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Abstract
Background: Intermittent preventive antimalarial treatment in infants (IPTi) is currently evaluated as a malaria control strategy.
Among the factors influencing the extent of protection that is provided by IPTi are the transmission intensity, seasonality, drug
resistance patterns, and the schedule of IPTi administrations. The aim of this study was to determine how far the protective
efficacy of IPTi depends on spatio-temporal variations of the prevailing incidence of malaria.

Methods: One thousand seventy infants were enrolled in a registered controlled trial on the efficacy of IPTi with sulphadoxine-
pyrimethamine (SP) in the Ashanti Region, Ghana, West Africa (ClinicalTrial.gov: NCT00206739). Stratification for the village
of residence and the month of birth of study participants demonstrated that the malaria incidence was dependent on spatial
(range of incidence rates in different villages 0.6–2.0 episodes/year) and temporal (range of incidence rates in children of different
birth months 0.8–1.2 episodes/year) factors. The range of spatio-temporal variation allowed ecological analyses of the
correlation between malaria incidence rates, anti-Plasmodium falciparum lysate IgG antibody levels and protective efficacies
provided by IPTi.

Results: Protective efficacy of the first SP administration was positively correlated with malaria incidences in children living in
a distinct village or born in a distinct month (R2 0.48, p < 0.04 and R2 0.63, p < 0.003, respectively). Corresponding trends were
seen after the second and third study drug administration. Accordingly, IgG levels against parasite lysate increased with malaria
incidence. This correlation was stronger in children who received IPTi, indicating an effect modification of the intervention.

Conclusion: The spatial and temporal variations of malaria incidences in a geographically and meteorologically homogeneous
study area exemplify the need for close monitoring of local incidence rates in all types of intervention studies. The increase of
the protective efficacy of IPTi with malaria incidences may be relevant for IPTi implementation strategies and, possibly, for other
malaria control measures.
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Background
Effective antimalarial control strategies for young children
in Africa must urgently be improved, as this group is at
highest risk of morbidity and mortality due to Plasmodium
falciparum malaria [1,2]. In most parts of sub-Saharan
Africa, individual control measures concentrate on the
reduction of parasite transmission through insecticide-
treated bed nets and treatment of acute malaria episodes
[3], the latter often being inappropriate due to increasing
parasite drug resistance [4,5]. In addition to established
control measures [6], novel approaches comprise pre-
erythrocytic stage vaccines and the concept of "intermit-
tent preventive treatment in infants" (IPTi) [7,8].

IPTi essentially exerts therapeutic and prophylactic effects
of antimalarial drugs administered at intervals short
enough to prevent disease, but long enough to allow for
the development of protective immunity [9]. However,
the exact mechanisms of protection are still not clear. It
has been assumed that an optimal drug application sched-
ule depends on the half-life of the antimalarial drugs
used, the extent of current parasite drug-resistance, the
transmission intensity, and the incidence of malaria epi-
sodes [10].

The IPTi application schedule that was originally evalu-
ated in Tanzania was based on weight-adapted single-
dose sulphadoxine-pyrimethamine (SP) and was prag-
matically linked to the expanded programme on immuni-
zation (EPI) recommended by WHO, with vaccinations at
months 2, 3 and 9 [8]. In that study, IPTi was 59% effec-
tive in reducing malaria episodes in an area with an inci-
dence rate (IR) of 0.43 per person-year. In subsequent
trials performed in Northern Ghana and Mozambique,
protective efficacies were 24.8% (IR 1.02) and 22.2% (IR
0.55), respectively [11,12]. So far, studies modelling the
impact of the malaria incidence on the protection that is
provided by IPTi are not available.

The linear regression model presented here makes use of
data of a recent controlled trial on SP-based IPTi per-
formed in Ghana. The overall protective efficacy in this
trial was 20.3% (IR 1.20) and decreased with the age of
study participants [13]. The study presented here aims to
determine the influence of spatio-temporally different
malaria incidences on the efficacy of IPTi with SP in an
ecological analysis.

