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A B S T R A C T

Altered cerebral blood flow (CBF), as measured by arterial spin labelling (ASL), has been observed in several psychiatric conditions, but is a generally underutilized
MRI technique, especially in the study of psychosis spectrum (PS) symptoms. We aimed to determine group differences in ASL resting state functional connectivity
(rsFC) between PS and non-PS youth, and the reliability of a support vector machine (SVM) classifier trained on ASL rsFC features to differentiate PS and non-PS
youth, especially compared to blood oxygen level dependent (BOLD) fMRI. 1146 youth aged 8–22 with ASL and BOLD data from the Philadelphia
Neurodevelopmental Cohort were analyzed. Widespread ASL hyperconnectivity was found in the left cuneus, precuneus, and dorsolateral prefrontal cortex, and
hypoconnectivity was found in the left cingulate cortex and orbitofrontal area (multiple linear regression, FDR corrected). An SVM trained on ASL and BOLD features
outperformed either modality alone (AUCBOTH = 0.72 versus AUCASL = 0.68 and AUCBOLD = 0.67). Classification performance and precision improved when the
non-PS group had no psychiatric comorbidities. The relative success of the classifier suggests ASL rsFC changes exist in PS individuals that differ from BOLD rsFC
changes, and extends previous findings of CBF dysregulation in PS.

1. Introduction

Effective interventions are available for early psychosis (Birchwood
et al., 1998). However, efforts at primary or secondary prevention of a
first episode of psychosis have proved challenging (Fusar-Poli, 2013),
including in the “clinical high-risk” (CHR) population, which even if
successful would apply to a small minority of incident first episode
cases. Therefore, the need to identify individuals before symptoms and
more severe functioning impairments fully manifest remains a high
priority. The use of machine learning classification coupled with ad-
vanced brain imaging techniques offers promise to detect subtle, high-
dimensional differences in functional brain activity for PS youth, and
may provide insight into underlying neurobiology and mechanisms of
psychosis risk. Further, assessing performance of classification models
in PS youth provides a more realistic appraisal of the potential for fu-
ture generation of identification tools early in impairment, and well
before schizophrenia, first episode psychosis, or even the clinical high-
risk state.

Some success in applying methods to identify CHR individuals has
been achieved (Cannon et al., 2016; Koutsouleris et al., 2012). Work by
Koutsouleris and colleagues has shown that support vector machines
(SVMs) applied to structural MRI data can achieve high accuracy in
differentiating between healthy controls (HCs) and individuals who
exhibit both early and late at-risk mental states (ARMS) for psychosis
(Koutsouleris et al., 2012, 2009). However, the majority of work using
machine learning in the early stages of psychosis is based on structural
neuroimaging (Satterthwaite et al., 2016): there is little functional
neuroimaging, and to our knowledge no use of arterial spin labeling
(ASL) to classify those who may be suffering from dimensional psy-
chosis symptoms (a group that has significant overlap with but is dis-
tinct from the CHR group), despite evidence that it may be a useful
biomarker for regional resting state brain function (Detre et al., 2009).

The Philadelphia Neurodevelopmental Cohort (PNC) is a commu-
nity-based sample of children and youth (of which ~20% meet criteria
for having PS symptoms) with multimodal neuroimaging data
(n = 1445) including both resting state blood-oxygen-level dependent
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(BOLD) fMRI as well as ASL data (Calkins et al., 2014). Such a large
sample provides an opportunity to study cerebral blood flow differences
in PS youth and test prediction accuracy with a greater level of con-
fidence. Given the understudied nature of ASL fMRI and the fact that it
possesses signal characteristics which may lend themselves to improved
detection of network differences in PS youth even beyond what BOLD
can detect (Wang et al., 2003), new knowledge may be generated by
investigating classification performance using this modality.

Additionally, developmental sex differences related to brain struc-
ture (Gennatas et al., 2017) and connectivity (Gur and Gur, 2016) have
been observed in typically developing youth, including changes in
cerebral perfusion as measured by ASL (Kaczkurkin et al., 2018;
Satterthwaite et al., 2014). A variety of sex differences are present in
schizophrenia (Mendrek and Mancini-Marïe, 2016) that extend to ear-
lier stages of psychosis risk (Barajas et al., 2015), including sex and age
dependent differences in brain structure and resting-state fMRI con-
nectivity that have been found in PS youth (Jacobs et al., 2019). Thus,
analyses examining sex differences in ASL may provide insight into the
neurobiological basis of PS symptoms in youth.

