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Abstract: Iron catalysts for ammonia synthesis/nanocrystalline iron promoted with oxides of potas-
sium, aluminum and calcium were characterized by studying the nitriding process with ammonia
in kinetic area of the reaction at temperature of 475 ◦C. Using the equations proposed by Crank,
it was found that the process rate is limited by diffusion through the interface, and the estimated
value of the nitrogen diffusion coefficient through the boundary layer is 0.1 nm2/s. The reaction rate
can be described by Fick’s first equation. It was confirmed that nanocrystallites undergo a phase
transformation in their entire volume after reaching the critical concentration, depending on the
active specific surface of the nanocrystallite. Nanocrystallites transform from the α-Fe(N) phase to
γ’-Fe4N when the total chemical potential of nitrogen compensates for the transformation potential
of the iron crystal lattice from α to γ; thus, the nanocrystallites are transformed from the smallest to
the largest in reverse order to their active specific surface area. Based on the results of measurements
of the nitriding rate obtained for the samples after overheating in hydrogen in the temperature
range of 500–700 ◦C, the probabilities of the density of distributions of the specific active surfaces
of iron nanocrystallites of the tested samples were determined. The determined distributions are
bimodal and can be described by the sum of two Gaussian distribution functions, where the largest
nanocrystallite does not change in the overheating process, and the size of the smallest nanocrys-
tallites increases with increasing recrystallization temperature. Parallel to the nitriding reaction,
catalytic decomposition of ammonia takes place in direct proportion to the active surface of the iron
nanocrystallite. Based on the ratio of the active iron surface to the specific surface, the degree of
coverage of the catalyst surface with the promoters was determined.

Keywords: iron catalyst; nitriding process; kinetics; morphology; ammonia

1. Introduction

Nanomaterials have been intensively studied in recent years in the field of nanotech-
nology, catalysis, medicine, and others [1–4]. Precise determination of particle or grain
size distribution (GSD) is of great importance to many industries, especially when dealing
with nanomaterials. It is related to the fact that physical (e.g., magnetic characteristics,
melting temperature, and absorption of electromagnetic waves) and chemical (obtaining
of new materials, activity, and selectivity of catalysts) properties of such materials are a
consequence of the size of the nanoparticles [3,5–12]. If so, providing only the mean value
of the nanocrystallite sizes is not sufficient to define the full characteristics of the substance
studied. This is crucial if we want to understand better surface phenomena occurring on
nanoparticles under process conditions, particularly in heterogeneous catalysis [13–29].
Catalyst testing techniques often deviate from the conditions under which the catalytic
processes are run. Therefore, in situ methods of examining catalysts are especially useful.
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Processes taking place on the iron catalyst have been studied extensively (nanoFe-
NH3-H2 system) [13–16]. Catalyst for the synthesis of ammonia, which, in addition to iron,
contains promoters, was tested in terms of understanding the mechanism of synthesis and
decomposition of ammonia [13,14,30,31], as well as with the initial stage of the nitriding
process [32–34]. As a result of these studies, it was found that measuring the nanocrystallite
size distribution is essential for proper examination of a Fe-NH3-H2 system because of its
nanocrystalline structure.

Based on the kinetic studies of the nitriding process of the iron catalyst, i.e., the system
of parallel reactions—nitriding and catalytic decomposition of ammonia [33,35]—, a model
of the reaction between the nanocrystalline solid phase and the gas phase was developed—
a model of the reaction in the adsorption range [34,36]. It was found that nanocrystallites
of α-Fe transform to γ’-Fe4N nitride phase in all their volume, in order, according to their
size, from the smallest to the largest [34,36].

Based on the above research, two methods (chemical ones) were developed to measure
the iron nanocrystallites size distribution.The first way is to measure (by XRD) the average
nanocrystallite size (of the substrate or the product) [37]. The second option uses the
measurement of the chemical reaction rate corresponding to given conversion degrees,
α [38].

It was determined [32,39–42] that during nitriding processes of iron catalyst for am-
monia synthesis (using hydrogen-ammonia gaseous mixtures with increasing nitriding
potentials; temperature is constant) stationary states were established at a given nitriding
potential, P0. In these stationary states, the parallel reaction of catalytic decomposition
of ammonia proceeds at a constant rate, and the nitriding reaction rate equals zero at
P(t = ∞) = P0.