Methods
Study area
The trial was conducted from January 2003 to September
2005 in the Ashanti Region, Ghana, West Africa, in nine
neighboring villages of the rural Afigya Sekyere district.
The district occupies an area of 714 km2 in the forest belt.
Geographically, the study area is homogeneous [14]. All

distances between villages are < 15 km with altitude levels
between 300 and 500 metres above the sea level. Temper-
ature varies between 20.4°C and 33.5°C while monthly
rainfall ranges from 15 mm (January) to 214 mm (June)
with similar fluctuation in all villages. The area is holoen-
demic for P. falciparum malaria with perennial transmis-
sion and seasonal peaks (high transmission from May to
October) [15]. Malaria vectors are mosquitoes of the
Anopheles gambiae complex and Anopheles funestus. The
peak entomological inoculation rate (EIR) of P. falciparum
is > 100 infectious bites per individual in October. While
chloroquine was the first-line drug for treatment of
uncomplicated malaria in Ghana at the beginnning of the
study, the Ghana Health Services has recommended a
three-day regimen of amodiaquine-artesunate since
March 2003. Plasmodium falciparum resistance against
chloroquine and SP in the study area is high [16].

Study design
One-thousand seventy infants at the age of three months
(tolerance of four weeks accepted) with permanent resi-
dence in one of the villages under survey were recruited
throughout the year 2003 [13]. In average 89 infants
(range 59–110) were enrolled monthly and randomized
to receive either a single-dose of 250 mg sulphadoxine
and 12.5 mg pyrimethamine or placebo (verum drug and
placebo provided by Roche, Basel, Switzerland). IPTi-
treatment doses were given at the age of 3, 9 and 15
months (IPTi-1, IPTi-2, IPTi-3, respectively). Monthly fol-
low-up visits were made over a period of 21 months until
the age of 24 months. A structured questionnaire and a
physical examination were completed and documented
on each consultation. Clinical malaria episodes were
defined as events of fever (rectal body temperature ≥
38.0°C or fever reported to have occurred during the pre-
ceding 48 h) together with asexual P. falciparum parasitae-
mia (> 500 parasites/µl).

Examination of blood films followed quality-controlled
standardized procedures. Briefly, films where air-dried,
Giemsa-stained and independently read twice by two lab-
oratory technicians by light microscopy. Parasitaemia lev-
els were determined by scoring the number of asexual
stage parasites per 200 leukocytes. If less than 10 parasites
per 200 leukocytes were counted, the parasitaemia level
was related to 500 leukocytes. Parasite densities were con-
verted to the number of parasites per µL of blood, assum-
ing 8,000 leukocytes/µL. Blood films were read again in
case of ambiguities of parasite positivity/negativity, para-
sitaemia levels (ratio > 3), or of the parasite species. The
final parasitaemia used for further statistical analyses was
the median parasitaemia of all readings that were rated
positive.
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IgG antibody levels against crude P. falciparum lysate were
measured by enzyme linked immunosorbent assays
(ELISA) in all participants who completed follow-up as
described in detail previously [17]. The parasite lysate
fraction used as antigen was prepared from cultures of
infected erythrocytes isolated from children with severe
malaria living in the same malaria endemic region and
results were expressed in Relative Units (RU) of IgG anti-
body levels.

Ethical considerations
Before enrolment of participants written or thumb-
printed (in the presence of an unbiased witness) parental
consent was obtained. All clinical investigations within
the core study were conducted according to the principles
expressed in the Declaration of Helsinki. The protocol was
approved by the Committee of Human Research, Publica-
tions and Ethics, School of Medical Sciences, Kwame
Nkrumah University of Science and Technology, Kumasi,
Ghana. The trial was registered at Clinical Trial Registra-
tion System with the number NCT00206739.

Statistical analysis
Data from structured questionnaires and forms were
entered within five days after each visit into a database
(4th Dimension, Paris, France). Data were cross-checked
by a study physician before files were locked. All informa-
tion on participants and their parents was strictly confi-
dential. Copies of all data and the original source
documents were retained. Analyses were performed with
the STATA/SE software, version 9.2 (College Station, TX,
USA).

Malaria incidence rates were calculated for children of the
placebo group for the period of one year, beginning at the

time of recruitment. Children were not rated at risk for
malaria for 21 days after preceding malaria episodes or
after antimalarial treatment. Protective efficacy was calcu-
lated for the period beginning at recruitment and ending
three months after IPTi-3, or, for time stratification, for
periods of six months after each SP administration. Pro-
tective efficacy against multiple malaria episodes was
determined by Poisson regression and defined as one
minus rate ratio.

