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Background. The dysregulated PI3K/AKT/mTOR pathway acts as the main regulator of tumorigenesis in hepatocellular
carcinoma (HCC). Aim. Here, we identify the prognostic significance of PI3K/AKT/mTOR pathway-associated genes (PAGs)
as well as their putative signature based on PAGs in an HCC patient’s cohort. Methods. The transcriptomic data and clinical
feature sets were queried to extract the putative prognostic signature. Results. We identified nine PAGs with different
expressions. GO and KEGG indicated that these differentially expressed genes were associated with various carcinogenic
pathways. Based on the signature-computed median risk score, we categorized the patients into groups of low risk and high
risk. The survival time for the low-risk group is longer than that of the high-risk group in Kaplan-Meier (KM) curves. The
prognostic value of risk score (ROC = 0:736) of receiver operating characteristic (ROC) curves performed better in comparison
to that of other clinicopathological features. In both the GEO database and ICGC database, these outcomes were verified. The
predictions of the overall survival rates in HCC patients of 1 year, 3 years, and 5 years can be obtained separately from the
nomogram. The risk score was associated with the immune infiltrations of CD8 T cells, activated CD4 memory T cells, and
follicular helper T cells, and the expression of immune checkpoints (PD-1, TIGIT, TIM-3, BTLA, LAG-3, and CTLA4) was
positively relevant to the risk score. The sensitivity to several chemotherapeutic drugs can also be revealed by the signature.
CDK1, PITX2, PRKAA2, and SFN were all upregulated in the tumor tissue of clinical samples. Conclusion. A putative and
differential dataset-validated prognostic signature on the basis of integrated bioinformatic analysis was established in our study,
providing the immunotherapeutic targets as well as the personalized treatment in HCC with neoteric insight.

1. Introduction

In light of the Global Cancer Statistics of 2020, hepatocellu-
lar carcinoma (HCC) was the third leading malignancy asso-
ciated with deaths from cancer worldwide [1]. HCC is
deemed to be the commonest type of primary liver cancer,
and the 5-year survival rates decline to 14.1% in China [2].
Surgical resection is considered the optimal option for
patients at the early stages, but it is still accompanied by a
high risk of recurrence [3, 4]. Hence, identifying prognostic

biomarkers as well as therapeutic assessment models is
essential.

The phosphatidylinositol 3-kinases (PI3Ks)/protein
kinase B (AKT)/mammalian target of rapamycin (mTOR)
pathway was a classical intracellular signaling receptor to
react extracellular stimulators. The hyperactivation of the
PI3K/AKT/mTOR pathway is involved in diverse human
tumors [5]. Particularly, as the HCC developed and prog-
ressed, the PI3K/AKT/mTOR pathway was dysregulated
[6]. For example, the proliferation of HCC can be promoted
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by NCSTN through the PI3K/AKT pathway [7]. SPAG5
promoted the progression of HCC via the PI3K/AKT path-
way [8], and even the participation of lncRNA FER1L4 in
the PI3K/AKT pathway can give rise to the development of
HCC cells [9]. Focusing on the PI3K/AKT/mTOR signaling
pathway is an opportunity for HCC therapy. Therefore, it is
innovative and feasible to identify the prognostic signifi-
cance of PI3K/AKT/mTOR pathway-related genes (PAGs)
as well as their putative signature based on PAGs in HCC.

Rapid progress had been achieved in the therapeutic
strategy of liver cancer, especially the immunotherapy trend
to be the hot spot among cutting-edge treatments [10, 11].
Tumor cells were inhibited and killed by mediating specific
immune responses, thereby reducing the risk of HCC metas-
tasis and recurrence [12]. Immunotherapy had been
acknowledged as a valid therapeutic option for advanced
liver cancer [13], but a large percentage of HCC patients
had poor therapeutic efficacy in immunotherapy. Some
studies indicated that the tumor microenvironment (TME)
had the potential to be a prognostic indicator; it will contrib-
ute to predicting the immunotherapeutic efficacy and
benefiting from precision treatments [14]. At the same time,
tumor-infiltrating lymphocytes (TILs) were recognized as
the indispensable component of TME [15]. Differential types
of lymphocytes may be able to promote the progression of
HCC; determining the infiltrative capacity of various
immune cell subtypes in TME provided novel insight into
immunotherapy [16]. The PI3K/AKT/mTOR which was an
activated aberrant pathway can reduce the patient’s response
to immunotherapy by mediating the immune tolerance in
TME [17]. Therefore, we further explored the correlation
between the PI3K/AKT/mTOR pathway-associated prog-
nostic signature (PAPS) and the related ratio of infiltrating
immune cells in TME, aimed at monitoring the individual-
ized immunotherapy and predicting the prognosis for
HCC patients.

Current research had proposed quite a bit of prognostic
signature for HCC patients [18–20], but our research devel-
oped a comprehensive and reliable prognostic signature
based on PAGs for the first time, which may be capable of
simultaneously predicting prognosis and immunotherapeu-
tic efficacy in HCC. In particular, the expression of prognos-
tic PAGs was validated by way of utilizing our clinical
samples. We concluded that the signature may reveal the
status of TME and direct the individualized immunotherapy
in HCC; it has the potential to be a robust prognostic model
and provides the HCC patients with novel insight regarding
the new immunotherapy targets.

2. Materials and Methods

2.1. Collect Clinical Specimens. Under the approval of the
ethical committee of the Affiliated Changzhou No. 2 Peo-
ple’s Hospital of Nanjing Medical University, all the HCC
tissues as well as corresponding normal tissues were
acquired from 35 patients treated in Affiliated Changzhou
No. 2 People’s Hospital of Nanjing Medical University
(Jiangsu, China) in 2019-2021. Each patient enrolled in the
study had informed consent before collecting samples, and

the HCC tissue and corresponding normal tissue were
obtained from the course of surgery and were immediately
stored in -80°C liquid nitrogen.

2.2. Real-Time Reverse Transcription-PCR. The 35 pairs of
HCC tissue and corresponding normal tissue were adopted
to extract total RNA; cDNA was obtained via HiScript II Q
RT SuperMix for qPCR (+gDNA wiper) (Vazyme, Nanjing,
China). Ultimately, the real-time PCR system (ABI, Wal-
tham, MA, USA) was employed to proceed with the q-
PCR. We bought the primers for qRT-PCR from RiboBio
(Guangzhou, China). The base sequence of SFN was exhib-
ited as forward: TCTCTCTGGCCAAGACCACT, reverse:
TGATGAGGGTGCTGTCTTTG; PRKAA2: forward:
GTGAAGATCGGACACTACGTG, reverse: CTGCCACTT
TATGGCCTGTTA; PITX2: forward: CGGCAGCGGAC
TCACTTTA, reverse: GTTGGTCCACACAGCGATTT;
CDK1: forward: TTTTCAGAGCTTTGGGCACT, reverse:
AGGCTTCCTGGTTTCCATT; and GAPDH: forward:
TGAAGGTCGGAGTCAACGGATTTGGT, reverse: CATG
TGGGCCATGAGGTCCACCAC. GAPDH was considered
the internal control. The formula for fold change is set as
fold change = 2−ΔΔCT.

2.3. Obtaining and Analyzing Data. We obtained the clinical
feature sets and transcriptomic data of HCC samples retro-
spectively via the database of ICGC (https://dcc.icgc.org/),
TCGA (https://portal.gdc.cancer.gov/), and the GEO data-
base (GSE14520 dataset) (https://www.ncbi.nlm.nih.gov/
geo/). The TCGA-HCC dataset included 50 normal samples
and 374 tumor samples. The ICGC-HCC dataset included
202 normal samples and 243 tumor samples. The
GSE14520 dataset included 239 normal samples and 247
tumor samples. Via the GSEA HALLMARK_PI3K_AKT_
MTOR_SIGNALING gene set (Supplementary Table 1), we
adopted the data of 105 PAGs, the website of which was
http://www.broadinstitute.org/gsea/index.jsp.