The P0 potential depends on the size of nanocrystallites [41,43]. Despite the multiple
repetition of the nitriding α→ γ’ and reduction γ’→ α cycles at high temperatures, the
structure of the catalyst does not change. As the nitriding potential increases or decreases,
nanocrystallites undergo a phase transformation, from the largest to the smallest [44,45].
In the nitriding reaction and reduction of nitrides in chemical equilibrium states, the
phenomenon of hysteresis was demonstrated [39], with the nitriding potential being
greater during the nitriding process than during the reduction process.

At a constant potential, the α-Fe(N) nanocrystallites can be in equilibrium with the
γ’-Fe4N nanocrystallites, which cannot be explained on the basis of the Lehrer diagram [46].
The phenomenon was explained by taking into account an additional parameter in the
Gibbs phase rule—the size of nanocrystallites [39,44,45].

Using the above findings, a third method (also chemical) for measuring the size
distribution of nanocrystallites was invented [47]. This method is based on determining
the change in the degree of reaction (corresponding to values of the gas phase chemical
potential) in the stationary states. Relative size distribution is determined. When the size of
the smallest or the largest nanocrystallite (using SEM, TEM, etc.) or the average crystallite
size (XRD), or specific surface area (BET), are determined, it is then possible to determine
the real nanoparticles size distribution of the sample tested.

The aim of the work was to develop a reaction model taking into account the morphol-
ogy of catalysts and the degree of surface coverage with promoters, which could be used
to describe the kinetics of ammonia decomposition. Based on this model, a new method
for the characterization of iron catalysts allows for determination of the probability of
nanocrystallite distribution density (PDF) according to their active surface area under the
conditions of chemical reaction.

2. Experiment

A pre-reduced iron catalyst for ammonia synthesis was used in the experiments.
Chemical composition of catalyst samples was determined by Inductively Coupled Plasma
method (ICP-OES, spectrometer Perkin Elmer, type Optima 5300DV). It was found that the
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catalyst, apart from metallic iron, consisted of promoters in an amount of 3.3 wt.% Al2O3,
2.8 wt.% CaO, 0.7 wt.% K2O.

Process of reducing a passive layer of the catalyst, as well as heating the catalyst under
reducing conditions and nitriding were carried out in a differential tubular reactor equipped
with a system, enabling to conduct thermogravimetric measurements (with an accuracy
of 1 × 10−4 g) and gas phase chemical composition analysis (hydrogen concentration in
a gas phase was determined with an accuracy of 0.02 vol. %) [11]. Gas directed to the
katharometric analyzer was taken from points in the immediate vicinity of the catalyst bed.
Ammonia concentration in the gas phase was calculated based on a reactor mass balance.
Reactant gas flow rates were determined by electronic mass flow controllers. Samples of
ca 1 g with a grain size in the range of 1.0–1.2 mm were placed as a single layer of grains
in a platinum basket hanging on the arm of a thermobalance. During the experiments,
conditions for the process taking place in the kinetic region of the reaction are met.

During the reduction of a passive layer of the catalyst, the reactor was heated to a
temperature of 500 ◦C at the rate of 10 ◦C min−1 with a hydrogen flow of 150 cm3 min−1.
At the temperature of 500 ◦C, the weight of the catalyst stabilized and did not change, even
after increasing the process temperature.

The reduced sample was nitrided at 475 ◦C with ammonia (200 cm3 min−1; 100% of
ammonia at the reactor inlet) until the γ’-Fe4N nitride phase was obtained. The nitride
was then reduced and the sample overheated at 550 ◦C, 600 ◦C, 650 ◦C, and 700 ◦C
sequentially for ca. 17 h under constant flow of hydrogen. After each annealing at a
specified temperature, the sample was nitrided at 475 ◦C. After the last nitriding, the
sample was reduced at the process temperature, and the specific surface area was measured
using BET method.

The aforementioned processes were carried out in an identical manner, periodically
determining its specific surface area set at the aforementioned temperatures.