Time-dependency of protective efficacy was assessed by
tests on violation of proportional hazards assumptions
which were graphically displayed in log-minus-log plots
for each category of a nominal covariate versus log(analy-
sis time) and formally tested by Schoenfeld residuals [18].
A multivariate Poisson regression model with time-
dependent covariates defined by six-months periods after
each IPTi dose was generated, and effect modification of
protective efficacy with time strata was evaluated by log-
likelihood tests.

Malaria incidence rates and protective efficacies were strat-
ified for the month of birth and the village of residence of
participants. Incidence rates were plotted against the pro-
tective efficacy or against IgG antibody levels of the same
stratum and the unweighted regression coefficient was cal-
culated.

Results
Basic data
The age distribution, sex ratio, number of parasitaemic
infants at recruitment and the extent of bed net usage did
not differ significantly between the treatment and the pla-
cebo group (Table 1).

Table 1: Characteristics of study participants

Characteristic Sulphadoxine-pyrimethamine
n = 535

Placebo
n = 535

p†

Sex, no.
Male 264 (49.3%) 272 (50.8%) 0.63
Female 271 (50.7%) 263 (49.2%)

Age in weeks at recruitment, mean (SD)
Age at IPTi-1* 12.3 (± 1.7) 12.3 (± 1.6) 0.85

Use of bednets, no.
Yes 210 (39.3%) 201 (37.6%)
No 261 (48.8%) 263 (49.2%) 0.75
Missing data 64 (12.0%) 71 (13.3%)

P. falciparum parasitaemia at recruitment, no.
Positive 72 (13.5%) 86 (16.1%)
Negative 463 (86.5%) 448 (83.8%) 0.29
Missing data 0 (0.0%) 1 (0.2%)

SD, standard deviation.
* Age at IPTi-1 is equal to age at time of recruitment.
† By Wilcoxon or χ2 test, none of the parameters in both study arms was significantly different.
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Malaria incidence and date of birth
During the first year of the follow-up period, incidence
rates (IR) of malaria were influenced by the month of
birth of children (Figure 1A). IR was highest among chil-
dren born in February (IR 1.2 episodes/year, 95% CI 0.9–
1.7) and tended to decrease in children born during the
second half of the year. The lowest malaria IR was
observed in children born in November (IR 0.8 episodes/
year, 95% CI 0.6–1.1).

Malaria incidence and village of residence
During the first year of follow-up visits, IRs were strongly
dependent on the village of residence (Kruskall-Wallis test
p < 0.001) (Figure 1B). The highest IR of 2.0 episodes/year
(95% CI 1.5–2.7) was observed in the village Afamanaso,
and the lowest IR of 0.6 episodes/year (95% CI 0.4–0.8)
was found in Jamasi.

IPTi schedule and protective efficacy of IPTi
Tests on the assessment of the proportional hazards
assumption indicated that the protective efficacy of IPTi
was dependent on the age of children at the time of IPTi
application. First, vertical differences on log-minus-log
survival plots for treatment and placebo tended to be
higher in the first half of the observation period. Second,
the plots of Kaplan-Meier survival curves of the observed
data and the predicted Cox curves deviated considerably
in the first year of the observation period in both groups.
Third, Schoenfeld residuals provided evidence for viola-

tion of the proportional hazards assumption (rho 0.17, p
= 0.007).

The evidence for violation of the proportional hazards
assumption indicates that protective efficacies depend on
the age of participating children at the time of of IPTi
administration. Accordingly, analyses of the impact of IRs
on protective efficacies were stratified for periods of six
months after IPTi-1, IPTi-2 and IPTi-3 [13]. IPTi-1 admin-
istered at month 3 was more efficacious [23% protective
efficacy (CI 6%–36%)] than IPTi-2 administered at nine
months of age [17% (CI 1%–31%)] and IPTi-3 adminis-
tered at 15 months of age [-5% (CI -25%–11%)].

Malaria incidences and protective efficacies
After stratification for the month of birth, the protective
efficacies of IPTi-1 and IPTi-3 correlated significantly with
the IRs (R2 0.63, p < 0.003 and R2 0.37, p < 0.04, respec-
tively) (Figure 2A). A trend of a corresponding correlation
was observed after IPTi-2 (R2 0.29, p = 0.07). In accord-
ance to the results obtained for the month of birth, protec-
tive efficacies correlated significantly with IRs after
stratification for the villages of residence. This applied to
the efficacy of IPTi-1 (R2 0.48, p < 0.04) and, as a ten-
dency, to that of IPTi-2 (R2 0.33, p = 0.11) (Figure 2B).

