depend on the specifics of these modeling
decisions: when we used the snifflet model without temporal
dilation, the results were qualitatively identical (Supplementary
Fig. 5).

Diversity and stereotypy of MT cell responses. Despite receiving
input from functionally similar OSNs, we observed a striking
degree of response diversity across M72-MT cells. This diversity
was evident directly in the raw patterns of activity, illustrated in
the snifflet and raster plots in Fig. 3. Diversity was observed for

most M72 ligands, presented at the same approximate
concentration, 0.075 ± 0.01 µM. Interestingly, responses to a
particular ligand, 2-hydroxyacetophenone (2HA), were less vari-
able across the M72-MT cell population (right column of Fig. 3).
Almost every cell responded to this odor with a short-latency
increase in firing rate. After this robust, reproducible burst, the
responses diverged and exhibited considerable variability.
Notably, 2HA is the strongest ligand yet identified for M72, with
an EC50 that is two orders of magnitude lower than that of any
other identified M72 ligand11 (Fig. 1c, Supplementary Table 1).

The differences in M72-MT behavior for 2HA and other
ligands cannot be attributed simply to different levels of
parent glomerulus activation, since 2HA and other odorants
(like 2,4-dimethyl acetophenone, acetophenone, and 4-methyl
acetophenone) evoked similar magnitude responses in the M72
glomerulus at the concentrations presented (Fig. 4a). Thus, direct
feedforward activation of M72-MT cells via their parent
glomerulus does not alone determine whether their responses
are diverse or stereotyped.
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Fig. 1 Characterizing information in a single channel of the mouse olfactory bulb. Central insert: schematic of the olfactory bulb network. Axons from OSNs
expressing the same receptor gene converge to form glomeruli, each providing the sole excitatory input to a few MT cells. Odor signals are subject to
significant modification by a network of inhibitory neurons (small gray dots). a Experimental setup for characterizing OSN responses to odor. Patch clamp
recordings are made from dendrites of fluorescently labeled OSNs expressing the M72 receptor. b Example traces of OSN odor responses. c Normalized
dose–response curves for seven M72 ligands fitted by the Hill equation (n= 5–7 OSNs per odorant; mean ± SEM); EC50 values indicated in linear plot
above. Odors used: 2-hydroxyacetophenone (2HA); ethyl tiglate (ETG); 4-methyl acetophenone (4MA); acetophenone (ACP); menthone (MEN);
benzaldehyde (BNZ); and 2,4-dimethyl acetophenone (DMA). EC50 values are given in Supplementary Table 1. d Experimental setup for imaging. An
awake, head-fixed mouse (OMP-GCaMP+M72-RFP) with implanted window above the OB is positioned under the microscope. e Left: image of a RFP
M72 glomerulus. Right: Ca2+ image of glomerular response to an odor (2HA). M72 glomerulus here and further is marked by magenta arrow. f
Experimental setup for in vivo recording of odor responses from MT cells connected to the M72 glomerulus. A head-fixed mouse is positioned in front of
the odor port. The sniff signal is recorded by a pressure sensor via a cannula implanted in the nasal cavity. Brief pulses of blue light are delivered to the
ChR2-expressing M72 glomerulus through an optical fiber positioned above the glomerulus. MT cell responses are recorded with a Si-probe inserted
nearby. g Example of MT cell excitation following laser stimulation of the M72 glomerulus. Raster plot (upper panel) and PSTH (lower panel) around the
onset of a 1 ms pulse showing the stimulus response (black line) and the baseline activity (gray line). h Distribution of response latencies to a 1 ms, 5–10
mW light pulse. Light-responsive cells with latencies longer than 20ms (colored gray in the histogram) were excluded from the analysis
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To quantify the diversity across cell responses, we constructed
several metrics (Fig. 4b–d). First, for each odor, we computed the
mean response of the ensemble of MT cells. We normalized each
cell’s set of snifflets by the snifflet with the largest amplitude and
then averaged these across cells. The mean responses of M72-MT
cells to most odorants were barely distinguishable from their
respective mean responses in the baseline (no odor) condition
(Fig. 4b). In contrast, the excitatory response to the strongest
ligand (2HA) was still present in the mean activity.

Second, we compared the polarity of the response of each cell
to each odor. For each cell and odor, we labeled the response as
excitatory or inhibitory, based on the sign of the first significant
(3σ) deviation of the cell’s odor-evoked snifflet from its baseline
(i.e., no odor) snifflet (Fig. 4c, left). For all odors except 2HA,
there was considerable diversity amongst M72-MT cells in first
response polarity, with roughly one-third of cells having an
excitatory response, one-third having an inhibitory response, and
the remainder being unresponsive to the odor (i.e., no significant
deviation from baseline). These distributions were indistinguish-
able from those found amongst the generic MT cell population
(Fig. 4c, right; Pearson’s chi-squared tests). Again, the exception

was 2HA, for which almost every M72-MT cell’s first significant
response was excitatory.

Third, we compared the onset latencies of odor responses. We
computed these as the time of first significant deviation of a cell’s
odor-evoked snifflet from its baseline snifflet (Fig. 4d, left). For all
odors but 2HA, the distributions of latencies for M72-MT cells
were indistinguishable from those seen amongst the generic MT
cell population (Fig. 4d, right; Kolmogorov–Smirnov tests). For
2HA, response latencies amongst M72-MT cells were consistently
short (Fig. 4d).