In order to check the structure stability, the samples were reduced and annealed at the
temperature of 700 ◦C for 17 h, then tempered for 50 h at 475 ◦C, and the specific surface
area was measured.

BET measurements were carried out on an automated AutoChem II 2920 apparatus,
Micromeritrics, Norcross, GA, USA. Based on the measurements of the specific surface
area, it was found that, after the structure was established at a given temperature, it was
stable up to that temperature. The formation process of a structure at a given temperature
is irreversible.

3. Results

Figure 1 shows an example of the measurement of changes in nitrogen concentration
in a solid phase and hydrogen concentration in a gas phase in the nitriding process of
nanocrystalline iron with ammonia at 475 ◦C. The vertical lines indicate the reaction times
of the smallest and largest iron nanocrystallites in the catalyst sample.

Figure 2 shows the time after which, in the gas phase, the minimum nitriding potential,
P0, is reached, at which the nitriding of the smallest iron nanocrystallites begins in the
samples reduced and annealed in hydrogen in the temperature range of 500–700 ◦C.
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begins in the samples reduced and heated in hydrogen in the temperature range of 500–700 ◦C.

4. Discussion

Phase transition of an individual α-Fe(N) nanocrystallite is an adiabatic, isobaric, and
isosteric process, without nanocrystallite mass and energy exchange with the environment.
With change in free enthalpy of phase transition, it is compensated by changes in free en-
thalpy related to nitrogen sorption in iron nanocrystallites and change in surface energy of
iron nanocrystallite. At xN,i

s = Ai = Sa,i/Vi [nm−1] (where Ai—active specific surface of i-th
single nanocrystallite [nm−1], Sa,i—active surface area [nm2], Vi—volume of a nanocrys-
tallite [nm3]) on α-Fe(N) phase, there is a phase change α-Fe(N)→ [γ’]*-Fe4-xN (where
x—defects concentration). In the phase transformation, the segregation enthalpy changes,
and the chemisorbed nitrogen dissolves in the volume of [γ’]*-Fe4-xN nanocrystallite and
the surface concentration xN,i

s → 0.
Change in the deformation potential of the crystal lattice related to the critical con-

centration of nitrogen in iron of saturated α-Fe(N) with concentration xN,i
b,α,cri to the

unsaturated phase [γ’]*-Fe4-xN indicates by how much the energy of a single nanocrys-
tallite must increase, so that it can undergo the phase transition. The energy is supplied
for the system with the increasing nitriding potential of a gas phase. Nanocrystallites
with the largest size (the smallest Ai) show the lowest energy barrier [44], so that they
undergo the phase transition at lower nitriding potentials of gas phase. This indicates
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the direction of the nitriding reaction, which occurs in the order from the largest to the
smallest crystallites (from the smallest to the largest values of Ai) with gradually increasing
nitriding potential of gas phase when P(t) ≈ P0(Ai). For a given nitriding potential, the
surface of all nanocrystallites is covered to the same extent. However, nanocrystallites will
differ in volume and, therefore, nitrogen concentration in volume.

Total change in the Gibbs energy of the Fe-N system, ∆G, is zero:

∆GFe,i
b,α-[γ]* + ∆GN,i

b + ∆GN,i
s + ∆GFe,i

s = 0, (1)

where:

1. ∆GFe,i
b,α-[γ]*—change in free enthalpy of crystal lattice of phases α-Fe(N)→ [γ’]*-

Fe4-xN,
2. ∆GN,i

b—change in free enthalpy of nitrogen dissolved in a volume of iron nanocrys-
tallite,

3. ∆GN,i
s—change in free enthalpy of nitrogen chemisorbed on α-Fe(N) nanocrystallite

surface, and
4. ∆GFe,i

s—change in surface energy of iron nanocrystallite at the transformation, se-
lecting chemical potentials of nitrogen and iron at a temperature 475 ◦C as reference
conditions.

For a single i-th iron nanocrystallite, the equation describing the nitriding reaction
rate can be written as follows:(

dxb
N(t)
dt

)
i

= AiP(t)k0 exp
(
−Ea

RT

)
, (2)

where: xb
N(t)—averaged nitrogen concentration in the volume of nanocrystalline, t—time,

k0—pre-exponential coefficient, Ea—activation energy of chemical reaction, R—gas con-
stant, and T—temperature.