Malaria incidence and IgG antibody levels
In children who received SP, mean IgG antibody
responses against crude parasite lysate increased strongly
with malaria IR in the same stratum (stratified by month

Stratified malaria incidence ratesFigure 1
Stratified malaria incidence rates. Malaria incidence rates per PYAR in the placebo group assessed over the period of one 
year, beginning at the time of recruitment. A, PYAR stratified for the month of birth of the children; B, PYAR stratified for the 
village of residence of the children. PYAR, person year at risk.
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of birth, R2 0.54, p < 0.006; stratified by village, R2 0.90, p
< 0.001) (Figure 3A, B). In the placebo arm, this correla-
tion was weaker than in children who received SP indicat-
ing an effect modification (stratified by month of birth, R2

0.05, p = 0.475; stratified by village, R2 0.89, p < 0.001).
In contrast, the slope of malaria IR in the SP arm was
lower (stratified by month of birth, slope 0.07, p < 0.80;
stratified by village, slope 0.67, p < 0.007) than in the pla-
cebo group demonstrating the increase of protective effi-
cacy with IR (Figure 3C, D). The Wald test for this
interaction was significant for villages of residence (p <
0.001) and showed a similar trend when stratifying for the
months of birth (p = 0.118) (Figure 4A, B).

Discussion
The data from the ecological analysis show that the extent
of protection provided by IPTi increased almost linearly
with the malaria incidence. This applied to spatial and
temporal stratifications. The strongest correlation
between IPTi efficacy and malaria incidence was observed
after IPTi-1, namely during the period of six months when
treatment was most efficacious, but the correlation still
held after IPTi-2 and, to a certain extent, after IPTi-3 as
well.

Protective efficacy is a relative measure that is independ-
ent of incidences. Therefore, a higher malaria incidence
per se cannot explain a higher protective efficacy. An

appealing explanation for the observation that the protec-
tive efficacy of IPTi increased with the malaria incidence
could be the additional influence of acquired immunity,
which is also dependent on the incidence of malaria.
Indeed, the level of anti-P. falciparum IgG, which may be
considered a measure of exposure [19], increased in both
treatment arms with the number of clinical malaria
attacks. In addition, IgG levels were non-proportionally
elevated in children who received SP in villages with
higher malaria incidences. Although the crude anti-P. fal-
ciparum IgG level is only a weak proxy measure for
acquired anti-malaria immunity, it reflects the cumulative
parasitological challenge and, indirectly, the extent of
semi-protective immunity [17,19-21].

According to the findings reported here, spatial differ-
ences of the in vivo efficacy of antimalarial treatment have
previously been described from Uganda [22], where the
efficacy of SP, in combination with other antimalarial
compounds, also increased with transmission intensity,
indicating a strong influence of immunity on treatment
response.

Not consistent with the observation of a positive correla-
tion between malaria incidences and IPTi-mediated pro-
tective efficacies is the fact that, in the aforementioned
study from Tanzania, the relative protective efficacy was,
with 59%, higher than that in our study, although the

Malaria incidence rates and protective efficacyFigure 2
Malaria incidence rates and protective efficacy. Correlation between the protective efficacy of each IPTi application dur-
ing six months after the drug administration (blue circles and line, after IPTi-1; red diamonds and line, after IPTi-2; green trian-
gles and line, after IPTi-3) and malaria incidence rates per PYAR for the same time periods in the placebo arm. A, stratified by 
month of birth (IPTi-1, R2 0.63, p < 0.003; IPTi-2, R2 0.29, p = 0.07; IPTi-3, R2 0.37, p < 0.04); B, stratified by village of residence 
(IPTi-1, R2 0.48, p < 0.04; IPTi-2, R2 0.33, p = 0.11; IPTi-3, R2 0.04, p = 0.60). PYAR, person year at risk.
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malaria incidence was, with 0.43 per person per year,
lower [8]. This inconsistency may result from varying
degrees of SP drug resistance, differences in the usage of
insecticide-treated bed nets, and variations of the study

protocols, such as other drug application schedules and
case-finding strategies [23]. The absolute reduction of the
number of malaria episodes was almost identical in the
Tanzanian trial, but also in that from northern Ghana and