2.4. Extracting the Intersection between DEGs and PAGs. To
extract genes (DEGs) that had different expressions in nor-
mal samples (n = 50) and HCC samples (n = 365), we
applied the “limma” package. jlog 2FCj > 2 was conducted
as the filter standard for extracting DEGs, on the condition
that p < 0:05 (otherwise, genes will not make sense). Differ-
entially expressed PAGs were extracted by taking the inter-
section between the DEGs and PAGs. The results were
presented by the volcano, the heatmap, and the boxplot.
The “BiocManager,” the “ggpubr,” and the “pheatmap” were
incorporated to the adopted R packages. Thereinto, the
Venn diagram was accomplished through the website
(https://bioinformatics.psb.ugent.be/webtools/Venn/),
which does well in taking the intersection between the DEGs
and PAGs.

2.5. Analysis of the Functional Enrichment of Differently
Expressed PAGs. The Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Gene Ontology (GO) enrichment
pathway analysis, which were proceeded in the Database
for Annotation, Visualization, and Integrated Discovery
(DAVID) website, analyzed the various physiological
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functions and pathological processes that were associated
with differentially expressed PAGs [21]. Molecular function
(MF), cellular component (CC), and biological process
(BP) were involved in the GO terms [22]. The results of
enrichment analysis were filtered by applying FDR < 0:05,
and the realization of visualization of the top ten significant
items was achieved by the bubbles and bar diagrams on the
application of R 4.0.2 software. The “enrich plot,” the
“ggpolt2,” the “DOSE,” and the “Cluster Profiler” were
incorporated in installed R packages.

2.6. GeneMANIA. GeneMANIA (http://genemania.org) [23]
is an online website which can be used to predict the gene
function, analyze the gene lists, and conduct the optimal
gene function annotation. In this study, the GeneMANIA
website was used to investigate the coexpressed genes of dif-
ferentially expressed PAGs and the underlying interactions
between PAGs and their coexpressed genes by using the
genomics and proteomics data.

2.7. Establishing PAPS. To verify the prognosis-related
PAGs, we adopted the multivariate Cox regression analyses
as well as univariate Cox regression analyses. The PAPS
was established based upon the multivariate Cox regression
analysis from TCGA database, followed by validating the
prognostic value in the ICGC database and GSE14520 data-
sets. The equation was explained in the following. The risk
score equals to A gene expression × R1 + B gene expression
× R2 + C gene expression × R3 +⋯ (R represented the value
of regression coefficient which was conducted by multivari-
ate regression analysis). Upon utilization of the “glmnet”
package via R software, it carried out the four-gene prognos-
tic signature that was obtained from PAGs. The receiver
operating characteristic (ROC) curve was adopted in terms
of the evaluation of the constructed prognostic features
regarding its predictive prognostic value. Meanwhile, the
Kaplan-Meier (K-M) curve was adopted by us for the same
purpose as well. We adopted the “rms” package to draw
the nomogram so as to predict the patients of their respec-
tive survival rates.

2.8. The Application of the ONCOMINE Database in This
Study. The ONCOMINE database (https://www.oncomine
.org/resource/login.html) [24] served as an online website
in respect of the tumor-related analyses. Among 44 types
of human cancers, CDK1, PITX2, PRKAA2, and SFN
expression was analyzed. The gene rank of the top 10%
genes, fold change = 2, and p = 0:0001 were considered to
be threshold parameters. The value of p was computed by
adopting the results which were given rise by the t-test of
the students.

2.9. cBioPortal Analysis. Several genomics data of human
cancers had been identified, analyzed, and visualized in a
perspective that was multidimensional by an online website,
namely, Cancer Genomics-related cBioPortal (https://www
.cbioportal.org/) [25]. The scope of analysis of this website
on the alternations of genomic profiles not merely contained
the assumed mutations and the alterations of copy numbers
but also incorporated deep deletion and amplification. The

cBioPortal website was also applied in the calculation
regarding the genetic changes in terms of CDK1, PITX2,
PRKAA2, and SFN.

2.10. The Application of Human Protein Atlas Database in
This Study. A human proteome program, namely, the
Human Protein Atlas (HPA) database (https://www
.proteinatlas.org/) [26], was derived from the Swedish data-
base. HPA functions as an online website regarding the anal-
ysis of various human proteins in respect of organs, tissues,
and cells by taking the advantage of the technology of prote-
omics. The technology of proteomics incorporated mass
spectrometry-based proteomics, systems biology, tran-
scriptomics, and antibody-based imaging. The data on the
protein expression of PITX2 was not included in the data-
base we herein referred to, but the data regarding the expres-
sion of CDK1, SFN, and PRKAA2 at protein levels can be
accessed via the HPA database.

2.11. Analytical Method. The Wilcoxon signed-rank test was
adopted in terms of analyzing the genes that had various
expressions in respect of the normal tissues and HCC tumor
tissues as well. The standardization of the sequencing data of
mRNA can be realized by the transformation of log2. The
sequencing data of mRNA was adopted via the employment
of R 4.0.2 software, and so was the clinical information. At
the same time, the Perl languages were adopted to take part
in this course. We investigated the enrichment of immune
cell infiltration among the samples by means of the CIBER-
SORT method [27]. The “parallel,” “e1071,” and “BiocMa-
nager” were incorporated into the R packages. The
correlation between the risk score and the infiltrating
immune cells was estimated by a couple of packages (i.e.,
“limma,” “BiocManager,” “ggtext,” “ggExtra,” “ggpubr,”
“ggplot2,” “scales,” and “vioplot”) in R software 4.0.2. The
differential half-maximal inhibitory concentration (IC50)
of chemotherapeutic drugs between groups of low risk and
high risk was computed by the “pRRophetic” package [28].
Sorafenib, Axitinib, Docetaxel, Gefitinib, Cyclopamine, and
Dasatinib were the drugs included.

3. Results

3.1. The Intersection between the DEGs and PAGs. The
TCGA was an online platform for the purpose of download-
ing both the sequencing data of mRNA and homologous
clinical information in terms of 50 normal tissue samples
as well as 374 HCC tissue samples. M stage, N stage, gender,
TNM stage, grade, T stage, and age were what were incorpo-
rated regarding the clinicopathological information. Via the
HALLMARK_PI3K_AKT_MTOR_SIGNALING gene set of
GSEA (Supplementary Table 1), 105 PAGs were obtained.
Preceding experiments had indicated that the 105 genes
were highly correlated with the PI3K/AKT/mTOR pathway.
The Wilcoxon signed-rank test and the “limma” R package
identified 3921 DEGs between normal tissues in HCC
(jlog FCj > 2, FDR < 0:05) and tumor tissues. Nine upregu-
lated PAGs were further identified by taking the intersection
between the DEGs and PAGs (Figure 1(a)) and achieved its
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visualization by the application of the volcano plot (Figure 1
(b)). The boxplot (Figure 1(d)) and heatmap (Figure 1(c))
were employed in terms of presenting the nine PAGs of its
various expressions as well.

3.2. The Results of GO and KEGG Function Enrichment
Analyses. The verification of the biological processes as well
as underlying pathways which were associated with nine
PAGs was achieved by the GO and KEGG analyses. The
most crucial BP was the G1/S transition that regulates the
mitotic cell cycle, the most correlated CC was “nuclear
speck,” and the most relevant MF was “histone kinase activ-
ity” (Figure 2(a)). “Rap1 signaling pathway” was the most
crucial signaling pathway (Figure 2(b)). The interactions
between the nine PAGs and the coexpressed genes are exhib-
ited in Figure 2(c).