The rate of the chemical reaction in ammonia–nanocrystalline α-iron system can be
described by a general equation that takes into account the influence of three parameters
on the course of the chemical reaction: temperature, chemical potential of the gas phase,
and nanocrystallite specific active surface area distribution:(

dxb
N(t)
dt

)
i

=
∂xb

N(t)
∂T

dT
dt

+
∂xb

N(t)
∂P

dP
dt

+
∂xb

N(t)
∂Ai

dAi

dt
. (3)

Diffusion coefficient, D, does not depend on the concentration of absorbate, and its
value can be expressed by the relationship:

D = D0 exp(−Ea
diff/RT), (4)

where: D0—pre-exponential coefficient, and Ea
diff—activation energy of diffusion process.

From Equations (2) and (3), after taking into account Equation (4), the relationship
follows:(

dxb(t)
dt

)
i

= AiD0 exp

(
−Ediff

a
RT

)
Ediff

a

RT2 P
dT
dt

+ Ai
dPmax

dt
+ D0 exp

(
−Ediff

a
RT

)
P

dA
dt

. (5)

The average concentration of the solute in the entire volume of a single nanocrystallite
during the reaction with the gas phase can be determined using the following equation (in
initial conditions, the concentration in nanocrystallite volume is 0, and the concentration
on its surface is a function of time) [48]:
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(
xb(t)

Ai

)
i

= 1− 3D
v

Vr
r2

max
exp

(
− v

Vr
t
)1−

( v
Vr

r2
max

D

)1/2

cot

( v
Vr

r2
max

D

)1/2
+

6 v
Vr

r2
max

π2D

n

∑
n=1

exp
(
−Dn2π2t/r2

max

)
n2
(

n2π2 − v
Vr

r2
max/D

) , (6)

assuming that the adsorbate concentration in the gas phase, xN
g(t), varies according to the

leaching model with perfect mixing:

P(t) = xg
N(t)= xg

N,0

[
1− exp

(
− v

Vr
t
)]

, (7)

where: v—gas flow rate, Vr—reactor volume, xg
N,0—maximum concentration in the gas

phase, and adsorbate surface concentration changes over time according to:

ln xN
s = Kad lnP ≈ ln A. (8)

Calculation results derived from Equation (6), for two exemplary iron nanocrystallites
of 10 nm (Ai = 0.15 nm−1) and 40 nm in radius (Ai = 0.04 nm−1), with value of the parameter
v/Vr = 0.03 s, are shown in Figure 3 as the change of xb(t)/A depending on time. For
modeling, the value of coefficient of diffusion by the boundary layer of surface iron atoms
of D = 0.1 nm2/s was assumed so that the reaction rates during the experiment and in
modeling were the same. Figure 3 also shows the active specific surface area distribution
density probability in the catalyst heated at 500 ◦C.
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Figure 3. Change in the average concentration of nitrogen in the volume of iron nanocrystallites with
an active specific surface area 0.15 nm−1 (black color) and 0.04 nm−1 (red color) as xb(t)/A = f(t)
with a diffusion coefficient D = 0.1 nm2/s.

It can be assumed that, under the conditions of the nitriding process, when nitriding
potential P(t) >> P0, on the surface of iron nanocrystallites, the nitrogen concentration
is maximum and constant until the phase transformation of α-Fe(N) to nitride γ’-Fe4N.
Surface concentration xN

s will be constant and greater than the equilibrium concentration
determined by the equilibrium between the surface and the volume of the nanocrystallite.
Process rate is limited by diffusion through the boundary layer of surface iron atoms, and,
in volume of iron nanocrystallite, a constant level of nitrogen concentration xN

b is quickly
established at a constant maximum during the experiment gas phase nitriding potential.
The dependence of the nitrogen concentration in nanocrystallite volume on the process
time at a constant surface concentration of adsorbate, xN

s, is presented schematically in
Figure 4.
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and time at a constant surface concentration and with a diffusion coefficient of D = 0.1 nm2/s.