Malaria incidence rates and anti-P. falciparum lysate IgG levels IFigure 3
Malaria incidence rates and anti-P. falciparum lysate IgG levels I. Panel A and B, correlation between the mean of 
anti-P. falciparum lysate IgG levels and malaria incidence rates in the placebo arm. A, stratified by month of birth (red diamonds 
and lines [linear regression, R2 0.54, p < 0.006], children from the SP arm; blue circles and lines [linear regression R2 0.05, p = 
0.475], children from the placebo arm. B, stratified by village of residence (red diamonds and lines [linear regression, R2 0.90, p 
< 0.001], children from the SP arm; blue circles and lines [linear regression, R2 0.89, p < 0.001], children from the placebo arm). 
Panel C and D, correlation between malaria incidence rates and incidence rates in the placebo arm. C, stratified by month of 
birth (red diamonds and lines [slope 0.07, p < 0.80], children from the SP arm; blue circles and lines, children from the placebo 
arm as comparison [slope 1]). D, stratified by village of residence (red diamonds and lines [slope 0.67, p < 0.007], children from 
the SP arm; blue circles and lines, children from the placebo arm as comparison [slope 1]). PYAR, person year at risk.
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in the study presented here (incidence rate reduction 0.26,
0.25 and 0.26 episodes per year, respectively) [8,11,13].
An exception was the trial from Mozambique, where the
absolute episode reduction was, with an annual incidence
rate reduction of 0.11 episodes, lower [12].

Although the geographical locations, altitudes and cli-
matic conditions of villages were largely homogeneous
throughout the study area, a number of parasite and host-
dependent factors might account for the micro-epidemio-
logical differences between neighbouring villages
observed here [14]. High variation of malaria transmis-
sion intensities with regard to season and geography are
known to occur across Africa [24]. In contrast, inter-vil-
lage differences of malaria incidences have only rarely
been studied [25], although mathematical modelling has
identified environmental heterogeneity as a pivotal factor
for the implementation of malaria control programmes
and the development of immunity [26-28].

In this study, infants born in November were given drugs
in February during the low-transmission season. The asso-
ciation of seasonal malaria incidences with protective effi-
cacy of IPTi may explain why in areas of high seasonal
transmission the administration of antimalarials was
most effective at times of intense malaria transmission
[29]. Supporting evidence comes from the IPTi study in
northern Ghana where transmission is highly seasonal

and children received four doses of SP at times of routine
EPI vaccinations [11]. Although overall protection against
clinical malaria was below 25% in that study, a subgroup
of children who received first and second IPTi doses dur-
ing the high transmission season were protected by more
than 50%.

Conclusion
The data presented here indicates that the efficacy of IPTi
crucially depends on the differential spatial and temporal
malaria incidence. This observation has implications on
implementation strategies of IPTi and, most likely, also
on other malaria control measures. More generally, the
data show that even in an apparently homogeneous study
area, considerable variation may   exist, which may have
an impact on the outcome of intervention studies. Cost-
effectiveness analyses and mathematical models should
consider the dependency of malaria incidences on efficacy
and control interventions should be adapted to the wide
range of transmission conditions [30-32]. Since efficient
control measures will reduce malaria incidences, control
measures must constantly be adapted to maintain their
protective efficacy. The development and application of
appropriate tools, such as satellite information and broad
coverage of communication of relevant geographical,
meteorological and micro-epidemiological data should
be enforced in order to predict malaria dynamics and sup-
port the choice of appropriate control measures.

Malaria incidence rates and anti-P. falciparum lysate IgG levels IIFigure 4
Malaria incidence rates and anti-P. falciparum lysate IgG levels II. Correlation between the mean of anti-P. falciparum 
lysate IgG levels and malaria incidence rates of the respective study arm in each village. A, stratified by month of birth (Wald 
test, p = 0.118). B, stratified by village of residence (Wald test, p < 0.001). Blue circles and lines (linear regression), children 
from placebo arm; red diamonds and lines (linear regression), children from SP arm. PYAR, person year at risk.
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EIR – entomological inoculation rate

ELISA – linked immunosorbent assays

EPI – expanded program on immunization
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IPTi – intermittent preventive treatment in infants

IPTi-1 – SP treatment given at the age of 3 months

IPTi-2 – SP treatment given at the age of 9 months

IPTi-3 – SP treatment given at the age of 15 months

IR – malaria incidence rate
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RU – Relative Units

R2 – correlation coefficient
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