3.3. Four Prognostic PAGs Were Identified, and PAPS Was
Constructed. In identifying the prognostic PAGs, we adopted
multivariate Cox regression. In the meantime, we adopted
univariate Cox regression analysis as well. The univariate
Cox regression analysis determined 6 prognosis-related
PAGs correlated with the OS of HCC patients, which were
involved in E2F1, PITX2, PRKAA2, PLCB1, SFN, and

CDK1 (Figure 3(a)). As was visualized in Figure 3(b), we
eventually identified CDK1, SFN, PRKAA2, and PITX2 by
conducting multivariate Cox regression analysis. The regres-
sion coefficients can be visualized as well (Table 1). Follow-
ing the expression data of CDK1, PITX2, PRKAA2, and
SFN which were chosen and their corresponding regression
coefficients, we established PAPS. The equation being
applied in this experiment was PAPS = CDK1 expression ∗
0:222894 + PITX2 expression ∗ 0:443949 + SFN expression
∗ 0:116124 + the expression level of PRKAA2 expression ∗
0:204509. The above equation was applied in the calculation
of the patients regarding their risk scores. Based on the
median risk score (Figure 3(c)), the PAPS categorized the
HCC patients as low risk and high risk. The scatterplot
presented that patients’ survival will reduce following the
increment of the risk score; the dead patients increased
(Figure 3(d)). As was presented in the heatmap (Figure 3
(e)), in the low-risk group and the high-risk group, there
existed differential CDK1, PITX2, PRKAA2, and SFN
expression. It was observed in the K-M curve that HCC
patients of high risk had a lower probability of survival
than low-risk patients (p = 4:817 E − 05; Figure 3(f)). There
were as many as 185 samples, respectively, in groups of
low risk and high risk.
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Figure 1: The intersection between the DEGs and PAGs was obtained. (a) 3921 DEGs were identified between normal tissues
(jlog FCj > 2, FDR < 0:05) and tumor tissues. Nine upregulated PAGs were further identified by taking the intersection between the
DEGs and PAGs. (b) Nine upregulated PAGs achieved their visualization by the application of the volcano plot. (c) The heatmap was
employed in terms of presenting the nine PAGs of its various expressions. (d) The boxplot was employed in terms of presenting the nine
PAGs of its various expressions.
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3.4. A Higher Prognostic Value of PAPS than That of Various
Clinicopathological Features Can Be Obtained. In terms of
the investigation of the independent prognostic value of
PAPS, univariate and multivariate Cox regression analyses
were adopted by us in the experiment. In terms of the reli-
ability of our study, we also applied a number of clinicopath-

ological characteristics as interfering factors during the
process. The clinicopathologic characteristics incorporated
tumor grade, tumor N stage, tumor M stage, tumor T stage,
patients’ age, and patients’ gender. From Figures 4(a) and 4
(b), we can conclude that PAPS may be an independent
prognostic factor for HCC because p < 0:001 and hazard
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Figure 2: (a) The verification of the biological processes which was associated with nine PAGs was achieved by the GO analyses. (b) The
verification of the underlying pathways which was associated with nine PAGs was achieved by the KEGG analyses. (c) The interactions
between the nine PAGs and the coexpressed genes were exhibited.
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ratio > 1. The ROC curve was applied for the purpose of
comparing the prognostic value in various clinicopathologi-
cal features and in the constructed PAPS. The result of a
higher prognostic value of PAPS (AUC = 0:736) than that
of various clinicopathological features (AUC ≤ 0:511)
(Figure 4(c)) can be obtained from the test. The ROC curve
assessed the reliability of PAPS. Meanwhile, the area under
the ROC curve played a crucial role statistically; Figure 4
(d) presented that the AUC values of 1 year, 2 years, and 3
years were 0.737, 0.704, and 0.694, respectively.

3.5. The Upregulation of Four PAGs in HCC. Compared with
normal tissue samples through the ONCOMINE database
(Supplementary Figure 1A), the expression of mRNA in
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Figure 3: (a) Six prognosis-related PAGs related to the OS of hepatocellular carcinoma patients were determined. (b) CDK1, SFN, PRKAA2,
and PITX2 were eventually identified. (c) The PAPS categorized the HCC patients as low risk and high risk based on the median risk score.
(d) The scatterplot presented that patients’ survival will reduce following the increment of the risk score; the dead patients increased. (e) As
was presented in the heatmap, in the low- and high-risk cohort, there existed differential CDK1, PITX2, PRKAA2, and SFN expression. (f) It
was observed in the K-M curve that hepatocellular carcinoma patients of low risk had a higher probability of prognosis than high-risk
patients.

Table 1: Four PAGs (CDK1, PITX2, PRKAA2, and SFN) were
eventually identified by conducting a multivariate Cox regression
analysis in HCC.

Gene id Coefficient HR HR.95L HR.95H p value

SFN 0.116124 1.123135 1.029512 1.225273 0.008925

PRKAA2 0.204509 1.226922 1.011449 1.488299 0.037941

PITX2 0.443949 1.558850 1.049609 2.315162 0.027815

CDK1 0.222894 1.249688 1.043175 1.497084 0.015579

Note: PAGs: phosphatidylinositol 3-kinases (PI3Ks)/protein kinase B
(AKT)/mammalian target of rapamycin (mTOR)-associated genes; HCC:
hepatocellular carcinoma; HR: hazard ratio.
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PRKAA2, SFN, and CDK1 was all promoted in HCC tissue
samples. Nevertheless, the data regarding the expression of
PITX2 was not incorporated into the ONCOMINE
database. The protein levels of PRKAA2, SFN, and CDK1
were upregulated in tumor tissue on the basis of the
Human Protein Atlas (HPA) database (Supplementary
Figure 1B). Data associated with the expression of PITX2
was not incorporated in HPA. We thereafter applied the
cBioPortal online tool to identify the four PAGs of their
genetic alternations in HCC. The deep deletion, the
amplification, and the missense mutation were all within
the observation of the alternation as a result, and the
amplification was the most common phenomenon
(Supplementary Figure 1C). Compared with the
corresponding normal tissue (Figure 5), the qRT-PCR
ultimately confirmed the upregulation of SFN, PRKAA2,
PITX2, and CDK1 in tumor tissue. The tumor tissue and
corresponding normal tissue were collected from 35 pairs
of clinical samples.

3.6. The Positive Correlation of Clinicopathological Features
and PAPS. Further, we explored the association between
clinicopathological features and PAPS. The data we adopted
consisted of the sequencing data of mRNA and homologous
clinical information, and we obtained them via TCGA data-
base. It can be drawn from the experiment that the risk score
correlated with the T classification (p = 0:00015; Supplemen-
tary Figure 2C), the grade (p = 1:8E − 07; Supplementary
Figure 2B), and the stage (p = 7:9E − 05; Supplementary
Figure 2A), and the SFN expression was correlated to the
grade (p = 0:032; Supplementary Figure 2D). The
expression of PRKAA2 was correlated with the T
classification (p = 0:049; Supplementary Figure 2G), the
grade (p = 0:00035; Supplementary Figure 2F), and the
stage (p = 0:022; Supplementary Figure 2E). The expression
of PITX2 was correlated with T classification (p = 0:00094;
Supplementary Figure 2I) and stage (p = 0:00011;
Supplementary Figure 2H). The expression of CDK1 was also
related to the stage (p = 0:0034; Supplementary Figure 2J),
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Figure 4: (a) The PAPS had great prognostic value for HCC patients. (b) The PAPS had great independent prognostic value for HCC
patients. (c) The constructed PAPS had better prognostic value than various clinicopathological features in HCC. (d) The PAPS had
great prognostic value for 1-year, 2-year, and 3-year survival of HCC patients.
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the grade (p = 4:5E − 08; Supplementary Figure 2K), and the T
classification (p = 0:004; Supplementary Figure 2L).