The first aim of this study is to describe differences in connectivity
between psychosis spectrum (PS) and non-PS groups using ASL resting
state functional connectivity (rsFC), and determine the ability of a
support vector machine classifier trained on ASL rsFC data to differ-
entiate between these groups. Performance will also be compared with
a classifier trained on BOLD rsFC data from the same subjects, as well as
one trained on a concatenation of BOLD and ASL rsFC. We hypothesize
that classification of PS youth using ASL will be as successful as that
using BOLD, but may reveal that some individuals are more accurately
classified using one technique or the other. Given that developmental
sex differences have been observed in ASL regionally, the second aim of
this study is to investigate sex-based differences in ASL rsFC, and
compare performance of models trained on exclusively male or female
ASL rsFC data. Here, we hypothesize that the ASL classifier may per-
form differently for boys and girls (when differentiating between PS vs.
non-PS).

2. Materials and methods

2.1. Participant recruitment and characterization

As described in detail elsewhere e.g., (Calkins et al., 2015), the
Philadelphia Neurodevelopmental Cohort (PNC) is a large (n = 9428),
cross-sectional population sample of youth (aged 8–22) that includes a
wide range of neuroimaging, genetic, neurocognitive, and demographic
data. Recruitment procedures for this catchment area cohort have been
previously described (Calkins et al., 2014). All participants provided
written informed consent. For youth under 18, both written informed
consent and parental/legal guardian permission were acquired. The
University of Pennsylvania and the Children’s Hospital of Philadelphia
Institutional Review Boards approved all procedures. 1445 of these
subjects were stratified for age and sex and randomly selected for
neuroimaging. Of these subjects, a subset was excluded on the basis of
missing or poor quality fMRI data, as well as missing demographic or
instrument data. 243 subjects had missing or unusable BOLD fMRI data,
and a further 56 subjects had missing or unusable ASL fMRI data (some
excluded subjects were also missing demographic data, but all subjects
with usable BOLD and ASL data had demographic data). This resulted
in n = 1146 with usable ASL and BOLD fMRI data, in addition to all
necessary demographic data (see Table 1).

Participants were defined as being part of the PS group if they
scored sufficiently high on the PRIME Screen-Revised for sub-psychosis
symptoms (Miller et al., 2003); a modified version of the Kiddie Sche-
dule for Affective Disorders and Schizophrenia (K-SADS) (Ambrosini,
2000) developed for collection of the PNC data (Calkins et al., 2015), or
the Scale of Prodromal Symptoms (SOPS). If a subject met one or more
of the following sets of criteria, they were considered part of the PS

group:
PRIME Screen-Revised - Overall z-score > 2 in age group

- >= 1 rating of 6 (strongly agree)
- >= 3 ratings of 5 (somewhat agree)

K-SADS Psychosis Screen - > 1 day, > 5 distress rating
SOPS - Overall z-score > 2 in age group

2.2. MRI acquisition

All scans were performed using a 3 T Siemens TIM Trio whole-body
scanner (VB17 software revision) located at the Hospital of the
University of Pennsylvania. Gradient performance was 45 mT/m, with a
maximum slew rate of 200 T/m/s. A quadrature body coil was used for
signal transmission and a 32-channel head coil for signal reception
(Satterthwaite et al., 2014).

2.3. BOLD resting state scan

Resting state BOLD acquisitions were obtained using a single-shot,
interleaved, multislice, gradient-echo, echo planar imaging (GE-EPI)
sequence. A voxel resolution of 3×3×3 mm with 124 slices was used,
with TR = 3000 ms, TE = 32 ms, flip angle = 90°, bandwidth/
pixel = 2056 Hz.

During the BOLD resting state scans, a fixation cross was displayed
and subjects were instructed to stay awake, keep their eyes open, re-
main still and fixate on the cross. Resting state scan duration was 6 min
18 s (Satterthwaite et al., 2014).