The rate at which iron nanocrystallite saturates with nitrogen depends on the dif-
ference in surface concentration and the concentration in volume of the nanocrystallite
according to Fick’s equation:d

(
xb

N(t)
Ai

)
dt


i

= D
(

xs
N,i − xb

N,i(t)
)
= D

(
Ai − xb

N,i(t)
)

. (9)

The total concentration of the absorbate in the volume of sample of nanocrystallites,
xb, for the dependence on temperature, chemical potential of the gas phase, and crystallite
size described by continuous functions is as follows:

xb
N,i(t) =

T∫
T0

P∫
P0

A∫
A0

(
dxb

N(t)
dt

)
i

dTdPdAi. (10)

In the range of one α phase, at constant temperature and at constant potential of the
gas phase, the averaged reaction rate can be written as:

(
∆xb

N(t)
∆t

)
i

= nb
N,iNi



xb
N∫

xb
N=0

(
dxb

N(t)
dt

)
i

nb
Fe,i∆ti

+ C1 + C2

, (11)

where: n—number of moles, Ni—number of nanocrystallites in the i-th fraction of nanocrys-
tallites in the sample, and C1, C2—constants taking into account the influence of tempera-
ture and gas phase potential on the reaction rate.

After substituting Equations (9)–(11), the average rate can be calculated as:
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(
∆xb

N(t)
∆t

)
i

= nb
N,iNi


D

xb
N∫

xb
N=0

(
xs

N − xb
N(t)

)
i
dt

nb
Fe,i∆ti

 = nb
N,iNi


D

xb
N∫

xb
N=0

(
A− xb

N(t)
)

i
dt

nb
Fe,i∆ti

. (12)

The concentration in volume of nanocrystallite during the process will change accord-
ing to the following equation:

xb
N(t) = xs

N − exp(−Dt). (13)

In the results obtained for two crystallites, the average rate of the absorption process
(Figure 5) was determined according to Equation (12).
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Figure 5. Process rates on two different crystallites with a specific active surface area 0.15 nm−1 (black

color) and 0.04 nm−1 (red color) as d
(

xb(t)
A

)
/dt = f(t) with a diffusion coefficient D = 0.1 nm2/s.

Figure 6 shows, schematically, changes in nitrogen concentration over time for nano-
crystallites with an active specific surface in the range of 0.04–0.15 nm−1.

In the kinetic region of chemical reaction, the critical concentration in volume of a
nanocrystallite with a larger active specific surface area will be achieved faster than in the
nanocrystallite with a smaller active specific surface, although, according to the results of
thermodynamic studies [44,45], the critical concentration for the latter nanocrystallite is
lower than for the first.

The measured reaction rate is the sum of the process rates on individual i-th nanocrys-
tallites in the sample:

dxb(t)
dt

= ∑i=max
i=min nb

i Ni

[
dxb(t)

dt

]
i

= ∑i=max
i=min nb

i Ni

[
dnb(t)

nb,α
i dt

]
i

= ∑i=max
i=min f(nASD)

[
dnb(t)

dt

]
i

. (14)

The actual system consists of a set of crystallites described by the distribution density
probability of their sizes characterized by the specific active surface area of the crystallite, A.
It was assumed in the paper that this is a bimodal distribution consistent with experimental
tests [33,38,47,49] and model calculations [44,45] for the nanocrystalline iron-ammonia-
hydrogen system.

In the nitriding process, catalytic decomposition of ammonia takes place parallel to
nitriding reaction. At high process temperatures, the surface diffusion rate is so high that,
in stationary states, the chemical composition of the surface does not depend on the size of
iron nanocrystallites.



Materials 2021, 14, 7229 9 of 14Materials 2021, 14, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 6. Changes in nitrogen concentration over time for nanocrystallites with active specific sur-
faces in the range 0.04–0.15 nm−1. 

In the kinetic region of chemical reaction, the critical concentration in volume of a 
nanocrystallite with a larger active specific surface area will be achieved faster than in the 
nanocrystallite with a smaller active specific surface, although, according to the results of 
thermodynamic studies [44,45], the critical concentration for the latter nanocrystallite is 
lower than for the first. 