Finally, we found that these properties did not significantly
covary with the depth of the recording site (Supplementary
Fig. 1a), mean spontaneous firing rate (Supplementary Fig. 1b), or
preferred phase of firing during baseline sniffing (Supplementary
Fig. 1c). This observation suggests that response differences are
not attributable to differences in neuron types (i.e., mitral vs
tufted cells).

In summary, although the M72-MT cells receive common
input from sensory neurons, their responses to ligands of M72-
OSNs are typically as diverse as the rest of the MT population.
The exception to this pattern is a high-affinity M72 ligand, 2HA,
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to which M72-MT cells respond with an initially stereotyped
temporal profile, characterized by a strong, short-latency,
excitatory transient.

Population response stereotypy across concentration. The
experiment above reveals two different response modes for the
M72-MT population: cells can either respond with similar tem-
poral profiles (as we see for 2HA); or with a diverse range of
temporal profiles (as we see for all other odors). But which feature
of odor stimuli determines the population response mode? Is it
the identity of a stimulus (i.e., ligand affinity) or the effective
concentration of a stimulus?

To address this question, we selected two odors—menthone
(MEN), a weaker ligand, and 2HA, the strongest ligand—and
presented them at concentrations spanning two orders of
magnitude (N= 14–16 M72 and 107–167 generic MT cells; not
every cell tested on every odor/concentration condition). With
respect to the originally tested concentration, we decreased the
concentration of 2HA 10-fold (C−1) and 100-fold (C−2), and both
increased and decreased the concentration of MEN 10-fold (C+1

and C−1, respectively).
As the concentration of MEN changed, the level of M72

glomerulus activation varied from almost no response at the
lowest concentration to a near saturating response at the highest
concentration (Fig. 5a). Despite this significant change in
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glomerular activation, the M72-MT responses remained as
diverse as the generic MT responses (Fig. 5b–d, left). In contrast,
M72-MT responses to 2HA remained stereotyped at all
concentrations (Fig. 5b–d, right). Thus, the diversity of M72-
MT cell responses is dependent on odor identity, and not on
concentration.

Single-cell response stereotypy across concentration. Thus far,
we have shown that the M72-MT cell population responds in a
stereotyped way to a strong ligand, but with considerable diversity
to other ligands. This raises the question of whether individual
MT cells respond in a different manner to these two classes of
stimuli.

Analyzing individual cells from the second dataset above, we
found that changing the concentration of a single odorant could
affect single MT cell responses in different ways. As shown in
Fig. 6a, the responses of two M72-MT cells to 2HA were
consistent at different concentrations: these cells displayed an
early excitatory transient at all three concentrations, with the
onset latency decreasing as concentration increased, similar to
recent reports17. Conversely, responses of the same cells to MEN
significantly changed with concentration (Fig. 6a, left): increasing
the concentration of MEN could attenuate or even reverse an
excitatory response observed at a lower concentration.

To quantify these observations, we categorized the concentra-
tion dependency of each cell’s response to each odor, based on its
first significant deviation from the baseline. We assigned the label
"consistent" if the cell’s first significant response to the odor was
always excitatory or always inhibitory across concentrations;
"dropped", if there was a response for one or two of the
concentrations, but no significant response for the other(s); or
"flipped", if responses of opposite polarity were observed at
different concentrations. We found that the majority of M72-MT
cells had consistent initial responses across concentrations of
2HA, while the distribution of response categories was mixed for
MEN and for the generic MT population (Fig. 6b).

Thus, a high-affinity ligand not only elicits stereotypic
responses across M72-MT cells but also evokes temporal response
patterns within cells that are robust to changes in concentration
across two orders of magnitude. These observations do not
appear to hold for other ligands of M72, nor amongst cells of the
general MT population.

Discussion
Glomeruli are considered functional units in early olfactory
processing. Here we have studied for the first time the odor-
evoked responses in MT cells that receive input from a genetically
identified glomerulus in awake, freely breathing animals. We
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optogenetically identified sister MT cells that receive excitatory
drive from the glomerulus of the M72 odorant receptor, recorded
their responses to a set of well-characterized M72 ligands, and
analyzed the data using novel statistical tools (Figs. 1 and 2).
Despite receiving excitatory drive from functionally similar sen-
sory neurons, M72-MT cells responded to most odorants with
highly diverse temporal patterns that were as heterogeneous as
those found in the generic MT population. However, this
response diversity was not observed in response to 2HA, which
has the highest apparent affinity of all identified M72 receptor
agonists (Figs. 3 and 4). M72-MT responses to 2HA almost
always included a stereotyped early excitatory transient, after
which response diversity resumed. These odor-specific patterns of
response diversity and stereotypy remained unchanged across
odor concentration (Figs. 5 and 6), suggesting that they do not
depend on how strongly the glomerulus is activated. Our data
indicate that MT cells within a specific olfactory functional unit
encode a strong ligand in a markedly different way than weaker
ligands.