2.4. ASL perfusion scan

ASL acquisitions were collected using a pseudo-continuous arterial
spin labeling (pCASL) sequence (Wu et al., 2007) with a single-shot
spin-echo EPI readout (label duration = 1500 ms, post label
delay = 1200 ms, labeling plane = 90 mm inferior to center slice, 40
label and 40 control slices). Slices were acquired in ascending, non-
interleaved order (Satterthwaite et al., 2014), with TR = 4000 ms,
TE = 15 ms, flip angle = 90°/180°, bandwidth/pixel = 2604 Hz.

2.5. Image preprocessing - ASL and BOLD fMRI

The ASL data as received from the Philadelphia group was already
motion corrected. Beyond this, data was preprocessed in a way similar
to previous ASL connectivity studies (Loggia et al., 2013), using FSL
(FMRIB’s Software Library) (Smith et al., 2004) and AFNI (Analysis of
Functional Neuroimages) (Cox, 1996).

ASL data was skull-stripped using the FSL brain extraction tool
(BET). Adjacent tag and control images were subtracted using a custom
script to obtain a perfusion signal. FSL FLIRT was used to register the
ASL data to a high resolution anatomical volume (T1), and then
transform the data to MNI152 standard space. Data was also high-pass
filtered at 0.008 Hz using a 4th order Butterworth filter and spatially
smoothed at FWHM = 5 mm using AFNI, consistent with preprocessing
in other studies (Loggia et al., 2013).

BOLD data was preprocessed using standard methods (Satterthwaite
et al., 2015). The first 4 volumes were removed to allow for signal
stabilization, and the remaining volumes were skull-stripped using BET,
registered to a T1 volume, and transformed to MNI152 standard space
using FSL FLIRT. Data was band-pass filtered to allow frequencies be-
tween 0.01 and 0.08 Hz using a 4th order Butterworth filter. Time
points (TRs) with a framewise displacement of> 0.25 mm/TR were
replaced with a linear interpolation of the two closest surviving TRs.

In all cases, visual quality control (QC) was performed. In addition,
image quality was assessed according to temporal signal-to-noise ratio
(tSNR), subject motion, global signal spike rate, and global signal drift
(Satterthwaite et al., 2014). High-motion subjects were identified on
the basis of number of TRs retained in the BOLD scans after TR
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scrubbing. Out of 120 TRs, if fewer than 100 TRs were retained, the
subject was considered to be “high-motion” and was excluded (al-
though this TR scrubbing step was performed only on BOLD scans,
subjects that did not pass the 100 TR threshold were also excluded from
ASL analyses).

2.6. Connectivity matrix construction

All connectivity analyses were performed using Python and asso-
ciated packages available in Anaconda (https://continuum.io/). A
whole-brain, graph-theory-based parcellation (Shen et al., 2013) was
used to define volumetric regions of interest (ROIs) for connectivity
analyses. This atlas was chosen due to its high degree of parcellation
reproducibility at the group level, and its superior subunit spatial
homogeneity compared to some competing approaches (e.g., Craddock
et al., 2012). The atlas was downsampled to match the resolution of the
functional images (91×109×91). A symmetric correlation matrix be-
tween ROIs for each modality and subject was calculated using the
mean BOLD and ASL signal in each ROI across the timeseries.

After registration of the functional data to MNI152 space, some ROIs
had a mean signal of exactly 0 for certain subjects (54 out of 268), and
it was found that the masking procedure excluded these ROIs. To ensure
that each subject had the same number of connections for comparison,
these ROIs were excluded from all subjects for subsequent analyses
(leaving 214; see Supplementary Figure S2 for visualization of excluded
ROIs).

2.7. Feature selection

Given the large number of features (i.e., connection strengths be-
tween ROIs) in both connectivity matrices (22,791), and the fact that
many connections are not functionally meaningful, it was important to
reduce the number of features to reduce noise and prevent model
overfitting. To remove redundant features, pairwise correlations were
calculated across all subjects within each fold for all features, and
connections that had a correlation coefficient of greater than 0.85 with
at least one other connection were dropped (the number of features
dropped this way ranged from 2122 to 2865 for each fold). Other
groups have investigated feature selection in fMRI data (Zeng et al.,
2012; Pereira et al., 2009), and have found that an ANOVA F-value
ranking of features based on differences between classes can work well
for BOLD fMRI classification. Correspondingly, features were ranked
according to their F-value on the training data within each of 10 cross-
validation folds after the removal of correlated features, and the top
50% of features were retained in each case (resulting in approximately
10,000 features in each fold; range: 9963 to 10,334).