3.7. PAPS Presented Great Prognostic Value in GEO
(GSE14520) and ICGC Database. We thereafter downloaded
GEO (GSE14520) and ICGC database in terms of the verifi-
cation of the effectiveness and the accuracy of PAPS. In the
test set of the GSE14520 dataset, we classified the HCC
patients as low risk and high risk based on the value of the
risk score shown in Figure 6(a). In the scatterplot (Figure 6
(b)), the survival time of patients decreased considerably as
the patients’ risk scores increased. The heatmap (Figure 6
(c)) recognized and presented the evident differential expres-
sions of CDK1, PITX2, PRKAA2, and SFN. The K-M curves
revealed that a high-risk group had shorter survival than the
low-risk group (p = 1:812E − 04; Figure 6(d)). The ROC
curves revealed that PAPS was better in the predictive signif-
icance for 1-year, 2-year, and 3-year survival (1-year AUC
equaled 0.632, 2-year AUC equaled 0.646, and 3-year AUC

equaled 0.650; Figure 6(e)). For the betterment of the identi-
fication of the prognostic value of PAPS, the data that was
derived from the ICGC database was thereafter utilized by
us. We also divided the HCC patients into groups of low risk
and high risk based on the value of the risk score (Figure 7
(a)). Likewise, the survival time of patients has to a large
extent decreased when the patients’ risk score increased
(Figure 7(b)). The evident differential expressions of 4 PAGs
(CDK1, PITX2, PRKAA2, and SFN) in the ICGC database
(Figure 7(c)) were recognized as well as being presented by
the heatmap. In the K-M curve, the survival probability of
patients with low risk was higher than that with high risk
(p = 6:493E − 05; Figure 7(d)). The ROC curve also showed
that this feature was more predictive of 1-year, 2-year, and
3-year survival (1-year AUC equaled 0.784, 2-year AUC
equaled 0.727, and 3-year AUC equaled 0.758; Figure 7(e)).
Furthermore, the predictive nomogram was constructed for
HCC patients. The nomogram was established upon PAPS
and various clinicopathological features, which could
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Figure 5: Comparing with the corresponding normal tissue, the qRT-PCR ultimately confirmed the upregulation of (a) SFN, (b) PRKAA2,
(c) PITX2, and (d) CDK1 in tumor tissue.
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Figure 6: (a) In the test set of the GSE14520 dataset, the HCC patients were classified as low risk and high risk based on the value of the risk
score. (b) In the scatterplot, the survival time of patients decreased considerably as the patients’ risk scores increased. (c) The evident
differential expression of CDK1, PITX2, PRKAA2, and SFN was recognized and presented in the heatmap. (d) A high-risk group had
shorter survival than the low-risk group in the K-M curves. (e) The PAPS was better in the predictive significance for 1-year, 2-year and
3-year survival in ROC curves.
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Figure 7: For the betterment of the identification of the prognostic value of PAPS, the data that was derived from the ICGC database was
thereafter utilized by us. (a) The HCC patients were divided into groups of low risk and high risk based on the value of the risk score. (b) The
survival time of patients has to a large extent decreased when the patients’ risk score increased. (c) The evident differential expressions of
four PAGs (CDK1, PITX2, PRKAA2, and SFN) in the ICGC database were recognized as well as being presented by heatmap. (d) In the
K-M curve, the survival probability of patients with low risk was higher than that with high risk. (e) The ROC curve showed that this
signature was more predictive of 1-year, 2-year, and 3-year survival.
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estimate the survival risk in monitoring HCC patients. The
survival of HCC patients in 1 year, 3 years, and 5 years
was all in the prediction of the total point (Figure 8(a)).
Meanwhile, a good consistency between the realistic out-
come (1 year, 3 years, and 5 years) and the predictive sur-
vival in TCGA database (Figures 8(b)–8(d)) was revealed
by the calibration chart of PAPS.

3.8. The PAPS Was Positively Correlated with Immune Cell
Infiltration and the Expression Levels of Immune
Checkpoints. In terms of exploring the predictive roles of
PAPS in TME, the concrete constituent of infiltrating
immune cells in HCC swatches was calculated with the
CIBERSORT method. Subsequently, we conducted a corre-
lation analysis of the relative proportion of infiltrating
immune cells and PAPS in HCC. The results indicated that
the risk score of PAPS was significantly positively correlated
with the relative proportion of CD8+ T cells (cor = 0:55),
CD4 activated memory T cells (cor = 0:54), and the follicular
helper T cells (cor = 0:32) (Figure 9(a)). The inefficiency
regarding the functioning of immune checkpoint inhibitors
in some of the HCC patients was revealed by recent studies
[29], but the reason for it had not been fully explained.
Therefore, the investigation of the correlation between the
PAPS and a couple of immune checkpoint expression
(TIGIT, PD-L1, CD96, LAG3, PD-L2, TIM3, CTLA4, PD-
1) was conducted by us. And we have exhibited the results
in Figure 9(b). The results indicated that there existed a pos-
itive association between the risk score of PAPS and the
expression of PD-1 (cor = 0:47), TIGIT (cor = 0:85), TIM-3
(cor = 0:35), BTLA (cor = 0:54), LAG-3 (cor = 0:99), and
CTLA-4 (cor = 0:82). Compared to that in the low-risk
group (Figure 9(c)), CTLA-4, TIM-3, TIGIT, and PD-1
had a more evident expression in groups of high risk. It
revealed that PAPS could serve as a reflection regarding
the above immune checkpoint expression. The predictive
ability of PAPS was immense regarding immune checkpoint
inhibitors of their sensitivity in HCC.

3.9. The PAPS Presented the Differential Drug Sensitivity
between the Groups of Low Risk and High Risk. By analyzing
the association between the drug sensitivity and risk score,
we aimed to explore the clinical applications of PAPS. The
experiment indicated that the group of low risk obtained a
lower IC50 value of sorafenib (p = 0:025; Figure 10(a)), Axi-
tinib (p = 1:3E − 08; Figure 10(b)), Docetaxel (p = 3:2E − 08;
Figure 10(c)), Gefitinib (p = 0:00025; Figure 10(d)), Cyclopa-
mine (p = 1:2E − 15; Figure 10(e)), and Dasatinib
(p = 1:9E − 07; Figure 10(f)). As shown in Figure 10, the
lower IC50 values represented the higher drug sensitivity.

4. Discussion

Though a giant leap had been made, respectively, upon the
progress of prognosis prediction, diagnosis, and treatment
strategies of HCC, HCC still accounted for the leading cause
of cancer death all over the world [30]. The heterogeneous
malignancy was characterized by possessing complicated
molecular subtypes with genetic and genomic alterations

[31]. Especially the PI3K/AKT/mTOR pathway that per-
forms an essential effect on the tumorigenesis of HCC
including proliferation, metastasis, and resistance to chemo-
therapy, any alterations of the PI3K/AKT/mTOR pathway
could cause pathological processes of hepatocellular carci-
noma [32]. In clinical trials of HCC, the inhibitory agents
of the PI3K/AKT/mTOR pathway were completely investi-
gated and assessed [33]. For example, sorafenib had better
therapeutic efficacy in combination with PI3K inhibitors
(PI-103) by targeting the PI3K/AKT/mTOR pathway [34].
However, only a part of patients can benefit from the inhib-
itory agents because of different molecular profiles [33].
Therefore, it is reasonable to identify a prognostic signature
based on PAGs and validate its predictive performance for
predicting chemotherapy response in HCC.

The current study showed that it is crucial to set up an
early predictive model for prognosis when it comes to
human cancer [35, 36], and various therapeutic strategies
are supposed to be established in line with the diverse prog-
nosis of patients. At the same time, an emerging trend indi-
cated that the researchers would be willing to identify
molecular signatures for predicting prognosis, which was
constructed by integrating genomics with bioinformatics
[37]. Therefore, we attempted to establish a powerful model
for prognosis prediction and chemotherapy response evalu-
ation by using bioinformatic methods, which can provide
precious directions for guiding clinical intervention. The
PAPS was developed by utilizing the transcriptome data
and clinicopathological information from TCGA-HCC spec-
imens, followed by conducting the verification of the prog-
nostic value in ICGC-HCC specimens and GSE14520-HCC
specimens as well. Nine differently expressed PAGs were
determined, which were correlated with various biological
processes and signaling pathways. In particular, the PI3K/
AKT pathway was involved in them. Subsequently, we
employed the Cox regression analysis to identify four
prognosis-related PAGs (CDK1, PITX2, PRKAA2, and
SFN), which were utilized to develop PAPS. The upregula-
tion of CDK1, PITX2, PRKAA2, and SFN was confirmed
in our clinical samples.