Previous studies6,7 have demonstrated that responses amongst
randomly selected MT cells in awake mice are diverse in their
polarity and timing across the sniff cycle. Our results suggest that
this diversity cannot be attributed solely to different sources of
glomerular feedforward input, as we observed that MT cells
sharing a common glomerulus show similar response diversity to
most odorants.

There are multiple potential sources that could account for the
observed MT cell response diversity: (1) variability across

animals; (2) variation in intrinsic biophysical properties across
cells18,19, including differences between mitral and tufted cells20;
(3) non-homogeneity of excitatory synaptic connections within a
glomerulus; and (4) heterogeneity of inhibitory network con-
nectivity. While the first three factors may play some role in the
observed diversity of the responses, they cannot easily explain the
fact that this diversity vanishes with a strong ligand, nor can they
explain that a strong ligand (but not a weak ligand) evokes ste-
reotypical responses over a range of concentrations.

A significant source of between-cell response variability comes
from the rich inhibitory network, which includes granule cells,
periglomerular, and other inhibitory cells in the olfactory bulb.
The connections from granule cells to MT cells are sparse and
heterogeneously distributed3,21,22, as are the connections from the
periglomerular inhibitory network23,24. Functionally, too, the
activity of each MT cell appears to be influenced by a handful of
glomeruli that are spatially sparse and can be very distant25.
Diversity across M72-MT cell responses to a single odor could
therefore result from each cell having different connectivity
within the lateral network.

Is this diversity/stereotypy phenomenon unique to the M72
glomerulus, or is it a general feature of glomerular channels of the
olfactory bulb? Previous observations in an anesthetized pre-
paration suggest that the effect we observe exists for another
glomerulus. Tan et al.8 recorded firing rate responses of MT cells
receiving input from the I7 odorant receptor. They showed that
the strongest known ligand for that receptor consistently evoked
high spike counts in I7 MT cells, but other odorants (not
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necessarily ligands for I7) typically did not. When we analyzed
our data using their method, we observed the same pattern
(Fig. 7), implying that this phenomenon may be a common
feature of all glomerular channels in the active, functioning bulb.
Moreover, we revealed a temporal specificity of this effect, namely
that the consistent response to a strong ligand manifests as a
temporally stereotyped, early excitatory transient.

Dhawale et al.10, working in anesthetized mice, found that
sister MT cells typically responded to an odor with substantial
temporal diversity, yet responded coherently to the common
drive provided by optogenetic stimulation of the parent glomer-
ulus. By studying a glomerulus with functionally defined inputs,
we show for the first time that response diversity among sister
MT cells exists even for known ligands of the parent glomerulus,
and that a coherent response can in fact be elicited by an odor
stimulus. We posit a parallel between activation of a glomerulus
with a strong ligand and artificial optogenetic stimulation—in
both cases, the specific glomerular excitation could be transmitted
to MT cells unperturbed by preceding activity in other channels,
thereby producing synchronous activity in the corresponding
sister MT cells.

Assuming universality of the observed phenomenon, what
could underlie the observed patterns of diversity and stereotypy?
We propose that the relative timing of activity entering the
olfactory bulb could be responsible for the observed patterns of
diversity and stereotypy in sister MT cells. When an odorant is
presented, glomeruli corresponding to the highest-affinity
receptors may be excited first, while those with lower affinities
may be activated later (Fig. 8a). Such an activation sequence could
result from several mechanisms: (1) a gradual rise in odorant
concentration during inhalation, over tens to hundreds of

milliseconds, resulting in different OSN types reaching threshold
at different times26,27; and (2) a cellular signal integration process
by which OSNs activated by stronger ligands reach firing
threshold faster28. The earliest activated glomeruli would confer
excitatory drive to downstream sister MT cells, which would
further propagate signals into downstream inhibitory networks.
This inhibitory activity will then feed back to the population of all
MT cells in different ways (due to the heterogeneity of lateral
connectivity), thus diversifying responses in subsequently acti-
vated glomerular channels (Fig. 8b). For a given odorant, the net
effect of these feedforward and recurrent dynamics will thus be
different for MT cells in early- and late-responding channels. The
initial input experienced by MT cells of early-responding chan-
nels will be dominated by feedforward excitation, causing these
cells to produce a stereotypical burst of action potentials early in
the sniff cycle (Fig. 8c). Sister MT cells associated with late-
responding channels will receive heterogeneous inputs from the
inhibitory network coincidentally with the feedforward excitation,
resulting in diverse responses.

The results of our experiment are consistent with this
hypothesis. Although we do not know the exact timing of M72-
OSN activation relative to other channels for each odor, the fact
that 2HA is such a strong ligand for the receptor suggests that the
M72 channel is one of the first to be activated in response to this
odor. Conversely, the relatively weak sensitivity of M72 receptors
to the other ligands predicts that the M72-OSNs would be acti-
vated relatively late.

Moreover, this model provides a simple explanation for why
these results do not change with odor concentration. As odor
concentration decreases, OSNs are typically activated later4.
However, decreasing odor concentration would not change the
relative timing of glomerular activation within our model. The
MT cells connected to later-activated glomeruli would receive
diverse and concentration-dependent inhibitory drive; thus, sister
MT cells would still respond to the odor differently from one
another, but also would show variable responses across con-
centration (Figs. 5 and 6).