2.8. ASL rsFC group comparison

Subjects were divided by sex and diagnosis (PS and non-PS). A
multiple linear regression with PS and non-PS groups as a dummy

variable for each unique correlation (connection) between ROIs
(22,791 connections) was performed, separately for each sex and for
the entire sample. FDR multiple comparison correction was performed,
and the mean values of connections with a p-value < 0.05 after cor-
rection were calculated, resulting in a single ROI-specific connection
value for significant connections. As well, the analysis was repeated
with age as a covariate in the regression. These ROIs were mapped to
anatomical areas, and the connectivity differences between PS and non-
PS groups were visualized on a connectivity plot. For comparison, the
same procedures were also performed for BOLD rsFC.

2.9. Support vector machine training and validation

Classifier training was performed using scikit-learn (version 0.18.1)
(Pedregosa et al., 2011), which includes a Python implementation of
Libsvm (Chang and Lin, 2011). For both BOLD and ASL data, a linear-
kernel SVM classifier was trained using the selected features. L2 reg-
ularization that occurs during SVM training makes SVMs relatively less
sensitive to overfitting (which would otherwise be a danger due to a
small number of samples with a much larger number of highly variable
features) (Scholkopf and Smola, 2001). The PNC is a very large dataset
in the context of neuroimaging, but relatively small compared to a ty-
pical machine learning classification problem, and thus SVMs were
considered to be a good model choice to ameliorate the effects of a lack
of samples. Grid search hyperparameter selection was performed for the
value of C, where C ∈ {10−6, 10−5, …, 105, 106}. A class imbalance
existed between PS and non-PS groups (with PS making up 23.04% of
the entire sample with roughly equal males and females), and thus
classes were weighted inversely proportional to frequency during
training, which resulted in increased sensitivity of the classifier at the
expense of specificity. 10-fold stratified cross validation was performed,
and area under the Receiver Operating Characteristic curve (AUC)
across all folds was calculated for each model, as well as a precision-
recall curve and a confusion matrix.

Three models were trained: one with ASL rsFC data, one with BOLD
rsFC data, and a third using a concatenation of the ASL and BOLD rsFC
data (using the same set of ROIs for each). All models were trained in
15.42 s on a computer with a Intel Xeon X5687 3.60 GHz 16-core
processor, 24 GB of RAM, and running Ubuntu 14.04. A method de-
scribed by Hanley and McNeil was used to detect differences in per-
formance between classifiers based on AUC (Hanley and McNeil, 1982),
which corrects the calculation of standard error of the difference be-
tween AUC values for paired data in a way analogous to a paired t-test.
A permutation importance method described by Breiman and im-
plemented by Raschka (Raschka, 2018) was used to determine the most
significant features for classification (Breiman, 2001).

We also investigated if performance could be improved in ASL rsFC
classification by considering only a subset of the non-PS youth with no
other neurological or mental health concerns (see exclusion criteria
below). This resulted in a TD group of 409 youth, and a model was
trained using the same procedure as previous analyses. Finally,

Table 1
Summary statistics of psychosis spectrum and non-psychosis spectrum youth with usable ASL and BOLD imaging data.

Demographic/Clinical Characteristics nonPS PS p value

n (%) 882 (76.96) 264 (23.04)
Age (years, mean ± SD) 14.71 (3.46) 14.92 (2.88) 0.363
Sex (% female) 54.4 51.9
Ethnicity (% European American) 51.3 33.1
WRAT-4 Standard Reading Score (mean (SD)) 53.23 (9.30) 50.69 (8.91) <0.001
PRIME Screen Revised total score (mean (SD)) 3.85 (6.00) 23.33 (13.99) <0.001
SOPS total score (mean (SD)) 1.44 (1.82) 5.04 (4.50) <0.001
Children's Global Assessment Scale, current (mean (SD)) 82.58 (9.82) 72.51 (12.82) <0.001
Maternal education (years, mean (SD)) 14.46 (2.50) 13.72 (2.24) <0.001
Paternal education (years, mean (SD)) 14.16 (2.74) 13.38 (2.53) <0.001
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classifiers were trained separately on males and females, and perfor-
mance was compared between sexes.

