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Abstract: Sphingolipids represent a class of structural related lipids involved in membrane biology
and various cellular processes including cell growth, apoptosis, inflammation and migration. Over
the past decade, sphingolipids have become the focus of intensive studies regarding their involvement
in infectious diseases. Pathogens can manipulate the sphingolipid metabolism resulting in cell
membrane reorganization and receptor recruitment to facilitate their entry. They may recruit specific
host sphingolipid metabolites to establish a favorable niche for intracellular survival and proliferation.
In contrast, some sphingolipid metabolites can also act as a first line defense against bacteria based
on their antimicrobial activity. In this review, we will focus on the strategies employed by pathogenic
Neisseria spp. to modulate the sphingolipid metabolism and hijack the sphingolipid balance in the
host to promote cellular colonization, invasion and intracellular survival. Novel techniques and
innovative approaches will be highlighted that allow imaging of sphingolipid derivatives in the host
cell as well as in the pathogen.
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1. Introduction

Sphingolipids form a diverse group of structural related lipids, composed of a sph-
ingoid backbone (sphingosine, dihydrosphingosine (dhSph) or phytosphingosine) cou-
pled via an amid bond to a fatty acid side chain of various length. The great diversity
of sphingolipids is achieved through numerous different head moieties ranging from
two hydroxyl groups (ceramide) to highly complex sugar structures (glycosphingolipids,
e.g., GM1) [1,2]. The physiological functions of sphingolipids are as diverse as their struc-
ture and include cell differentiation, growth and death, as well as senescence and inflamma-
tory responses [2]. Sphingolipids are essential for human cells and can be found in every cell
type and in various compositions. Therefore, it is not surprising that sphingolipids, and en-
zymes involved in the sphingolipid pathway, are hijacked by different pathogens including
bacteria (e.g., Neisseria meningitidis, N. gonorrhoeae, Chlamydia spp., Pseudomonas aeruginosa,
Staphylococcus aureus or Salmonella), viruses (e.g., rhinovirus, measles and Ebola virus) and
parasites (e.g., Trypanosoma cruzi) during various steps of their infection process (reviewed
in [3–7]).

De novo synthesis of sphingolipids begins in the endoplasmic reticulum with the
condensation of palmitoyl-CoA and L-serine, which is catalyzed by the serine palmi-
toyltransferase (SPT). SPT generates 3-keto-dihydrosphingosine, which is then reduced
to dihydrosphingosine (dhSph). The N-linked addition of a fatty acid to dhSph, cat-
alyzed by dihydroceramide synthase, results in generation of dihydroceramide, which
is subsequently desaturated to ceramide in mammalian cells. A large number of com-
plex sphingolipids are then derived from ceramides: (i) addition of sugar groups to the
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ceramide backbone results in formation of complex glycosphingolipids, including cere-
brosides, and (ii) further addition of sialic acids leads to the formation of gangliosides.
The transfer of a phosphocholine headgroup from phosphatidylcholine to ceramide finally
results generation of sphingomyelin (SM). SM deacylase then generates sphingosylphos-
phorylcholine (Lysosphingomyelin). On the other hand, ceramides can be generated by
the action of different sphingomyelinases, that catalyze the hydrolysis of SM into ceramide
and phosphorylcholine. Ceramide can be further metabolized to ceramide-1 phosphate by
ceramide kinases. The reverse reaction is catalyzed by ceramide-1-phosphate phosphatase.
Otherwise, ceramide can be converted to sphingosine, which can be phosphorylated by
sphingosine kinases to sphingosine-1-phosphate (S1P). The reverse reaction is catalyzed
by S1P phosphatases, or it can be irreversibly degraded by S1P lyase to ethanolamine
phosphate and hexadecenal.