Emerging evidence determined that TME was pivotal for
cancer development and progression [38, 39]. Giannone
et al. proposed that hyperactivation of the PI3K/AKT path-
way could induce the immune tolerance in TME, thereby
lowering the chemotherapy response of immune checkpoint
inhibitors (ICIs) [17]. Jiang et al. mentioned that the hyper-
activation of the PI3K/AKT pathway was correlated with the
immune microenvironment and the response to chemother-
apy in tumor cells [40]. HCC, known as a malignant tumor,
was always with cirrhosis and chronic liver inflammation.
And gene markers’ expression in some HCC cases indicated
the presence of an immune response, which provides new
insights into the immunotherapy of HCC [41]. However, a
large quantity of HCC patients presented a relatively low
response to immunotherapy [42]. The prognosis of HCC
patients was widely recognized to be correlated with acti-
vated innate immune as well as the inflammatory gene
expression of TILs [43, 44]. Therefore, we further employed
the CIBERSORT algorithm to calculate the relative ratio of
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TILs in HCC samples, and we evaluated the relation of the
PAPS and the proportion of TILs in HCC. TILs were corre-
lated with HCC prognosis and potent to be immunothera-
peutic targets in HCC [45]. The present study
demonstrated that PAPS was correlated with the relative
proportion of follicular helper T cells, CD4 activated mem-
ory T cells, and CD8 T cells. Liu et al. mentioned that the
HCC patients with PD-1+ TIGIT+ type of CD8+ T cells
were related to rapid cancer progression and poor prognosis
[46]. The exhaustion of Tfh cells was caused by the upregu-
lation of PD-1 in HCC, which was correlated with the pro-
gressive tumor stage [47]. The reduced Tfh cells had the
potential to be a therapeutic target as well as a prognostic
biomarker in HCC [48]. It follows that the PAPS has the
potential to predict immune cell infiltration as well as prog-
nosis evaluation. A significant advance in immunotherapy of
HCC had been achieved, especially applying ICIs may
become optional therapeutics [49]. Increasing evidence indi-
cated that targeting PD-1/CTLA-4 may recover antitumor
immunity [50]. Targeted therapeutics targeting PD-L1/PD1
(nivolumab and pembrolizumab) may be a promising

subsequent-line therapy in HCC, but the efficacy of the
above agents was relatively low [51]. T cell immunoglobulin
mucin-3 (TIM-3) was hailed as a new immune checkpoint
and had the potential to direct the prognosis; it even pre-
sented a great therapeutic effect against tumors in HCC
[52]. TIGIT was also involved in the immune surveillance
in TME and had an antitumor effect [53], and it also induced
immunosuppression towards CD8 T cells [54]. The upregu-
lation of LAG-3 was detected in infiltrating CD8+ T cells,
and it was even reported to inhibit T cell response in HCC
[55]. Therefore, we established the PAPS to evaluate the
reactivity of immune checkpoint inhibitors. Our research
indicated that the group of high risk obtained higher scores
of TIM-3, PD-1, CTLA-4, and TIGIT, suggesting that PAPS
could distinguish the HCC patients who had a higher
response to immune checkpoint inhibitors. The great pre-
diction efficiency of PAPS applied to predict the response
to immune checkpoint inhibitors provided a foundation
for clinical immunotherapeutic decision-making. Hopefully,
the novel PAPS has the potential to promote the process of
HCC individualized treatment.
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Figure 8: (a) The total point showed the survival prediction of HCC patients in 1-year survival, 3-year survival, and 5-year survival. (b–d)
Good consistency between the realistic outcome (1-year, 3-year, and 5-year) and the predictive survival in TCGA database was revealed by
the calibration chart of PAPS.
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The nomogram composed of PAPS and various clinico-
pathological characteristics was further established and vali-
dated, which is aimed at improving the predictive accuracy
of PAPS. For example, Ying et al. had developed a nomo-
gram composed of inflammatory response biomarkers,
which had a great ability to enhance the predictive power
for colorectal cancer patients suffering surgical resection
[56]. In general, the novel prediction method had great
potentialities in enhancing predictive accuracy as well as
predicting survival for individual patients [57].

Our study indicated that PAPS can also effectively sug-
gest the sensitivity of several chemotherapeutic drugs in
HCC. Sorafenib was regarded as the first-line drug for
HCC chemotherapy, and it was under the approval of the

Food and Drug Administration (FDA) [58]. However, the
resistance of sorafenib to the drug still existed, and the
PI3K/AKT pathway was considered the underlying mecha-
nism of resistance to sorafenib [59]. Our study demonstrated
that PAPS was composed of four PAGs, and PAPS can
reveal the drug sensitivity to sorafenib in HCC. Some
research indicated that Axitinib was considered the
second-line drug for advanced HCC, and it had moderate
activity and tolerable toxicity for HCC patients with the fail-
ure of sorafenib monotherapy [60]. In pancreatic adenocar-
cinoma, the drug resistance to Axitinib can be reversed by
applying the PI3K inhibitor [61]. Our research presented
great predictive performance of PAPS in predicting the drug
sensitivity to Axitinib in HCC; it suggested that the PI3K/
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Figure 9: (a) The correlation over the relative proportion of infiltrating immune cells and PAPS in HCC was presented. (b) The correlation
between the PAPS and a couple of immune checkpoint expression (TIGIT, PD-L1, CD96, LAG3, PD-L2, TIM3, CTLA4, and PD-1) was
presented. (c) Compared to that of the low-risk group, CTLA-4, TIM-3, TIGIT, and PD-1 had a more evident expression in groups of
high risk.
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AKT/mTOR pathway might be involved in the mechanism
of Axitinib resistance in HCC, but the concrete mechanism
should be further explored. Interestingly, Docetaxel induced
HCC cell apoptosis and inhibited the PI3K/AKT signaling
pathway [62]; it was consistent with our results showing that
PAPS can exhibit the drug sensitivity of Docetaxel in HCC.
Gefitinib had a great therapeutic effect as the epidermal

growth factor receptor (EGFR) inhibitor; it was capable of
restraining the proliferation of HCC cells and triggering
the apoptosis of the cell by combining with genistein as well
[63]. In particular, its therapeutic effects can be strengthened
in combination with blocking the PI3K/AKT/mTOR signal-
ing pathway in triple-negative breast cancers [64]. It was in
accordance with our results showing PAPS predicted the

2

Low

0.025

Sorafenib

High
Risk

So
ra

fe
ni

b 
se

ns
iti

vi
ty

 (I
C5

0)
3

4

5

Risk

High
Low

(a)

–2.5

Low

1.3e–08

Axitinib

High
Risk

A
xi

tin
ib

 se
ns

iti
vi

ty
 (I

C5
0)

0.0

2.5

5.0

Risk

High
Low

(b)

–7.5

Low

3.2e–08

Docetaxel

High
Risk

D
oc

et
ax

el
 se

ns
iti

vi
ty

 (I
C5

0)

–5.0

–2.5

0.0

Risk

High
Low

(c)

Low

0.00025
Gefitinib

High
Risk

G
ef

iti
ni

b 
se

ns
iti

vi
ty

 (I
C5

0)

0

5

Risk

High
Low

(d)

2.5

Low

1.2e–15
Cyclopamine

High
Risk

Cy
clo

pa
m

in
e s

en
sit

iv
ity

 (I
C5

0)

5.0

7.5

Risk

High
Low

(e)

–15
Low

1.9e–07

Dasatinib

High
Risk

D
as

at
in

ib
 se

ns
iti

vi
ty

 (I
C5

0)

0

–5

–10

5

10

15

Risk

High
Low

(f)

Figure 10: The PAPS presented the differential drug sensitivity between the group of low risk and high risk. (a) The group of low risk
obtained a lower IC50 value of sorafenib. (b) The group of low risk obtained a lower IC50 value of Axitinib. (c) The group of low risk
obtained a lower IC50 value of Docetaxel. (d) The group of low risk obtained a lower IC50 value of Gefitinib. (e) The group of low risk
obtained a lower IC50 value of Cyclopamine. (f) The group of low risk obtained a lower IC50 value of Dasatinib.
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drug sensitivity of Gefitinib well in HCC. Cyclopamine, the
inhibitor of the sonic hedgehog (Shh) signaling pathway,
may regulate cell apoptosis by downregulating Bcl-2 expres-
sion [65]. The radiosensitivity of HCC patients may enhance
in combination with the Shh inhibitor [66]. Dormoy et al.
had put forward that Cyclopamine also suppressed the acti-
vation of the PI3K/AKT pathway in renal cell carcinoma
[67]. The present study showed that PAPS can imply the
drug sensitivity of Cyclopamine in HCC. However, whether
the PI3K/AKT pathway can be inhibited by Cyclopamine in
HCC needs to be further explored. Dasatinib was reported to
enhance the antitumor effect of irinotecan in HCC, and it
provided HCC patients with a neoteric insight in respect of
the new strategy [68]; the chemotherapy response to Dasati-
nib can also be revealed by PAPS in our study.