2.10. TD group exclusion criteria

Youth with any of the following were removed from the non-PS
group to yield the TD group: evidence of epilepsy, lead poisoning,
meningitis, multiple sclerosis, serious head injury, skull fracture, or
autism spectrum disorder (ASD). Youth were also removed if they met
criteria for bipolar disorder, severe phobia, major depressive disorder,
post-traumatic stress disorder, obsessive compulsive disorder, general-
ized anxiety disorder, oppositional-defiant disorder, or attention deficit
hyperactivity disorder.

3. Results

3.1. ASL functional connectivity differences were found between PS and
non-PS youth, and were more pronounced in females

When accounting for age through the use of a multiple linear re-
gression model for each FC, ASL hyperconnectivity and hypo-
connectivity were found in many regions, including hyperconnectivity
in the cuneus, precuneus, and dorsolateral prefrontal cortex, and hy-
poconnectivity in the left cingulate cortex and orbitofrontal area (see
Supplementary Figure S1; PS > non-PS; p < 0.05, FDR corrected).
The ASL rsFC group differences were more pronounced in females, with
a larger number of significant FCs and additional hyperconnectivity in
parietal regions (p < 0.05, FDR corrected). Using the same procedure,
group differences were also found in BOLD rsFC, including hy-
perconnectivity in the fusiform gyrus, inferior temporal gyrus, and
precuneus, and hypoconnectivity in the cuneus and anterior prefrontal
cortex, though fewer significant FCs were found compared to ASL rsFC.
As with ASL rsFC, a greater number of significant FCs were found when
the regression was performed only on female subjects. The FCs with the
strongest group differences for both modalities are shown in
Supplementary Figure S1.

3.2. A multivariate predictive model trained on ASL rsFC performed
comparatively to BOLD rsFC, and a concatenation of ASL and BOLD
outperformed either rsFC model alone

Given differences in ASL signal characteristics compared to BOLD,
and a lack of studies exploring the predictive value of ASL rsFC in PS, it
was not previously known how effective a modality it would be to
differentiate between PS and non-PS groups. Classifiers were trained on
ASL and BOLD rsFC separately, and a concatenation of both. The per-
formance of the models after 10-fold cross-validation is summarized
below (Fig. 1).

An additional classifier trained on ASL rsFC with randomly per-
muted labels did not perform better than chance, strongly suggesting
that the performance seen in the classifiers with the correct class labels
was indeed due to group differences in the ASL rsFC and BOLD rsFC.

Performance of the BOLD rsFC classifier was similar to ASL rsFC.
The Hanley and McNeil method was used to compare the performance
of both models, and the ASL classifier was not found to be superior to a
significant degree (p = 0.7972). The concatenated model, however,
resulted in significantly improved performance than classifiers trained
on either modality alone (p = 0.0443).

3.3. Sex differences exist in ASL classification performance, but are at least
partially explained by participant motion

The 1146 youth were split by sex (617 females, 529 males), and a
separate SVM classifier was trained on only male and only female ASL
rsFC, BOLD rsFC, and ASL + BOLD rsFC data. The performance of these
models is summarized below (Fig. 3):

Performance for the female subjects was superior to the male sub-
jects for all three models (ASL: p = 0.0380, BOLD: p = 0.0482,
ASL + BOLD: p = 0.02229).

Since it is known that head motion can impact several metrics re-
lated to functional connectivity (Van Dijk et al., 2012; Satterthwaite
et al., 2012); we investigated whether these sex differences could po-
tentially be explained by head motion. We used mean framewise dis-
placement (FD) to quantify head motion, under the assumption that
high motion individuals during the BOLD scan would also be high
motion during the ASL scan.

A significant difference of mean FD was found between sexes
(x̅Males = 0.1693110, x̅Females = 0.1369225, t = 3.4687, df = 560.5,
p = 0.0005632). Using a logistic regression model predicting correct
classification by the ASL model versus sex, the effect of sex was found to
be significant (p = 0.0328). When mean FD and a sex/mean FD in-
teraction term were included in the model, the effect of sex was no
longer significant (p = 0.8606), suggesting the observed sex differences
could at least partially be attributed to head motion. It is important to
note, however, that no significant difference in mean FD between PS
and non-PS women was found (x̅PS = 0.1429584, x̅non-PS = 0.1353748,
p = 0.5768).