Numerous enzymes of the sphingolipid metabolism can be regulated in response
to extra- and intracellular stimuli and in turn serve as regulators of sphingolipid levels.
During the last decade some of these enzymes have been identified and described as
targets, which are attacked by bacteria or viruses in various ways, in particular the acid
and/or neutral sphingomyelinases [8–16] and the sphingosine kinases [15,17–21]. In this
review we will highlight the impact of the pathogenic Neisseria spp., N. meningitidis and
N. gonorrhoeae on those enzymes (Figure 1).
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Figure 1. Schematic overview of the sphingolipid metabolic pathway. Both, N. meningitidis and N. gonorrhoeae are able to
modulate sphingomyelinase (SMase) activity in host cells, either the acid SMase (aSMase) or neutral SMase 2 (nSMase2).
Intriguingly, high sphingosine levels interfere with growth of intracellular gonococci or exhibit growth inhibitory effects on
N. meningitidis under in vitro conditions. SPT: Serine palmitoyl transferase; (dh)Sph: (diydro)sphingosine; CerS: Ceramide
synthase; CDase: Ceramidase; dhCer: dihydroceramide; DEGS: dihydroceramide desaturase; SMS: sphingomyelin synthase;
(dh)SM: (dihydro)sphingomyelin; SPC: sphingosylphosphorylcholine; CerK: ceramide kinase; C1P: ceramide 1-phosphate;
CPP: ceramide 1-phosphate phosphatase; SphK: sphingosine kinase; S1P: sphingosine 1-phosphate; SPP: S1P phosphatase;
aSMase: acid sphingmyelinase; nSMase2: neutral sphingomyelinase 2.

2. Sphingomyelinases

Sphingomyelinases (SMases) are classified into five types based on pH optimum,
subcellular localization and cation dependence, including the lysosomal acid sphingomyeli-
nase (L-aSMase), secretory acid sphingomyelinase (S-aSMase), alkaline sphingomyelinase
(alk-SMase), Mg-dependent neutral sphingomyelinase (nSMase) and Mg-independent
nSMase [22,23]. Goni and Alonso added the group of bacterial SMases as a further sixth
type to this classification [24].
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3. Acid Sphingomyelinase

The acid SMase (aSMase) is one of the best-characterized SMases with an optimal pH
of 5 and is either entering the lysosomal trafficking pathway or is constitutively secreted
from the Golgi complex to the extracellular space, via the default secretory pathway [22,25].
The enzyme functions predominantly in the degradation of SM, primarily in the lysosomes.
Noteworthy, the L-aSMase also shows extracellular activity on the outer leaflet of the cell.
The activity in the extracellular space, with its neutral pH, is achieved through an acidic
microenvironment created by fusion of the lysosome and outer membrane and the release
of V1 H(+)-ATPases [26]. In contrast, the activity of the S-aSMase at the neutral pH of the
blood or CSF remains a point of discussion [25]. A genetic deficiency of lysosomal aSMase
results in Niemann–Pick disease type A and B [27], an autosomal-recessive lipid storage
disorder accompanied by massive accumulation of SM in lysosomes.

The enzyme was first isolated from urine as a monomeric 72-kDa glycoprotein with a
61-kDa polypeptide core. ASMases are encoded by the SM phosphodiesterase 1 (SMPD1)
gene located on the short arm of chromosome 11. Notably, aSMase exists in two forms:
a zinc (Zn2+)-independent L-aSMase and a Zn2+-dependent secreted S-aSMase that arise
from alternative trafficking of a single protein precursor. Currently more than 100 missense
mutations in SMPD1 are listed in the human Gene Mutation Database; however, not every
sequence variation in SMPD1 is detrimental.

ASMase consists of an N-terminal saposin domain, a proline-rich connector and a
C-terminal catalytic domain [28]. The saposin domain of aSMase likely plays an important
role in orienting the active site of the catalytic domain towards the membrane [28]. Notably,
the crystal structure of aSMase was dissolved in 2016 [29].