Our research has several strengths. Firstly, the predictive
performance of PAPS was confirmed in multiple datasets,
and PAPS showed great reliability and robustness in different
datasets. Secondly, a comprehensive analysis of the correlation
of the PAPS with immune infiltration and chemotherapy
response was conducted. What is more, the expression of
PITX2, PRKAA2, SFN, and CDK1 was validated in clinical
samples via qRT-PCR technology. However, our study also
had some limitations, the concrete carcinogenic mechanism
of PITX2, PRKAA2, SFN, and CDK1 in HCC should be fur-
ther explored in cell and animal experiments, and the expres-
sion levels of PITX2, SFN, CDK1, and PRKAA2 should be
verified in larger size of clinical HCC samples. Western blot
and immunohistochemistry technologies could be involved
in further study.

5. Conclusions

For the purpose of verifying PAGs’ prognostic value as well as
figuring out the correlation between PAGs and the corre-
sponding immune infiltration in HCC, a new PI3K/AKT/
mTOR pathway-associated prognostic signature (PAPS) was
established by us with integrated bioinformatic methods. It
presented immense predictive performances in the prognosis
of HCC patients. Meanwhile, the nomogram composed of
PAPS and various clinicopathological characteristics enhanced
the predictive accuracy of PAPS. We trained the prognostic
value of PAPS via TCGA database and thereafter had it tested
via the GEO database (GSE14520 dataset) and ICGC database.
A conclusion can be drawn that compared with the other clin-
icopathological characteristics, there is a better prognostic
value in PAPS, and PAPS was also correlated with immune
microenvironment and chemotherapy response in HCC. The
PAPS may hopefully present the immunotherapeutic efficacy
and function as a valuable tool to direct the precise treatment
for HCC patients.
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Supplementary 1. Supplementary Figure 1: (A) compared
with normal tissue samples through the ONCOMINE data-
base, the expression of mRNA in PRKAA2, SFN, and CDK1
was all promoted in HCC tissue samples. Nevertheless, the
data regarding the expression of PITX2 was not incorpo-
rated into the ONCOMINE database. (B) The protein levels
of PRKAA2, SFN, and CDK1 were upregulated in tumor tis-
sue on the basis of the Human Protein Atlas (HPA) data-
base. Data associated with the expression of PITX2 was not
incorporated in HPA. (C) We thereafter applied the cBio-
Portal online tool to identify the four PAGs of their genetic
alternations in HCC.

Supplementary 2. Supplementary Figure 2: the association of
clinicopathological features and PAPS (risk score). (A) The
PAPS correlated with the tumor stage. (B) The PAPS correlated
with the tumor grade. (C) The PAPS correlated with the tumor
T classification. (D) The expression of SFN was associated with
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the tumor grade. (E) The expression of PRKAA2 was corre-
lated with the tumor stage. (F) The expression of PRKAA2
was correlated with the tumor grade. (G) The expression of
PRKAA2 was correlated with the tumor T classification. (H)
The expression of PITX2 was correlated with the tumor stage.
(I) The expression of PITX2 was correlated with tumor T clas-
sification. (J) The CDK1 expression was also correlated with
the tumor stage. (K) The CDK1 expression was correlated with
tumor grade. (L) The CDK1 expression was correlated with
tumor T classification.

Supplementary 3. Supplementary Table 1: the gene list of 105
PAGs downloaded from the GSEA online website.

References

[1] H. Sung, J. Ferlay, R. L. Siegel et al., “Global cancer statistics
2020: GLOBOCAN estimates of incidence and mortality
worldwide for 36 cancers in 185 countries,” CA: A Cancer
Journal for Clinicians, vol. 71, pp. 209–249, 2021.

[2] J. M. Llovet, J. Zucman-Rossi, E. Pikarsky et al., “Hepatocellu-
lar carcinoma,” Nature Reviews. Disease Primers, vol. 2, no. 1,
article 16018, 2016.

[3] N. Fujiwara, S. L. Friedman, N. Goossens, and Y. Hoshida,
“Risk factors and prevention of hepatocellular carcinoma in
the era of precision medicine,” Journal of Hepatology, vol. 68,
no. 3, pp. 526–549, 2018.

[4] S. Famularo, S. Di Sandro, A. Giani et al., “Recurrence patterns
after anatomic or parenchyma-sparing liver resection for hepa-
tocarcinoma in a Western population of cirrhotic patients,”
Annals of Surgical Oncology, vol. 25, no. 13, pp. 3974–3981,
2018.

[5] P. D. Leiphrakpam, S. Chowdhury, J. Wang, J. D. Black, and
C. Are, “The role and therapeutic implications of PI3K signal-
ing pathway in cancer,” Journal of Surgical Oncology, vol. 123,
no. 1, pp. 39–41, 2021.

[6] S. Whittaker, R. Marais, and A. X. Zhu, “The role of signaling
pathways in the development and treatment of hepatocellu-
lar carcinoma,” Oncogene, vol. 29, no. 36, pp. 4989–5005,
2010.

[7] X. Wang, X. Wang, Y. Xu et al., “Effect of nicastrin on hepato-
cellular carcinoma proliferation and apoptosis through PI3K/
AKT signalling pathway modulation,” Cancer Cell Interna-
tional, vol. 20, no. 1, p. 91, 2020.

[8] Y.-F. Yang, M.-F. Zhang, Q.-H. Tian et al., “SPAG5 interacts
with CEP55 and exerts oncogenic activities via PI3K/AKT
pathway in hepatocellular carcinoma,” Molecular Cancer,
vol. 17, no. 1, p. 117, 2018.

[9] X. Wang, K. Dong, Q. Jin, Y. Ma, S. Yin, and S. Wang, “Upreg-
ulation of lncRNA FER1L4 suppresses the proliferation and
migration of the hepatocellular carcinoma via regulating
PI3K/AKT signal pathway,” Journal of Cellular Biochemistry,
vol. 120, no. 4, pp. 6781–6788, 2019.

[10] M. Iñarrairaegui, I. Melero, and B. Sangro, “Immunotherapy
of hepatocellular carcinoma: facts and hopes,” Clinical Cancer
Research, vol. 24, no. 7, pp. 1518–1524, 2018.

[11] B. Heinrich, C. Czauderna, and J. U. Marquardt, “Immuno-
therapy of hepatocellular carcinoma,” Oncology Research and
Treatment, vol. 41, no. 5, pp. 292–297, 2018.

[12] Y. Zongyi and L. Xiaowu, “Immunotherapy for hepatocellular
carcinoma,” Cancer Letters, vol. 470, pp. 8–17, 2020.

[13] P. R. Galle, A. Forner, J. M. Llovet et al., “EASL clinical practice
guidelines: management of hepatocellular carcinoma,” Journal
of Hepatology, vol. 69, no. 1, pp. 182–236, 2018.

[14] W.-H. Xu, Y. Xu, J. Wang et al., “Prognostic value and immune
infiltration of novel signatures in clear cell renal cell carcinoma
microenvironment,” Aging, vol. 11, no. 17, pp. 6999–7020,
2019.

[15] P. I. Ribeiro Franco, A. P. Rodrigues, L. B. de Menezes, and
M. Pacheco Miguel, “Tumor microenvironment components:
allies of cancer progression,” Pathology-Research and Practice,
vol. 216, no. 1, article 152729, 2020.