No significant correlation was found between mean FD and total
PRIME score (r2 = 0.02628924, p = 0.4812), SOPS score
(r2 = 0.01917064, p= 0.6076), or GOASSESS score (r2 = 0.01214009,
p = 0.7567).

3.4. Classification performance is superior when comparing PS with TD
youth

In previous analyses, all subjects that did not meet criteria for the PS
label were considered part of the non-PS group, even if they had other
symptoms. Since these subjects could make the classification task more
difficult, we investigated if performance could be improved by com-
paring only the most “typically developing” (TD) subjects in the non-PS
group (Fig. 4).

The performance of the classifier trained on ASL rsFC, BOLD rsFC,
and ASL + BOLD rsFC data to differentiate between PS and TD in-
dividuals performed better than differentiating between PS and non-PS
individuals in all three cases; though was only significant for the con-
catenated ASL and BOLD model (p = 0.0164).

4. Discussion

In this study, we found that an SVM classifier trained on ASL con-
nectivity data could differentiate between PS and non-PS youth with
reasonable accuracy (mean AUC = 0.68), and to a level not statistically
different than BOLD connectivity (mean AUC = 0.67). When ASL and
BOLD rsFC were concatenated prior to feature selection, the classifier
performed better than either modality alone (mean AUC = 0.72). To
our knowledge, this study is the first to investigate the discriminative
power of ASL connectivity in youth with early psychosis symptoms,
who are largely unmedicated and absent many confounds of clinical
samples. The combined ASL and BOLD classifier’s performance im-
proved further when PS youth were compared to typically developing
youth (mean AUC = 0.72, with a much more balanced precision-recall
curve). An AUC of 0.72 with a balanced precision-recall curve com-
paring youth with subthreshold symptoms to healthy youth is relatively
excellent, and may in part be due to our use of network connectivity of
fMRI and ASL, rather than region of interest estimates.

Our results provide some evidence that ASL and BOLD could be
complementary modalities to further improve prediction. Our model
trained on a concatenation of ASL and BOLD rsFC performed sig-
nificantly better than BOLD rsFC after feature selection, suggesting
some mutually exclusive information relevant to PS is being captured
by both modalities. Most machine learning classification work in groups
at-risk for psychosis has been conducted using largely structural and
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neuropsychological data, with comparatively little using fMRI, and es-
sentially none using ASL despite its ease of use and brief acquisition
time. Calhoun's group found that some network properties (con-
nectivity strength and clustering coefficients) of BOLD rsFC differed
between a group of 24 healthy controls and a group of 24 schizophrenia
patients, suggesting classification could be possible, and others have
confirmed this (Yu et al., 2011; Shen et al., 2010). Though the mod-
alities have similarities, ASL fMRI has different signal characteristics
compared to BOLD fMRI (Wang et al., 2003). It has been shown to have
a more stable noise profile across the frequency spectrum (whereas
BOLD is skewed toward low frequency noise), and lower inter-subject
variability for task and resting state activation (see Supplementary
Discussion). Further, the present study’s large size and opportunity to
compare PS youth to a population sample provides a higher confidence
that the results are generalizable.

In our results, the most discriminative connections across folds in
the ASL and BOLD models appear to involve different brain regions (see
Fig. 2): the important ASL connections are within the dorsolateral
prefrontal cortex (dlPFC) and several areas within visual and premotor
cortex, while the important BOLD connections are found in superior
temporal gyrus (Wernicke's area), several areas within the frontal and
parietal lobe, and the posterior and anterior cingulate. Some of these
areas are consistent with previous network dysfunction work in

schizophrenia: altered connectivity in the cingulate is consistently
found, as is altered connectivity in parietal regions (Bluhm et al., 2007;
Zhou et al., 2008; Garrity et al., 2007; Lynall et al., 2010). At a network
level, the important BOLD features seem to represent altered fronto-
parietal and default mode network connectivity, while the important
ASL features seem to represent mainly altered salience and visual at-
tention network connectivity. Interestingly, the important connections
are slightly different in the combined model and draw from both
modalities.