Activation of aSMase can be initiated in several ways. For example, UV radiation
leads to aSMase phosphorylation at serine residue 508 by protein kinase C-delta (PKCδ,)
resulting in its activation [30,31]. Other described pathways for aSMase activation include
acidification of endosomal compartments, proteolytic cleavage of the N-terminus or reg-
ulation of activity via oxidation (e.g., by reactive oxygen species (ROS)) of a C-terminal
cysteine residue [32–36]. In addition, diacylglycerol (DAG), which is formed by the hydrol-
ysis of phosphatidylcholine via phosphatidylcholine-specific phospholipase C, is known to
be involved in the activation of aSMase by activating PKCδ [30,37].

A prerequisite for the activity of L-aSMase at the outer leaflet of the plasma membrane
is its translocation from the lysosome the outer membrane. The fusion of membrane
proximal lysosomes is known to appear in a calcium-dependent manner as part of cellular
repair mechanisms after plasma membrane injury [38,39].

4. Neutral Sphingomyelinase

Four mammalian neutral SMases (nSMases) have been identified so far. Just like
the aSMases, nSMases function in the hydrolysis of SM to generate ceramide and phos-
phorylcholine. NSMase2 is currently the best studied isoform and is involved in bone
mineralization, exosome formation and cellular stress responses [40–47]. In this review
we will focus on nSMase2 which plays a key role in the pathogenesis of N. gonorrhoeae
infection of epithelial cells and will refer to excellent reviews that highlight the biochemical
properties and roles of the other nSMases [48,49].

The human nSMase2 was identified and cloned in 2000 by Hofmann and colleagues [50].
The activity of nSMase2 has an optimum pH of 7.4, depends on Mg2+ ions, and nSMases
are presumed to be activated by unsaturated fatty acids and several anionic phospholipids
(APL) [50]. NSMase2 has two major functional domains: a hydrophobic N-terminal domain
(NTD) associated with the membrane, and a C-terminal catalytic domain (CAT), which
is cytosolic.

The NTD is an integral-membrane domain and contains two hydrophobic segments,
which are predicted to be helical but do not span the membrane [51]. The activation mech-
anism of nSMase2 is still not fully understood; in vitro data, however, indicate that several
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APLs, including phospatidylserine, phospatidylglycerol and cardiolipin are required for
full activity [50,52,53].

Notably, nSMase2 harbors two palmitoylation sites that are important for correct
subcellular localization and contribute to nSMase2 membrane association [51]. NSMase2
is localized to the plasma membrane, Golgi and recycling compartments. Upon treat-
ment with TNF-α, phorbol 12-myristate 13-acetate (PMA) or hydrogen peroxide, nSMase2
translocates from the Golgi to the plasma membrane. This translocation may regulate
activity through the access to SM or activating APLs.

5. Sphingosine Kinases

Sphingosine kinases (SphKs) catalyze the phosphorylation of sphingosine to generate
S1P. The Spinster-2 transporter secretes S1P from the cytosol into the extracellular space
where it binds to the surface G-protein-coupled receptors (S1PR1-5) which modulate a
large number of different cellular processes, such as embryonic angiogenesis, lymphocyte
recirculation, heart rate and brain endothelial permeability [54–59]. Two different SphK
isoforms are known to date (reviewed in [60]).

SphK1 was first identified in mice and rats as a mainly cytosolic, Mg2+-dependent
enzyme with a broad pH optimum between pH 6.6 and 7.7 [61,62]. Human SphK1 can be
differentiated into three splice variants, hSphK1a, hSphK1b and hSphK1c with a respective
size of 384 amino acids (aa), 398aa and 470aa and comparable kinetics but differing tissue
distribution [63–65]. Several mechanisms induce SphK1 translocation from cytosol to the
plasma membrane, e.g., extracellular-related-Kinase (ERK) 1/2-mediated phosphorylation
of Ser225, phosphatidyl serine interaction, Fyn/Lyn kinase interaction or Ca2+ signaling via
calcium- and integrin-binding protein 1 bringing SphK1 in close contact with its substrate
sphingosine and thereby increasing S1P production [66–72]. Recent studies also suggest
that translocation might be dependent on SphK1 dimerization [73]. Additionally, the
before-mentioned modifications and interactions may directly influence SphK1 activity
through conformational changes, which are now verifiable, since SphK1 crystal structure
was resolved by Wang and colleagues to allow modeling of the ATP- and the sphingosine-
binding domains [74]. Besides Spinster-2-transporter-mediated export of S1P, SphK1 itself
is also secreted to the extracellular space, where it contributes to plasma-vasculature S1P
gradient [58,63,75–77].