[16] N. Chaoul, S. Mancarella, L. Lupo, G. Giannelli, and F. Dituri,
“Impaired anti-tumor T cell response in hepatocellular carci-
noma,” Cancers, vol. 12, no. 3, p. 627, 2020.

[17] G. Giannone, E. Ghisoni, S. Genta et al., “Immuno-metabolism
and microenvironment in cancer: key players for immuno-
therapy,” International Journal of Molecular Sciences, vol. 21,
no. 12, p. 4414, 2020.

[18] J. Long, A. Wang, Y. Bai et al., “Development and validation of
a TP53-associated immune prognostic model for hepatocellu-
lar carcinoma,” eBioMedicine, vol. 42, pp. 363–374, 2019.

[19] L. Pan, J. Fang, M.-Y. Chen et al., “Promising key genes asso-
ciated with tumor microenvironments and prognosis of hepa-
tocellular carcinoma,” World Journal of Gastroenterology,
vol. 26, no. 8, pp. 789–803, 2020.

[20] F.-P. Zhang, Y.-P. Huang, W.-X. Luo et al., “Construction of a
risk score prognosis model based on hepatocellular carcinoma
microenvironment,” World Journal of Gastroenterology,
vol. 26, no. 2, pp. 134–153, 2020.

[21] D. W. Huang, B. T. Sherman, and R. A. Lempicki, “Systematic
and integrative analysis of large gene lists using DAVID bioin-
formatics resources,” Nature Protocols, vol. 4, no. 1, pp. 44–57,
2009.

[22] M. Kanehisa and S. Goto, “KEGG: Kyoto Encyclopedia of
Genes and Genomes,” Nucleic Acids Research, vol. 28, no. 1,
pp. 27–30, 2000.

[23] M. Franz, H. Rodriguez, C. Lopes et al., “GeneMANIA update
2018,” Nucleic Acids Research, vol. 46, no. W1, pp. W60–W64,
2018.

[24] D. R. Rhodes, J. Yu, K. Shanker et al., “_ONCOMINE : a can-
cer microarray database and integrated data-mining plat-
form,” Neoplasia, vol. 6, no. 1, pp. 1–6, 2004.

[25] J. Gao, B. A. Aksoy, U. Dogrusoz et al., “Integrative analysis of
complex cancer genomics and clinical profiles using the cBio-
Portal,” Science Signaling, vol. 6, no. 269, 2013.

[26] P. J. Thul and C. Lindskog, “The human protein atlas: a spatial
map of the human proteome,” Protein Science, vol. 27, no. 1,
pp. 233–244, 2018.

[27] A. M. Newman, C. L. Liu, M. R. Green et al., “Robust enumer-
ation of cell subsets from tissue expression profiles,” Nature
Methods, vol. 12, no. 5, pp. 453–457, 2015.

[28] P. Geeleher, N. Cox, and R. S. Huang, “pRRophetic: an R pack-
age for prediction of clinical chemotherapeutic response from
tumor gene expression levels,” PLoS One, vol. 9, no. 9, article
e107468, 2014.

[29] I. El Dika, D. N. Khalil, and G. K. Abou-Alfa, “Immune check-
point inhibitors for hepatocellular carcinoma,” Cancer,
vol. 125, no. 19, pp. 3312–3319, 2019.

[30] J. D. Yang and J. K. Heimbach, “New advances in the diagnosis
and management of hepatocellular carcinoma,” BMJ, vol. 371,
article m3544, 2020.

16 Disease Markers

https://downloads.hindawi.com/journals/dm/2022/7545666.f3.docx


[31] H. G. Woo and Y. J. Kim, “Multiplatform genomic roadmap of
hepatocellular carcinoma: a matter of molecular heterogene-
ity,” Hepatology, vol. 68, no. 5, pp. 2029–2032, 2018.

[32] F. Rahmani, A. Ziaeemehr, S. Shahidsales et al., “Role of regu-
latory miRNAs of the PI3K/AKT/mTOR signaling in the path-
ogenesis of hepatocellular carcinoma,” Journal of Cellular
Physiology, vol. 235, no. 5, pp. 4146–4152, 2020.

[33] Q. Zhou, V. W. Lui, and W. Yeo, “Targeting the PI3K/Akt/
mTOR pathway in hepatocellular carcinoma,” Future Oncol-
ogy, vol. 7, no. 10, pp. 1149–1167, 2011.

[34] R. Gedaly, P. Angulo, C. Chen et al., “The role of PI3K/mTOR
inhibition in combination with sorafenib in hepatocellular car-
cinoma treatment,” Anticancer Research, vol. 6, 2012.

[35] L. Wan, N. Tan, N. Zhang, and X. Xie, “Establishment of an
immune microenvironment-based prognostic predictive
model for gastric cancer,” Life Sciences, vol. 261, article
118402, 2020.

[36] T. Yifan, L. Zheyong, C. Miaoqin, S. Liang, and C. Xiujun, “A
predictive model for survival of gallbladder adenocarcinoma,”
Surgical Oncology, vol. 27, no. 3, pp. 365–372, 2018.

[37] Z. Bing, J. Tian, J. Zhang, X. Li, X. Wang, and K. Yang, “An
integrative model of miRNA and mRNA expression signature
for patients of breast invasive carcinoma with radiotherapy
prognosis,” Cancer Biotherapy and Radiopharmaceuticals,
vol. 31, no. 7, pp. 253–260, 2016.

[38] P. Berraondo, L. Minute, D. Ajona, L. Corrales, I. Melero, and
R. Pio, “Innate immune mediators in cancer: between defense
and resistance,” Immunological Reviews, vol. 274, no. 1,
pp. 290–306, 2016.

[39] M. T. Elola, F. Ferragut, S. P. Méndez-Huergo, D. O. Croci,
C. Bracalente, and G. A. Rabinovich, “Galectins: multitask sig-
naling molecules linking fibroblast, endothelial and immune
cell programs in the tumor microenvironment,” Cellular
Immunology, vol. 333, pp. 34–45, 2018.

[40] N. Jiang, Q. Dai, X. Su, J. Fu, X. Feng, and J. Peng, “Role of
PI3K/AKT pathway in cancer: the framework of malignant
behavior,” Molecular Biology Reports, vol. 47, no. 6,
pp. 4587–4629, 2020.

[41] O. Waidmann, “Recent developments with immunotherapy
for hepatocellular carcinoma,” Expert Opinion on Biological
Therapy, vol. 18, no. 8, pp. 905–910, 2018.

[42] M. Liu, J. Zhou, X. Liu et al., “Targeting monocyte-intrinsic
enhancer reprogramming improves immunotherapy efficacy
in hepatocellular carcinoma,” Gut, vol. 69, no. 2, pp. 365–
379, 2020.

[43] W. E. Naugler, T. Sakurai, S. Kim et al., “Gender disparity in
liver cancer due to sex differences in MyD88-dependent IL-6
production,” Science, vol. 317, no. 5834, pp. 121–124, 2007.

[44] V. Chew, C. Tow, M. Teo et al., “Inflammatory tumour micro-
environment is associated with superior survival in hepatocel-
lular carcinoma patients,” Journal of Hepatology, vol. 52, no. 3,
pp. 370–379, 2010.

[45] N. Rohr-Udilova, F. Klinglmüller, R. Schulte-Hermann et al.,
“Deviations of the immune cell landscape between healthy
liver and hepatocellular carcinoma,” Scientific Reports, vol. 8,
no. 1, p. 6220, 2018.

[46] X. Liu, M. Li, X. Wang et al., “PD-1+ TIGIT+ CD8+ T cells are
associated with pathogenesis and progression of patients with
hepatitis B virus-related hepatocellular carcinoma,” Cancer
Immunology, Immunotherapy, vol. 68, no. 12, pp. 2041–2054,
2019.

[47] Z.-Q. Zhou, D.-N. Tong, J. Guan et al., “Follicular helper T cell
exhaustion induced by PD-L1 expression in hepatocellular
carcinoma results in impaired cytokine expression and B cell
help, and is associated with advanced tumor stages,” American
Journal of Translational Research, vol. 8, no. 7, p. 2926, 2016.