There are several reasons why connections may have different fea-
ture importances depending on modality. Firstly, the aforementioned
ASL signal differences may be more sensitive to different network
dysfunction than BOLD; altered CBF functional connectivity has re-
cently been found in regions which include the salience and visual at-
tention networks (Oliveira et al., 2018), and this could be characteristic
of CBF in schizophrenia (see Supplementary Discussion). Secondly, al-
though collected at the same site, differences in the data collection
protocol between modalities could have resulted in the emphasis or de-
emphasis of certain connections (notably, 124 BOLD volumes were
collected for each subject, but only 40 spin-labeled and 40 control ASL
volumes were collected).

Beyond differences in signal characteristics, ASL and BOLD capture
fundamentally different phenomena, and the distinction between these

Fig. 1. ROC and precision-recall curves for 10-fold CV, linear kernel SVM classification using ASL or BOLD rsFC as the feature vector. In each subplot, the average
ROC curve across all folds against the fold’s “test” data is shown in green. Additionally, the average ROC curve for performance against a completely isolated
validation set is shown in black. The precision-recall curve is shown is red (and must be compared to the No Skill curve shown in dotted red). Top left: ASL rsFC
feature vector (mean validation AUC = 0.68). Top right: BOLD rsFC feature vector (mean validation AUC = 0.67). Bottom left: Concatenated ASL and BOLD rsFC
feature vector (mean validation AUC = 0.72). Bottom right: Randomized class labels (mean validation AUC = 0.44). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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phenomena is especially relevant in the developmental period. Indeed,
this is a large motivation for developing simultaneous ASL and BOLD
MRI acquisition sequences for developmental populations, and authors
have speculated that given the rapid rate of development both neuro-
vascularly and neurocognitively in these populations, having access to
both at a single timepoint could be very useful for isolating true dif-
ferences in neurocognition (Schmithorst et al., 2014). Theoretically, the
combination of both modalities allows one to determine the extent to
which an increased BOLD signal is due to increased CBF versus de-
creased neuronal oxygen demand at that location. Other authors have
done this explicitly, by estimating oxygen metabolic rate using the
BOLD signal, ASL signal, blood volume, and Fick’s law (see e.g., Davis
et al. where this was done in humans; Davis et al., 1998). Though we
have chosen not to make any a priori assumptions regarding the im-
portance of each modality type and have included all connections in our
model, it is possible that we are also implicitly taking advantage of the
BOLD signal while taking CBF into account as a confound, through our
feature selection process which includes the dropping of correlated
features.

We also examined model classification performance in males and
females separately, given that sex-based developmental differences in
CBF have previously been observed (Kaczkurkin et al., 2018;
Satterthwaite et al., 2014; Taki et al., 2011). We found that females
were classified more accurately in all three models. A follow-up ana-
lysis, however, revealed that the female group had significantly lower
head motion (as measured by mean FD), and that the statistical sig-
nificance of sex in a logistic regression model of correct classification
disappeared when mean FD was taken into account. Thus, the observed
differences originally thought to be due to sex are likely due to de-
creased motion artifacts in females; however, it cannot be ruled out that
performance differences would still be observed even if the male group
had minimal average head motion. Satterthwaite and colleagues have
shown that CBF has a marked age-sex interaction in the inferior parietal
lobe, dorsolateral prefrontal cortex (dlPFC), insula, and other areas,
with developmental trajectories between males and females diverging
after puberty. Since psychosis spectrum disorders typically have a post-
puberty onset and a marked sex difference (with prevalence in males
being higher than females) (Aleman et al., 2003), one might expect
classification performance to differ between sexes especially post-pub-
erty, but we were not able to confirm this due to the group difference in

head motion. Even so, our results show that especially in low motion
individuals, regardless of sex, ASL has reasonable predictive accuracy
for differentiating between PS and non-PS groups.