The measured reaction rate is the sum of the process rates on individual i-th nano-
crystallites in the sample: 

( ) ( ) ( ) ( ) ( ) =

=

=

=

=

= 







=








=












= maxi

mini
i

b
maxi

mini
i

αb,
i

b

i
b
i

maxi

mini
i

b

i
b
i

b

dt
tdnnASDf

dtn
tdnNn

dt
txdNn

dt
txd . 

(14)

The actual system consists of a set of crystallites described by the distribution density 
probability of their sizes characterized by the specific active surface area of the crystallite, 
A. It was assumed in the paper that this is a bimodal distribution consistent with experi-
mental tests [33,38,47,49] and model calculations [44,45] for the nanocrystalline iron-am-
monia-hydrogen system. 

In the nitriding process, catalytic decomposition of ammonia takes place parallel to 
nitriding reaction. At high process temperatures, the surface diffusion rate is so high that, 
in stationary states, the chemical composition of the surface does not depend on the size 
of iron nanocrystallites. 

In the stationary states (the composition of the gas and solid phases does not change 
with time, and the degree of nanocrystalline substance conversion is a function of temper-
ature and chemical potential of the gas phase), the rate of ammonia decomposition de-
pends on the temperature, nitriding potential of the gas phase, and degree of nitriding of 
the nanocrystalline iron sample. On the mixture of phases α-Fe(N) and nitride γ’-Fe4N, 
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surfaces in the range 0.04–0.15 nm−1.

In the stationary states (the composition of the gas and solid phases does not change
with time, and the degree of nanocrystalline substance conversion is a function of tempera-
ture and chemical potential of the gas phase), the rate of ammonia decomposition depends
on the temperature, nitriding potential of the gas phase, and degree of nitriding of the
nanocrystalline iron sample. On the mixture of phases α-Fe(N) and nitride γ’-Fe4N, the
reaction rate of the catalytic decomposition of ammonia is described by an empirical linear
equation [11,50]:

rd = 6.2·10−6 − 2.3·10−6 lnP = k Kd Sa (ϑ − lnP), (15)

which, assuming ϑ→ 0 at P→ 0, can be transformed into the form:

rd = −k Kd A V lnP = (k Kd/R T) A V µN
g, (16)

where: k—empirical reaction rate constant of catalytic decomposition of ammonia, Kd—
equilibrium constant of the catalytic decomposition of ammonia, Sa—total active surface of
all nanocrystallites, A—total active specific surface of all nanocrystallites, ϑ—maximum
active surface area at P→ 0, and µN

g—gas phase nitogen potential.
In order to determine the real, active specific surfaces (which depends on the condi-

tions of the recrystallization process), the degree of conversion in the catalytic decomposi-
tion of ammonia, αNH3, was calculated:

αNH3 =
F0H2 − xH2F0

F0NH3 xH2 − 1.5 F0NH3
, (17)

where: F0H2, F0NH3, F0—flow rates of hydrogen, ammonia, and summary gas stream,
respectively, at the reactor inlet, and xH2—hydrogen concentration in gas phase.
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Mole fraction of ammonia in the reaction mixture, xNH3,

xNH3 =
F0

NH3 − αNH3F0NH3

F0 + αNH3F0NH3
, (18)

was determined on the basis of the mass balance of the reactor in stationary states [50,51].
The rate of catalytic decomposition of ammonia, taking into account the degree of

ammonia conversion and the ammonia flow rate at the inlet to the reactor, F0NH3, was
calculated according to the following formula [50,51]:

rd = αNH3F0NH3. (19)

After comparing Equations (16) and (19) and using experimental data on active sites
concentration [11,52], the total active specific surface area of the samples of the iron catalyst
reduced and heated in hydrogen at different temperatures was determined, taking into
account the rate of catalytic decomposition of ammonia (Figure 7). Based on the ratio of
the active iron surface to the specific iron surface, the degree of coverage of the catalyst
surface with promoters was determined.
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Figure 7. Values of the active specific areas A calculated with the use of measurements of the catalytic
decomposition rates of ammonia and ratios of (A/S)T/(A/S)500 for samples reduced and annealed in
hydrogen at various temperatures in the range 500–700 ◦C as a function of the specific surface area S.