SphK2 is predominantly found in the nucleus because of its N-terminal nucleus
localization sequence, where it influences DNA synthesis and causes cell cycle arrest [78–80].
However, SphK2 can also be exported upon protein kinase D-induced phosphorylation [81].
SphK2 appears in three splice variants, namely SphK2a, SphK2b and SphK2c with a size of
618aa, 654aa and 716aa, respectively [82,83]. SphK2b is the main variant, with a 1.3-fold
higher activity compared to SphK2a [64,79]. SphK2 has a broader substrate specificity
than SphK1 but favors dhSph over sphingosine [84]. In contrast to SphK1, SphK2 shows
pro-apoptotic features dependent on its subcellular localization, e.g., through increase
of ceramide levels at the endoplasmic reticulum or Bcl2-homologous-antagonist/killer
(BAK)-induced cytochrome c release from mitochondria [85–87]. On the other hand,
mitochondrial S1P production by SphK2 is essential for cytochrome c oxidase assembly and
ERK1/2-mediated phosphorylation of cytosolic or plasma-membrane-associated SphK2
promotes survival [88–90]. The latter might reflect the fact that both kinases can potentially
compensate for each other [91,92].

Several studies have demonstrated that SphKs and their product, S1P, enhance the
replication of various viruses, including influenza, measles, and hepatitis B virus (reviewed
in [93]). Moreover, SphK-mediated S1P production is also targeted by bacteria, as shown
for P. aeruginosa, Escherichia coli, Streptococcus pneumoniae and N. gonorrhoeae during their
interaction with host cells [15,17–19]. Recent findings from our group also indicate a
transient activation of SphKs during N. meningitidis infection (unpublished data). Here, we
will highlight the role of SphKs in the infection process of N. gonorrhoeae.
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6. Neisseria spp.

The genus Neisseria consists of a large group of Gram-negative betaproteobacteria with
approximately 30 different species [94]. Whereas the majority of the genus is considered as
non-pathogenic human colonizers, two members are associated with pathological infec-
tions: N. meningitidis, the major cause of bacterial septicemia and meningitis worldwide
and N. gonorrhoeae, the etiological agent of gonorrhea, a sexually transmitted infection
(STI) [95,96].

7. Role of Sphingolipids in N. meningitidis Pathobiology

N. meningitidis transmission from a host to another occurs by aerosols and is followed
by the colonization of the nasopharynx, where N. meningitidis resides as a non-pathogenic
commensal in 10–40% of the healthy population [97,98]. In rare cases, and by still unknown
mechanisms, N. meningitidis is able to overcome the epithelial barrier and reaches the
bloodstream. Once in the bloodstream, N. meningitidis proliferates and may cause severe
vessel damage (pupura fulminans) and, after crossing the endothelium of the blood–
cerebrospinal fluid barrier (BCSFB), infects the meninges [99]. Although potent vaccines
are available, N. meningitidis is still the leading cause of bacterial meningitis in toddlers
and young adults with 500,000 to 1.2 million infections per year and a case lethality rate
between 10% and 15% [100,101].