[48] Y. Jia, Z. Zeng, Y. Li et al., “Impaired function of CD4+ T follic-
ular helper (Tfh) cells associated with hepatocellular carcinoma
progression,” PLoS One, vol. 10, no. 2, article e0117458, 2015.

[49] J. M. Llovet, R. Montal, D. Sia, and R. S. Finn, “Molecular ther-
apies and precision medicine for hepatocellular carcinoma,”
Nature Reviews. Clinical Oncology, vol. 15, no. 10, pp. 599–
616, 2018.

[50] C. Choi, G. S. Yoo, W. K. Cho, and H. C. Park, “Optimizing
radiotherapy with immune checkpoint blockade in hepatocel-
lular carcinoma,” World Journal of Gastroenterology, vol. 25,
no. 20, p. 15, 2019.

[51] V. Longo, O. Brunetti, A. Gnoni et al., “Emerging role of
immune checkpoint inhibitors in hepatocellular carcinoma,”
Medicina, vol. 55, no. 10, p. 698, 2019.

[52] F. Liu, Y. Liu, and Z. Chen, “Tim-3 expression and its role in
hepatocellular carcinoma,” Journal of Hematology & Oncology,
vol. 11, no. 1, p. 126, 2018.

[53] Q. Zheng, J. Xu, X. Gu et al., “Immune checkpoint targeting
TIGIT in hepatocellular carcinoma,” American Journal of
Translational Research, vol. 12, no. 7, p. 3212, 2020.

[54] C. Zhang, Y. Wang, X. Xun et al., “TIGIT can exert immuno-
suppressive effects on CD8+ T cells by the CD155/TIGIT sig-
naling pathway for hepatocellular carcinoma in vitro,” Journal
of Immunotherapy, vol. 43, no. 8, pp. 236–243, 2020.

[55] F.-J. Li, Y. Zhang, G.-X. Jin, L. Yao, and D.-Q.Wu, “Expression
of LAG-3 is coincident with the impaired effector function of
HBV- specific CD8+ T cell in HCC patients,” Immunology Let-
ters, vol. 150, no. 1–2, pp. 116–122, 2013.

[56] H.-Q. Ying, Q.-W. Deng, B.-S. He et al., “The prognostic value
of preoperative NLR, d-NLR, PLR and LMR for predicting
clinical outcome in surgical colorectal cancer patients,” Medi-
cal Oncology, vol. 31, no. 12, p. 305, 2014.

[57] G. Zhang, Y. Wu, J. Zhang et al., “Nomograms for predicting
long-term overall survival and disease-specific survival of
patients with clear cell renal cell carcinoma,” OncoTargets
and Therapy, vol. 11, pp. 5535–5544, 2018.

[58] S. Xia, Y. Pan, Y. Liang, J. Xu, and X. Cai, “The microenviron-
mental and metabolic aspects of sorafenib resistance in hepa-
tocellular carcinoma,” eBioMedicine, vol. 51, article 102610,
2020.

[59] Y. Zhu, B. Zheng, H. Wang, and L. Chen, “New knowledge of
the mechanisms of sorafenib resistance in liver cancer,” Acta
Pharmacologica Sinica, vol. 38, no. 5, pp. 614–622, 2017.

[60] Z. Lin, B. Chen, Y. Hung et al., “Amulticenter phase II study of
second-line axitinib for patients with advanced hepatocellular
carcinoma failing first-line sorafenib monotherapy,” The
Oncologist, vol. 25, no. 9, pp. e1280–e1285, 2020.

[61] C. D. Hudson, T. Hagemann, S. J. Mather, and N. Avril, “Resis-
tance to the tyrosine kinase inhibitor axitinib is associated with
increased glucose metabolism in pancreatic adenocarcinoma,”
Cell Death & Disease, vol. 5, no. 4, pp. e1160–e1160, 2014.

[62] X. Zhang, J. Shao, X. Li, L. Cui, and Z. Tan, “Docetaxel pro-
motes cell apoptosis and decreases SOX2 expression in
CD133-expressing hepatocellular carcinoma stem cells by sup-
pressing the PI3K/AKT signaling pathway,” Oncology Reports,
vol. 41, no. 2, pp. 1067–1074, 2018.

17Disease Markers



[63] Y. Tong, M.Wang, H. Huang et al., “Inhibitory effects of genis-
tein in combination with gefitinib on the hepatocellular carci-
noma Hep3B cell line,” Experimental and Therapeutic
Medicine, vol. 18, no. 5, pp. 3793–3800, 2019.

[64] A. El Guerrab, M. Bamdad, Y.-J. Bignon, F. Penault-Llorca,
and C. Aubel, “Co-targeting EGFR and mTOR with gefitinib
and everolimus in triple-negative breast cancer cells,” Scientific
Reports, vol. 10, no. 1, p. 6367, 2020.

[65] X. Chen, Q. Cheng, M. She et al., “Expression of sonic Hedge-
hog signaling components in hepatocellular carcinoma and
cyclopamine-induced apoptosis through Bcl-2 downregula-
tion in vitro,” Archives of Medical Research, vol. 41, no. 5,
pp. 315–323, 2010.

[66] C.-L. Tsai, F.-M. Hsu, K.-Y. Tzen, W.-L. Liu, A.-L. Cheng, and
J. C.-H. Cheng, “Sonic Hedgehog inhibition as a strategy to
augment radiosensitivity of hepatocellular carcinoma,” Jour-
nal of Gastroenterology and Hepatology, vol. 30, no. 8,
pp. 1317–1324, 2015.

[67] V. Dormoy, S. Danilin, V. Lindner et al., “The sonic hedgehog
signaling pathway is reactivated in human renal cell carcinoma
and plays orchestral role in tumor growth,”Molecular Cancer,
vol. 8, no. 1, p. 123, 2009.

[68] L. Xu, Y. Zhu, J. Shao et al., “Dasatinib synergises with irino-
tecan to suppress hepatocellular carcinoma via inhibiting the
protein synthesis of PLK1,” British Journal of Cancer,
vol. 116, no. 8, pp. 1027–1036, 2017.

[69] Z. Wang, C. Xiong, S. Chen et al., A novel PI3K/AKT signaling
pathway-associated prognostic signature correlated with immune
infiltration in hepatocellular carcinoma, Research Square, 2021.

18 Disease Markers


	PI3K/AKT/mTOR Pathway-Associated Genes Reveal a Putative Prognostic Signature Correlated with Immune Infiltration in Hepatocellular Carcinoma
	1. Introduction
	2. Materials and Methods
	2.1. Collect Clinical Specimens
	2.2. Real-Time Reverse Transcription-PCR
	2.3. Obtaining and Analyzing Data
	2.4. Extracting the Intersection between DEGs and PAGs
	2.5. Analysis of the Functional Enrichment of Differently Expressed PAGs
	2.6. GeneMANIA
	2.7. Establishing PAPS
	2.8. The Application of the ONCOMINE Database in This Study
	2.9. cBioPortal Analysis
	2.10. The Application of Human Protein Atlas Database in This Study
	2.11. Analytical Method

	3. Results
	3.1. The Intersection between the DEGs and PAGs
	3.2. The Results of GO and KEGG Function Enrichment Analyses
	3.3. Four Prognostic PAGs Were Identified, and PAPS Was Constructed
	3.4. A Higher Prognostic Value of PAPS than That of Various Clinicopathological Features Can Be Obtained
	3.5. The Upregulation of Four PAGs in HCC
	3.6. The Positive Correlation of Clinicopathological Features and PAPS
	3.7. PAPS Presented Great Prognostic Value in GEO (GSE14520) and ICGC Database
	3.8. The PAPS Was Positively Correlated with Immune Cell Infiltration and the Expression Levels of Immune Checkpoints
	3.9. The PAPS Presented the Differential Drug Sensitivity between the Groups of Low Risk and High Risk

	4. Discussion
	5. Conclusions
	Data Availability
	Ethical Approval
	Consent
	Disclosure
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments
	Supplementary Materials