Our data are consistent with this hypothesis, but there are a few
limitations to our conclusions. First, showing that the relationship
between diversity/stereotypy and odor affinity holds for all glo-
meruli would require recording from MT cells across many dif-
ferent channels that have known high-affinity ligands, and testing
odorants across concentration—currently such experiments are
technically very challenging.

Second, gauging the relative sensitivity of all odorant receptors
to a given odorant, or the temporal sequence of glomerular
activation in vivo, is also quite challenging. Here we used the
inverse approach, assuming that the relative sensitivity of M72
receptors to multiple odorants is a proxy for the temporal
ordering. It is possible that other receptors could have an even
higher affinity to 2HA than M72. It is tempting to assume that
MT cells should respond earlier for a higher-affinity ligand than
for an intermediate or weak ligand. While this relationship is
observed in our data (Supplementary Fig. 6), the absolute latency
of response to a given ligand likely depends not only on receptor
affinity but also on the physical and chemical properties of the
ligand. For example, a high concentration of a hydrophilic ligand
may evoke earlier responses than a weak concentration of a
hydrophobic ligand. Thus, we avoid drawing conclusions about
latency differences across different odors, and focus instead on
latency differences for a given odor between cells.

Third, our methods may introduce sampling biases. It is pos-
sible that we are only recording from a subset of M72-MT neu-
rons. Our optogenetic technique only identifies MT cells that
receive a dominant feedforward excitatory connection from the
M72 glomerulus; this, however, accounts for a particularly
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relevant subset of cells in conveying odor information. It is also
plausible that a small fraction of our putative M72-MT popula-
tion is made up of granule cells, although we consider this unli-
kely due to their location and size relative to MT cells29.

And lastly, while validation of the mechanism proposed above
is beyond the scope of this report, our model provides a set of
hypotheses. For instance, under this model, blocking inhibition
(optogenetically or pharmacologically) would increase the num-
ber of odors evoking a stereotyped response in sister MT cells.
Future experiments are needed to explore this possibility and the
mechanisms underlying the conditions of diversity and stereotypy
in MT output.

How might stimulus-dependent stereotypy be incorporated
into a broader olfactory code? We imagine a downstream decoder
that is particularly sensitive to synchrony between sister MT cells
of a common glomerulus. Such a decoder need not depend on a
topographical map between the olfactory bulb and the piriform
cortex as it could be implemented through random projections30.
For strong ligands, sister MT cells will all respond with a rela-
tively short-latency excitatory transient, and the decoding neuron
will thus fire as well. For weaker ligands, the temporal diversity
amongst sister MT cells would fail to provide sufficient coherent
input to drive the decoding neuron. In such a scheme, lateral
inhibition preserves information in early-responding channels
and scrambles information in late-responding channels. This
configuration would act to sharpen and sparsify the odor repre-
sentation, reducing the dimensionality of the peripheral combi-
natorial code to one that is dominated by the most sensitive
glomerular channels. Moreover, our observation that the tem-
poral stereotypy/diversity of responses is robust to changes in
concentration means that the readout representation would also
be concentration-tolerant, and thus could encode odor identity
independent of concentration. This model is consistent with a
recently proposed primacy coding hypothesis31, which empha-
sizes the role of the most sensitive glomeruli as those responsible
for concertation invariant odor identification. The stereotypy of

MT cell responses driven by strong ligands is also consistent with
recent observation of concertation invariant early odor responses
of cortical cells32. The phenomenon of diversity/stereotypy of MT
cell responses described here may provide a mechanism by which
olfactory bulb circuitry could implement a primacy coding model.

Methods
Animals. For electrophysiological experiments, we used adult homozygous M72-
IRES-ChR2-YFP mice (strain Olfr160tm1.1(COP4*/EYFP)Tboz). Data for MT cell in vivo
odor responses were collected in 17 animals (13 males and 4 females). Animals
were 6–10 weeks old at the beginning of the experiment and were maintained on a
12-h light/dark cycle (lights on at 20:00 h) in isolated cages in a temperature- and
humidity-controlled animal facility. All animal care and experimental procedures
were in strict accordance with protocols approved by the New York University
Langone Medical Center and Northwestern University Institutional Animal Care
and Use Committees.

OSN electrophysiology. Perforated patch recordings were made from the den-
dritic knobs of fluorescently labeled M72-expressing OSNs as described pre-
viously11,13,33. In short, the olfactory epithelium from neonatal mice was removed
and kept in oxygenated artificial cerebrospinal fluid (95% O2 and 5% CO2), con-
taining 124 mM NaCl, 3 mM KCl, 1.3 mM MgSO4, 2 mM CaCl2, 26 mM NaHCO3,
1.25 mM NaHPO4, and 15 mM glucose, pH 7.4, 305 mOsm. The epithelium was
transferred to a recording chamber at 20–23 °C and imaged using an upright
fluorescence IR-DIC microscope equipped with a charge-coupled devise (CCD)
camera and a 40× water-immersion objective. Perforated patch clamp was per-
formed by including 260 μM amphotericin B in the recording pipette, which was
filled with 70 mM KCl, 53 mM KOH, 30 mM methanesulfonic acid, 5 mM EGTA,
10 mM HEPES, and 70 mM sucrose, pH 7.2, 310 mOsm. The electrodes had tip
resistances ranging from 8 to 10MΩ, and liquid junction potentials were corrected
in all experiments. Signals were acquired at 10 kHz and low-pass filtered at 2.9 kHz.
Odorants were applied via pressure ejection via a multi-barrel pipette placed 20 μm
downstream of the cell. Odorants were dissolved in dimethyl sulfoxide and diluted
in bath solution to achieve desired concentrations.