A crucial step in the pathogenesis of meningococcal meningitis is the disturbance
of the cerebral microvascular endothelial function, resulting in breakdown of the BCSFB.
Endothelial cells (ECs) of the BCSFB are characterized by strongly regulated endocytosis
and enhanced cell–cell contacts, mediated by specialized tight junction proteins [102]. The
outer membrane protein OpcA was identified as a potential contributor to N. meningitidis
invasion into brain ECs (BECs) [103,104]. It confers a tight association of the bacterium
to extracellular matrix proteins, such as vitronectin and fibronectin and OpcA interaction
with these factors leads to binding to endothelial αVβ3 integrin and/or α5β1-integrin on
BECs [103]. This interaction triggers cytoskeletal rearrangements and uptake of meningo-
cocci [105–107]. In addition to integrins, heparan sulphate proteoglycans (HSPGs) act as
cell receptors for the meningococcal OpcA invasin [108]. HSPGs are known to activate the
phosphatidylcholine-specific phospholipase C, leading to the release of diacylglycerol, a
well-characterized lipid second-messenger.

As mentioned in the introduction diacylglycerols can activate aSMases and inter-
estingly this pathway is triggered after meningococcal OpcA binding to HSPGs, finally
resulting in increase of ceramide on the host cell surface (Figures 2 and 3) [8,109]. Ceramides
in the outer leaflet of the plasma membrane then condense into so-called ceramide-enriched
membrane platforms (CRPs) [110]. CRPs offer a unique membrane composition, and it
was shown that the tyrosine kinase receptor ErbB2, important for meningococcal invasion,
clusters in these platforms [10].

Of note, cell culture-based experiments revealing the capability of N. meningitidis
to activate aSMase suggested a correlation with epidemiological data and clinical pre-
sentation. Multilocus sequence typing (MLST) analysis classifies meningococcal isolates
according to polymorphisms in seven housekeeping genes. Analysis of meningococcal
population by MLST suggests that disease-causing meningococci belong to particular
groups of related sequence types (STs), termed clonal complexes (CCs), particular CCs
that are overrepresented in disease isolates relative to their carriage prevalence and only
few so-called hyperinvasive lineages are responsible for most reported diseases [97,111].
Cell culture-based data showed that isolates of the ST-11 cc (lacking the opcA gene) barely
induced aSMase activation and ceramide release, correlating with significantly lower bac-
terial uptake by BECs [10]. Of note, isolates of the ST-11 cc are reported to cause severe
sepsis, but rarely meningitis.
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Besides OpcA, type 4 pili (T4P) also contribute to aSMase translocation, from mem-
brane proximal lysosomes, and CRP formation [11] (Figure 3). T4P mediates the initial
contact of N. meningitidis to eukaryotic cell surfaces, and are involved in bacterial move-
ment, also known as ‘twitching motility’, and transformation competence. Moreover,
T4P trigger calcium release and stress kinase signaling in the infected eukaryotic cell as
well as cytoskeletal rearrangements, and ‘cortical plaque’ formation [112,113]. They are
composed of a main component, the major pilin PilE, that assembles into a helical fiber.
The helical assembly of pilin into fibers relies on proteins located in or in the vicinity of the
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cytoplasmatic membrane [114]. In 2014 Bernard et al. showed that N. meningitidis utilizes
CD147, a member of the immunoglobulin superfamily, for T4P-dependent adhesion to
ECs and demonstrated the central role of CD147 for vascular colonization of pathogenic
meningococci [115]. Noteworthy, we demonstrated that interaction between T4P and
CD147 led to a calcium-dependent translocation of the L-aSMase from the lysosome to the
outer leaflet of the plasma membrane and its activation, followed by subsequent ceramide
release on BECs [11,115]. The increase of intracellular free calcium occurred through the
activation of inositol 1,4,5-trisphosphate receptors on the endoplasmic reticulum [116].
This finding was observed after infecting cells with living bacteria, as well as treatment of
the cells with pilus-enriched fractions [11] (Figure 3). The rise in intracellular free calcium
triggers cellular repair mechanisms in which membrane proximal lysosomes starts to fuse
with the membrane and thereby deliver aSMase to the surface [38].