Morphology of nanocrystalline iron in the catalyst changes with the increase in the
temperature of reduction and annealing of the samples in hydrogen: both the specific
and active surface area decrease, and the proportion of the surface not taken up by the
promoters increases.

Nanocrystallites obtained at constant temperature and in different promoter potentials
PPR,1–PPR,2 are characterized by different specific surfaces, according to the conditions of
their synthesis (temperature and promoter potential), and may undergo a structure change
in result of recrystallization when the potential is reduced to PPR,3 due to decreasing the
potential or increasing the temperature. Mass of the recrystallizing nanocrystallites with
the greatest specific active surface, unstable at lower potentials, remains in the system.
However, the new active surface distribution will be narrower with a smaller mean value.
The total area of all nanocrystallites in the system, St, related to 1 mol of α-Fe phase will
be determined by the cumulative distribution function (CDF) assigned to the probability
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distribution characteristic of the nanocrystalline system under the given conditions of
potential P and temperature:

CDF =

Amax∫
Amin

1
σ
√

2π
exp

(
−(A−Am)2

2σ2

)
dA =

1
2

(
1 + erf

(Amax −Amin)−Am

σ
√

2

)
, (20)

where: Amin—specific active surface corresponding to minimum potential in the system,
Amax—specific active surface corresponding to maximum potential in the system, and
erf—Gauss error function.

Based on the measurements of the nitriding reaction rate of nanocrystalline iron heated
in hydrogen at various temperatures in the range 500–700 ◦C, the distribution density
probabilities of iron nanocrystallites with certain active specific surfaces in the tested
samples were determined (Figure 8)—Equations (9) and (11). The results of measurements
of the specific surface of samples annealed at different temperatures and the parameters of
model distribution density probabilities of nanocrystallites are presented in Table 1.

Table 1. Specific surfaces and parameters of two model Gaussian distributions that make up the total distribution
characterizing the samples reduced and heated in hydrogen at various temperatures in the range of 500–700 ◦C.

Heating
Temperature

◦C

Specific Surface Area
m2 g−1

The Time to Start the Transformation α→γ’
s

Nanocrystallite A Distribution Parameters

Peak No. 1 Peak No. 2

For the Nanocrystallite
with the Largest A

For the
Nanocrystallite with

the Smallest A

Sigma
nm

DN
nm

Amax

nm−1
Sigma

nm
DN
nm

Amin

nm−1

500 12 90

230

8 29 0.15

12 58 0.04

550 9 85 7.5 33 0.13

600 7 75 7 36 0.12

650 6 80 9 36 0.11

700 4 70 9 43 0.10

As a result of overheating, the smallest nanocrystallites transform into larger, stable
ones, whose active specific surface A is determined by the equilibrium established under
given conditions; therefore, the limit values of nanocrystallites with the largest active
specific surfaces Amax change in the range 0.15–0.10 nm−1. The size of larger than minimal
nanocrystallites remaining in the sample is not the result of the equilibrium state; only the
equilibrium between the promoters and the nanocrystallite surface will be established there,
but the S/V relationship of the nanocrystallites will not meet the equilibrium conditions [53].
The largest nanocrystallite in the catalyst does not change as a result of the overheating
process, and its active specific surface area Amin in each sample is 0.04 nm−1.
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5. Conclusions

Based on the results of measurements of the nitriding rate obtained for the samples
after the overheating in hydrogen in the temperature range of 500–700 ◦C, the distributions
density probabilities of the active specific surfaces of iron nanocrystallites of the tested
samples were determined. The determined distributions are bimodal and are described by
the sum of two Gaussian distribution functions, wherein the largest nanocrystallite in the
overheating process does not change, and the size of the smallest nanocrystallites increases
with the increase of the recrystallization temperature.

Parallel to the nitriding reaction, catalytic decomposition of ammonia takes place in
direct proportion to the active surface of the iron nanocrystallite. Based on the ratio of the
active iron surface to the specific iron surface, the degree of coverage of the catalyst surface
with promoters was determined.
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40. Moszyński, D.; Moszyńska, I. Phase transformations during nitriding of nanocrystalline iron. Przem. Chem. 2013, 92, 1332–1335.
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