Gene targeting. OMP-GCaMP3: The coding sequence of GCaMP333,34 was
flanked by AscI sites and cloned into a targeting vector for the olfactory marker
protein (omp) locus34,35 so that the coding sequence of OMP is replaced by that of
GCaMP3, followed by a self-excising neomycin selection cassette35,36. The tar-
geting vector was electroporated into a 129 ES line, and clones were screened for
recombination by long-range PCR. Chimeras were generated from recombinant
clones by aggregation with C57BL/6 embryos.

M72-RFP (M72-IRES-tauCherry): A cassette containing an internal ribosome
entry site (IRES), followed by the coding sequence for a fusion of bovine tau and
mCherry12,36 and a self-excising neomycin selection cassette, was inserted into an
AscI site located three nucleotides downstream of the M72 coding sequence in an
M72 (olfr160)-targeting vector12. The targeting vector was electroporated into a
129 ES line, and clones were screened for recombination by long-range PCR.
Chimeras were generated from recombinant clones by injection into C57BL/6
blastocysts.

Olfactory bulb imaging. Awake in vivo imaging: Imaging was done in 7- to 8-
week-old naive male mice that were heterozygous for the OMP-GCaMP3 and
homozygous for the M72-RFP allele, and that had been implanted with chronic
optical imaging windows and head bars. Mice were first anesthetized with iso-
flurane (2–3%) in oxygen and administered buprenorphine (0.1 mg kg−1) as
analgesic; bupivacaine (2 mg kg−1) as a local anesthetic at the incision site; and
dexamethasone (2 mg kg−1) to reduce cerebral edema. The animal was secured in a
stereotaxic head holder (Kopf instruments) and the bone overlying the olfactory
bulbs was thinned to transparency using a dental drill. Two micro-screws were
placed into the skull to structurally support the head bar. A custom-built titanium
head bar (3 mm × 15 mm, <1 g) was attached to the skull using Vetbond cyanoa-
crylate glue and cemented in place using dental cement (Dental Cement, Pearson
Dental Supply). Black Ortho Jet dental acrylic (Lang Dental Manufacturing) was
extended from the head cap around the thinned bone forming a small chamber.
The area overlying the olfactory bulbs was covered with multiple thin layers of
prism clear cyanoacrylate glue (Loctite #411) as described11,13,34.

Following complete recovery from surgery, mice were placed on a water
restriction schedule (1 ml per day). After 7–10 days of water restriction, mice were
slowly habituated to the imaging setup where they were trained to lick for a water
reward. During imaging sessions, mice were positioned on a custom-built wheel
and secured with the head bar in a custom-built holder.

Light excitation was provided using a 200W metal-halide lamp (Prior
Scientific) filtered through standard filters sets for RFP (49008, Chroma) and green
fluorescent protein (GFP; 96343, Nikon). Optical signals for GCaMP were recorded
using a CCD camera (NeuroCCD SM256; RedShirtImaging) at 25 Hz with a ×4
temporal binning. Each recording trial was 16 s consisting of a 6 s pre-stimulus
interval, a 4 s odor pulse, and a 6 s poststimulus interval. Only one odorant per day
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was tested to avoid cross contamination of different odorants. Different
concentrations of the same odorant were interleaved with clean air trials to identify
potential contamination.

Response maps. Response maps were obtained by temporally averaging the
response signal over a 0.5 s window around the time of maximum response, and
subtracting a pre-stimulus response baseline (1.6 s window). For low concentra-
tions, stimuli were presented at least three times and averaged to obtain response
maps. Images were processed and analyzed in Neuroplex (RedShirtImaging) and
Image J (NIH) software.

Response amplitudes were measured from a region of interest drawn around the
M72 glomerulus in the RFP image. Only the first trial of each odor concentration
was used to obtain the response amplitude to avoid potential adaptation effects.

Implantation surgery. Mice were anesthetized using isofluorane gas anesthesia. A
diamond-shaped bar for head fixation37, a reference electrode, and a pressure
cannula for sniff recording6 were implanted. To implant the sniffing cannula,
which was a thin 8.5-mm-long stainless capillary (gauge 23, Small Parts capillary
tubing), a small hole was drilled in the nasal bone, into which the cannula was
inserted, fixed with glue, and stabilized with dental cement. The reference electrode
was implanted in the cerebellum. The mice were given at minimum 5 days after
surgery for recovery.