Glycosphingolipids (GSLs) represent a subgroup of sphingolipids known for their
great variability and high abundance. GSLs, which are localized with surface-exposed
oligosaccharides in the outer leaflet of the plasma membrane, have been shown to act as
specific entry platforms for bacteria and their toxins such as Shiga toxin, cholera toxin
and other related AB5-subunit toxins [117–119]. We recently revealed for the first time
that the GSL monosialotetrahexosylganglioside (GM1) among the several gangliosides
may serve as a receptor for N. meningitidis to invade the endothelium of the BCSFB [120].
Experiments with the two native sphingolipids globotriaosylceramide (Gb3) and raft-
associated GM1, respectively, in bacterial invasion demonstrated that GM1 labeled by
Alexa Fluor 647 Cholera toxin B accumulated strongly around meningococci and thus
support infection [120]. In addition, inhibition of the meningococcal–GM1 interaction
by treatment with Cholera toxin B significantly reduced the ability of N. meningitidis to
invade the host cell [120]. However, the exact mechanism how N. meningitidis targets GSLs
remains elusive.

8. Role of Sphingolipids in N. gonorrhoeae Pathobiology

N. gonorrhoeae is the causative agent of gonorrhea, a STI, representing a major health-
care problem worldwide with nearly 80 million cases per year [95]. Pathology in females
occur in approximately 10–20% of the infected individuals and manifests primarily through
the activation of the host innate immune system leading to pelvic inflammatory disease
(PID). PID increases the risk for ectopic pregnancy, tubal-factor infertility and chronic
pelvic pain [121]. In contrast to females, infected males are often symptomatic and dis-
play typically purulent penile discharge and dysuria [122]. One of the main concerns of
N. gonorrhoeae infection is the development of strains resistant against almost all classes
of antibiotics including expanded-spectrum cephalosporins, while an effective vaccine is
lacking. Therefore, new treatment options are needed as well as an increased investment
into N. gonorrhoeae-specific drug discovery [123].

The first study to demonstrate that bacteria are able to activate SMases was conducted
by Grassmé and colleagues in 1997 [8]. They showed that N. gonorrhoeae is able to in-
crease aSMase activity and induce ceramide formation in non-phagocytic RT-112 human
bladder tumor cells [8]. Similar as shown for N. meningitidis, N. gonorrhoeae triggers aS-
Mase activation via interaction of an outer membrane protein (here Opa50), with HSPG
receptors of the syndecan family. In line with the data published for N. meningitidis, the
phosphatidylcholine-specific phospholipase C is activated after Opa50/HSPG interac-
tion followed by release of diacylglycerol, that finally leads to aSMase activation [8,10]
(Figure 3). Moreover, N. gonorrhoeae is capable to trigger aSMase activation downstream
of Opa52/CEACAM interaction in professional phagocytes [9] (Figure 3). In phagocytes
CRPs are linked to an increase in intracellular killing in the phagosome, as the fusion of
ceramide-containing phagosomes with late endosomes is induced [124].

If left untreated, N. gonorrhoeae can spread through the bloodstream and lead to dissem-
inated infection [125]. Disseminated gonococcal infections (DGI) occur in approximately
0.5 to 3 percent of adult patients infected with N. gonorrhoeae. The symptoms of DGI
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range from mild joint problems or isolated skin lesions without fever to polyarthritis and
high fever. Patients with DGI usually have no urogenital symptoms. Epidemiological
studies show a connection between DGI and the expression of PorB porin of serotype A
(PorBIA). The expression of serotype B gonococcal porin (PorBIB), on the other hand, is
associated with the development of the local infection. PorBIA mediates the rapid invasion
under phosphate-free conditions into the epithelial cell, which takes place via the binding
to the scavenger receptor expressed on endothelial cells (SREC-I) [12,126]. Interestingly,
PorBIA/SREC-I-initiated internalization triggers nSMase activation, in particular nSMase2,
whereas aSMase does not seem to play a role in the PorBIA-mediated invasion [12]. How-
ever, the exact mechanism by which nSMase2 is activated is unknown. As a consequence of
nSMase2 activation in response to PorBIA/SREC-I interaction, CRPs are formed and allow
the spatial organization of downstream signaling molecules such as phosphoinositol-3
(PI3) kinase [12].