Some limitations of our results should be kept in mind. Firstly, the
data we used from the PNC was cross-sectional and represents only a
single “snapshot” of brain function, and thus we must be cautious with
extending our results to the prediction of future states in the same in-
dividual. Perhaps more importantly, the definition of the psychosis
spectrum group was based on scores from the PRIME, KSADS and SOPS
and is not a formal diagnosis (as explained, this may have actually
hampered classifier performance). If more information about the se-
verity of symptoms existed for each subject (especially data that was
not self-reported), it is likely that a cleaner distinction could be made
between PS and non-PS groups. Additionally, as mentioned, a group
difference in head motion between sexes impaired our ability to in-
vestigate functional connectivity differences between sexes in more
detail. Strengths of the PNC dataset include the fact that the sample is
largely unmedicated and substance-naive, and the age range (8–22)
represents a demographic that has not been studied extensively in the
transition to psychosis literature (while also being an especially im-
portant demographic to investigate in order to understand risk of
transitioning to psychosis in individuals that do not pass through the
“clinical high-risk” state).

It should be emphasized that all subjects in the PNC have not been
formally diagnosed with a psychosis spectrum disorder or as CHR, and
thus our task is different (and fundamentally more difficult) than if we
had access to ASL and BOLD fMRI data from individuals with more
severe psychosis symptoms and a diagnosis. By repeating our methods
on such a population, it is likely that differentiability would increase.
Along a similar line of reasoning, we saw that performance classifying
PS versus TD youth was slightly superior compared to PS versus non-PS
youth, even with less data. If a greater amount of TD youth data could
be obtained, it is likely this improvement would become statistically
significant.

Our results can be extended in several ways. Our classification
analysis between PS and non-PS groups could be extended to a re-
gression analysis, predicting not only class membership but symptom
severity or Global Functioning score. This would be useful for identi-
fying the highest risk individuals within the PS group and connectivity
features differentiating them, and is a more representative metric of risk

Fig. 2. Most important functional connections for rsFC classification, as determined by permutation importance. ROIs have been mapped to anatomical areas. Left:
ASL rsFC permutation importance for PS vs non-PS classification. Right: BOLD rsFC permutation importance for PS vs non-PS classification. Values are of relative
importance only.
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for individuals close to the decision boundary. Additionally, it is pos-
sible both classification and regression performance could be improved
with different model types and feature selection techniques, especially

involving deep neural networks (DNNs), which have been used in
classification of schizophrenia from BOLD fMRI (Kim et al., 2016).
Though fMRI data is not currently collected for this kind of risk

Fig. 3. ROC and precision-recall curves for 10-fold CV, linear kernel SVM classification using ASL or BOLD rsFC as the feature vector, and separated by sex. In each
subplot, the average ROC curve across all folds against the fold’s “test” data is shown in green. Additionally, the average ROC curve for performance against a
completely isolated validation set is shown in black. The precision-recall curve is shown is red (and must be compared to the No Skill curve shown in dotted red). Left
column; male youth. Top: BOLD rsFC feature vector (mean validation AUC = 0.67). Middle: ASL rsFC feature vector (mean validation AUC = 0.58). Bottom:
Concatenated ASL and BOLD rsFC feature vector (mean validation AUC = 0.67). Right column; female youth. Top: BOLD rsFC feature vector (mean validation
AUC = 0.68). Middle: ASL rsFC feature vector (mean validation AUC = 0.67). Bottom: Concatenated ASL and BOLD rsFC feature vector (mean validation
AUC = 0.74). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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assessment clinically, the baseline Global Functioning: Social and Roles
scores are easily obtained in a primary care setting and, in the future,
could identify candidates for further, more comprehensive risk assess-
ment with fMRI. Building on previous work that effectively utilizes
clinical and structural neuroimaging data, there is a strong possibility
that combining this data with fMRI modalities for the same individual
would lead to more accurate results in PS youth. A recent compre-
hensive study by Koutsouleris and colleagues (Koutsouleris et al., 2018)
showed that by combining predictions from baseline scores on the
Global Functioning: Social and Roles scales (Cornblatt et al., 2007) and
grey matter volumes (GMV) in CHR youth using stacked generalization
(Wolpert, 1992), functional outcome was predicted more accurately
than with baseline clinical scores or GMV alone. It remains to be seen if
our model could be combined with either similar clinical or structural
data (or both) using the same method to improve performance, but this
appears to be a promising line of research. Follow up work could va-
lidate our findings clinically, by collecting ASL and BOLD data from
individuals with poor Global Functioning: Social and Roles baseline
scores, determining if classifiers trained on concatenated ASL and BOLD
connectivity data could improve outcome prediction compared to
baseline scores alone, and if so, if the degree of improvement justifies
the cost of additional testing.
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