Setup and odor habituation. After recovery, mice entered a regime of water
restriction, with 1 ml administered every day. Five days into this regime, the mice
were placed in a head-fixation setup for lick training6,17,37. To reduce stress to the
animals and movement artifact during recordings, mice were positioned on a
running wheel. Mice could stand still or walk on the wheel as desired. The first few
sessions were brief (10–20 min) and served purely to acclimate the animals to head
fixation and the running wheel. Mice typically remained mostly quiescent after one
to two sessions of head fixation, after which lick training sessions began. A lick
spout was placed in front of the animal, which delivered a droplet of water every
time the animal licked it. Mice typically learned the water-rewarding nature of the
head-fix setup within one to three sessions. We then removed control of the water
delivery from the mouse and started delivering one out of seven odors in pseudo-
random sequence, with an average inter-stimulus interval of 8 s and stimulus

duration of 1000–4000 ms. A drop of water was delivered to the mouse auto-
matically every three to five odor presentations. Animals underwent three to five
sessions of odor exposure (200–400 trials each) of this type before recordings. This
procedure served several purposes: (i) it reduced the distress of mice in the setup;
(ii) it reduced the movement artifact during recordings; and (iii) it habituated the
animals to the set of odorants used in the experiment, thus eliminating any novelty
effects.

Water delivery. Water delivery was based on gravitational flow controlled by a
pinch valve (98302–12, Cole-Parmer) connected via Tygon tubing to a stainless
steel cannula (gauge 21, Small Parts capillary tubing), which served as a lick tube.
The lick tube was mounted on a micromanipulator and positioned near the
mouse’s mouth. The water volume was calibrated to give approximately 2.5 μl per
valve opening. Licks were detected by the closing of an electrical circuit through the
grounded mouse (the circuit was open until the mouse connected the metal can-
nula to ground).

Behavioral and stimulus delivery control. All behavioral events (odor and final
valve opening, laser stimulation, water delivery, and lick detection) were monitored
and controlled by a real-time (1 ms), Arduino platform-based, behavioral con-
troller box, developed at Janelia Farm Research Campus, HHMI. In each trial, the
behavioral controller read trial parameters, and sent trial results together with a
continuous sniffing signal to a PC running a custom-written Python program,
Voyeur (partially developed by Physion Consulting, Cambridge, MA). Voyeur is a
trial-based, behavioral experiment control and acquisition software that allows
behavioral protocols to compute parameters of trials and send them to embedded
real-time hardware systems. The Arduino code and Python application source is
available as a GitHub repository (search for Voyeur in GitHub). Every stimulus and
behavioral event had an associated trigger signal that was sent to the recording
system for precise synchronization with neural activity recordings.

Sniff recording. To monitor the sniff signal, the implanted sniffing cannula was
connected to a pressure sensor through an 8–12 cm-long polyethylene tube
(801000, A-M Systems). The pressure was transduced with a pressure sensor
(24PCEFJ6G, Honeywell) and homemade preamplifier circuit. The signal from the
preamplifier was recorded together with electrophysiological data on one of the
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data acquisition channels. The timing of the pressure signal was calibrated with a
hot wire anemometer (mini CTA 5439, Dantec Dynamics, Denmark) as in Shus-
terman et al.6. The time differences between pressure signal and the flow signal
during calibration did not exceed 2–3 ms. The cannula was capped when not in
use.

Light stimulation. Light stimulation was produced via a 100 µm multimodal fiber
coupled to a 473-nm diode laser (model FTEC2471-M75YY0, Blue Sky Research).
The end of the fiber was cut flat and polished. The light stimulus power at the open
end was measured by a power meter (Model, PM100D, Thorlabs), and calibrated to
adjust the amplitude of the voltage pulses sent to the laser, to achieve a consistent
power output across experiments.

Odor delivery. For odor stimulus delivery for electrophysiological experiments, we
used an eight-odor air dilution olfactometer. Approximately 1 s prior to odor
delivery, a stream of nitrogen was diverted through one of the odorant vials at a
rate between 100 and 10 ml min−1, and then merged into a clean air stream,
flowing at a rate between 900 and 990 ml min−1, thus providing 10- to 100-fold air
dilution. Gas flows were controlled by mass flow controllers (Alicat MC series) with
0.5% accuracy. The odorized stream of 1000 ml min−1 was homogenized in a long
thin capillary before reaching the final valve. Between stimuli, a steady stream of
clean air with the same rate flowed to the odor port continuously, and the flow
from the olfactometer was directed to an exhaust. During stimulus delivery, a final
valve (four-way Teflon valve, NResearch, SH360T042) switched the odor flow to
the odor port, and diverted the clean airflow to the exhaust (Supplementary Fig. 7).
Temporal odor concentration profile was checked by mini photoionization detector
(PID) (Aurora Scientific, model 200B). The concentration reached a steady state
95–210 ms (depending on a specific odor) after final valve opening. To minimize
pressure shocks and provide temporally precise, reproducible, and fast odor
delivery, we matched the flow impedances of the odor port and exhaust lines, and
the flow rates from the olfactometer and clean air lines. As sniff activity was
monitored in real time, the final valve was activated at the onset of exhalation, so
that the odor reached steady-state concentration before the next inhalation. At the
end of the odor delivery (duration 1–4 s) the final valve was deactivated, and the
nitrogen flow was diverted from the odor vial to an empty line. Inter-odor delivery
interval was 7–14 s, during which clean air was flowing through all Teflon tubing.

All odorants (see Supplementary Table 1, purchased from Sigma-Aldrich) were
diluted in mineral oil and stored in liquid phase in dark vials. The level of dilution
of each odorant was estimated to achieve equal concentrations for all odorants of
0.075+ 0.01 µM after 10-fold air dilution11,13,38. Each vial contained 5 ml of
mineral oil with diluted odorant and 45 ml of headspace.

For concentration series experiments for two odorants, 2HA and MEN, we
changed the dilution level across approximately two orders of magnitude. The final
desired concentrations were calibrated daily, immediately before the experiment
began, and were achieved by tuning the air dilution and matching PID signals
between vials with different liquid dilutions.

The odor delivery system for imaging experiments was almost identical.
However, due to differences in dilution procedure the matching concentration for
2HA was 2× higher in the imaging setup than in electrophysiological experiments,
and for MEN the matching concentration was 1.8× lower.

Olfactory bulb electrophysiology. MT cell spiking activity was recorded using 16-
or 32-channel Si-probes (NeuroNexus, model: a2x2-tet-3mm-150-150-121(F16),
Buzsaki32(F32)). Cells were recorded in the dorsal mitral cell layer. The identity of
MT cells was established on the basis of criteria formulated in previous work10,39

(while we cannot rule out granule cells, it is unlikely that we recorded from them
with our extracellular technique, based on their location and significantly smaller
soma size29). The data were acquired using a 32-channel data acquisition system
(HHMI Janelia Farm Research Campus, Applied Physics and Instruments Group,)
with widely open broadband filters and sampling frequency of 19 531 Hz.

Recordings. Initial preparation: At the beginning of a recording session, a mouse
was anesthetized with gas isofluorane and placed in the head-restraint setup. The
running wheel was locked and a heating pad was placed under the animal. The
lateral M72 glomerulus in either the right or left olfactory bulb was located using a
fluorescent dissecting microscope, and the overlying bone was thinned. The open
end of the fiber used for optical stimulation was positioned above the glomerulus,
making contact with the thinned bone but without pressing on it.

A craniotomy was made just medial to the glomerulus, the dura removed, and
the silicon probe was inserted at an angle (25–45° from vertical), driven by a digital
micromanipulator (MP-285, Sutter Instruments). The insertion point was chosen
so that at a depth of ~300–500 µm from the brain surface, the tip of the most
posterior shank in the probe would be roughly in line with the glomerulus in the
medial/lateral axis. The anterior/posterior position was varied (following
anatomical data from Liu and Urban, unpublished).

Search for MT cells putatively connected to M72 glomerulus: The anesthesia
was removed and once the animal awakened, the probe was lowered to the external
plexiform layer and advanced at ~5 µm intervals. At each position, a light pulse
(0.5–15 mW power, 1–2 ms duration) was delivered to the glomerulus, triggered on

the onset of inhalation. The peri-stimulus activity on all sites of the Si-probe was
monitored. A spiking increase with short latency after the light pulse (below 20 ms,
typically 5–10 ms) indicated the presence of a cell receiving input from the
stimulated glomerulus. If no light-responsive cells were found upon reaching a
depth of ~700–800 µm, the electrode was raised, reinserted, and the search
repeated.

Recording odor responses: After locating a putative M72-MT cell, odor
recording session was initiated. Multiple odorant stimuli with fixed concentrations
or two odorant stimuli with multiple concentrations were presented pseudo-
randomly with 7–14 s inter-trial interval. After every 2–4 odor trials, a light pulse
was delivered to re-confirm the presence of the M72-MT cell. For each odor
stimulus, 20–35 trials were collected.

All sites of the Si-probe were used to monitor activity of other, non-light-
responsive units, during M72-MT recording sessions. In addition, to increase the
pool of non-M72-MT cell (other cells), we anesthetized the animal again,
performed a new craniotomy, and placed the probe at a new site, usually further
anterior, and performed recordings with the same stimulus set.

Spike extraction. Acquired electrophysiological data were filtered and spike sor-
ted. We used the Klusta suite software package for spike detection and spike
sorting6,40 and software written by E.M.A. and D.R.

Identification of M72-MT cells. We defined MT cells functionally connected to
the M72 glomerulus as units that displayed an excitatory, short-latency response to
light stimulation (1 ms, 5–15 mW) of the ChR2-expressing M72 glomerulus. While
in general it is difficult to establish monosynaptic connectivity using optogenetic
stimulation41, we capitalized on the known anatomy of the olfactory bulb: MT cells
receive excitatory input from a single glomerulus, and interactions between
MT cells connected to different glomeruli are inhibitory3,42.

We compared the PSTHs of MT cells with and without light stimulation.
PSTHs with 4 ms temporal bins were referenced to the onset of inhalation at the
onset of inhalation, when the light stimulation was presented. The MT cell was
considered light responsive if light-evoked activity exceeded activity in the no-light
condition by at least one standard deviation, in at least one 4 ms temporal bin,
within 50 ms after the onset of the light pulse. The latency was estimated as the first
time point when such a deviation occurred. The distribution of latencies is shown
in Fig. 1e. The majority of the responses (1.5 interquartile range (IQR)) occurred
with latencies shorter than 22 ms. Two cells responded with latencies larger than
1.5 IQR, 22 ms, and were removed from the pool of cells used in this study.

Recording of generic MT cells. Most generic cells were recorded simultaneously
with the M72-MT cells, and identified as the ones that did not respond to light
stimulation of the M72 glomerulus. Note that the distance between the shanks
ranges from 150 to 600 μm, and that the range of inhibitory connections within the
MT cell networks has been found to be spatially sparse and long and heterogeneous
in range. Occasionally, penetrations were done at a random location.

Estimation of unit depth. We identified the group of sites of the array in which the
unit was detected, and estimated its centroid. We then computed its distance to the
tip of the probe, corrected by the angle of insertion to project to the dorsal/ventral
axis. The position of the tip of the probe (dorsal/ventral) was kept track of and
recorded during the experiment, relative to the surface of the brain at insertion
point.

Estimation of mean firing rate and preferred phase of spontaneous spiking.
We computed the mean firing rate of the cell across sniff cycles prior to odor
presentation. We estimated the preferred phase of the spontaneous firing as the
time when the baseline (no odor) snifflet rate was maximum.

Snifflet analysis of the response profiles. We built probabilistic models to
describe the encoding of odor stimuli by MT neurons. These models take the form
of Generalized Linear Models43,44, and describe a generative model for the spiking
data. For a given cell and a given odor (or the baseline condition, with no odor
presentation), we assumed that the firing rate of the cell changes over the course of
the sniff according to a specific temporal pattern, which we call a “snifflet”. Given
that the observed spiking patterns during individual sniffs depend on the inhala-
tion duration (Fig. 2d), we built this dependency into the model. In particular, we
assumed that during an individual sniff, the firing rate is generated by temporally
dilating the snifflet by a sniff-dependent factor. The value of this dilation factor, α,
depends on the duration of the inhalation phase of that sniff. More formally, we
write the rate r(t) as

r tð Þ ¼ exp
Xn

i¼1

ψ αi t � τið Þð Þ � Π τi�tτiþ1ð Þ
" #

where ψ(t) is the odor-evoked snifflet, αi is the temporal dilation factor for the ith

sniff, τi is the onset time of the ith sniff, n is the total number of sniffs and Π �ð Þ is an
indicator function, such that the response pattern is reset at the onset of the next
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sniff. Removing the indicator function, so that snifflets from successive odors
overlap, does not qualitatively change any of the major results in the main text.

The model requires a choice of dilation factors, αi, for each sniff. Motivated by
the work of Shusterman et al.6, we fixed the dilation factors as the reciprocal of the
inhalation durations, αi ¼ 1=dinhi , where dinhi is a duration of the inhalation phase
of the sniff cycle. This produced better model fits than alternative choices, such as
dilating with the reciprocal of the full sniff durations, separate dilation for the
inhalation and rest-of-sniff components of the response, or fixing αi= 1 (i.e., no
temporal dilation) throughout (Supplementary Fig. 4).

The free parameters of the model are the snifflet time course, ψ(t), for each cell
and odor. We parameterized the snifflets as a length-KD vector (for integers K and
D), such that the first D components represent the evolution of the cell’s firing rate
during the inhalation period, and the remaining (K− 1)D components represent
the evolution of the cell’s firing rate during the remainder of the sniff. The integer
D thus defines the sampling resolution for the snifflet, and K the relative duration
of post-inhalation response to model. We use D= 30 and K= 4 in the main text,
but other values produced similar results.

We also placed priors over the components of ψ(t), to constrain the snifflets
would evolve smoothly in time. We used the Automatic Smoothness
Determination prior45 and learned the hyper-parameters via evidence
optimization16,46. Including the prior dramatically increased the quality of model
predictions on held-out data (Supplementary Fig. 4).

We solve for ψ(t), by maximizing its posterior probability. Given a point
estimate of the hyper-parameters, and using a fixed scheme for determining α
(above), this is a convex problem15, which we solve using conventional Newton
methods. We approximate the posterior on ψ(t) using a Laplace approximation.
For the purposes of illustration, we show the snifflets in the main text in their
exponentiated form (i.e., in terms of firing rate, rather than log firing rate). Where
error bars on individual snifflets are shown (Fig. 2e), the shaded areas illustrate
only the marginal variance of the approximate posterior at each time point, rather
than the joint covariance across time. Statistical comparisons between odor-evoked
and baseline snifflets (Figs. 4 and 5) were performed in log firing rate space; we
again consider only the marginal variance at each time point.

The snifflet model provides a parameterization of how inhalation duration (a
nuisance variable) affects spiking response, allowing us to factor this relationship
out from our results and study the differences across odors and cells. To verify that
our results did not depend on the particulars of the snifflet model, we fitted the
spiking data without adjusting for variations in sniff duration (Supplementary
Fig. 5).

Mouse strain availability. OMP-GCaMP3 and M72-RFP strains will be made
available through The Jackson Laboratory (Stock #029581 and #029637).

Code availability. Code developed for this work is available in the following github
repositories: https://github.com/admiracle/Voyeur (stimulus delivery system con-
trol); https://github.com/zekearneodo/ephys-tools (post-recording data prepara-
tion, pre-processing and initial sniff analysis); and https://github.com/
rabbitmcrabbit/snifflet (snifflet analysis).

Data availability. The electrophysiological dataset is available at https://doi.org/
10.6084/m9.figshare.5877474. The complete datasets generated and/or analyzed
during the current study are available from the corresponding author on reasonable
request.
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