Intriguingly, a recent published study indicated an important role of sphingosine in
the intracellular survival of N. gonorrhoeae, leading to the assumption that sphingosine
might be a crucial metabolite for the host cell to regulate the infection with intracellular
pathogens [18]. The antibacterial activity of sphingosine on numerous bacterial species or
fungi has already been described [127–129] and will be highlighted in a following para-
graph. Solger et al. demonstrated that the increase of intracellular sphingosine levels due
to inhibition of sphingosine kinases by various pharmacological inhibitors significantly im-
paired the survival of intracellular gonococci [18]. By using a recently developed clickable
azido-sphingosine this sphingolipid could be co-localized by confocal immunofluorescence
microscopy as well as expansion microscopy on the surface of intracellular gonococci [18].

9. Visualization of Sphingolipids in Neisseria spp.

Studying the interactions between (sphingo-)lipids and bacteria remains challenging
and very few tools allow for detection of (sphingo-)lipids in bacteria. Traditionally biochem-
ical, biophysical and structural methods are used to study e.g., lipid–lipid or lipid–protein
interactions in membranes [130]. Moreover, lipidomic approaches offer the opportunity to
quantify lipids extracted from tissues or even different cell organelles to yield novel informa-
tion of the global lipid composition under a variety of (patho)physiological conditions [131].
Advances to fluorescence microscopy opens up new avenues for nanoscale imaging and
tracking of lipids in living cells. Synthetic analogues such as borondipyrromethene (BOD-
IPY) sphingosine or 6-([N-(7-nitrobenz-2-oxa-1,3-dimensionaliazol-4-yl)amino]hexanoyl)
sphingosine (NBD-Cer) are commercially available and can be used in sphingolipid trans-
port and metabolism studies; however, these probes display huge fluorophores in their fatty
acid or sphingosine chains that may perturb membrane architecture. Ceramide-specific
antibodies have been successfully generated, though are mainly applied on fixed cells to
avoid artificial clustering of target molecules [110,132].

To overcome these limitations, ‘clickable’ sphingolipids with reactive groups have been
developed [133–138]. These groups react spontaneously with either an alkyne or a tetrazine
in a ‘click-chemistry’ reaction [139]. This novel tool has now successfully first been applied
to visualize uptake and localization of sphingolipids in mammalian cells [134,135]. For ex-
ample, azido-functionalized ceramides were incorporated in membranes of activated living
T cells [134]. These and further functionalized sphingolipids were also successfully applied
to N. meningitidis and N. gonorrhoeae [18,133,137,140], where they showed to exhibit bacteri-
cidal effects (outlined in the following paragraph). Confocal laser scanning microscopy
(CLSM) and imaging by direct stochastic optical reconstruction microscopy (dSTORM)
demonstrated homogeneous distribution of the clickable azido-modified ceramide ana-
logue in the bacterial membrane of N. meningitidis [133]. The clickable azido-modified
sphingosine could be co-localized by confocal immunofluorescence microscopy as well as
expansion microscopy on the surface of intracellular gonococci [18], further corroborating
the suggestion that the increase of intracellular sphingosine decreases intracellular survival
of the bacteria.
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10. Antimicrobial Activity of Sphingolipids against Pathogenic Neisseria spp.

In addition to the involvement of eukaryotic sphingolipids and their related metabolic
enzymes in the pathogenicity of Neisseria spp., another mode of interaction has been
uncovered in recent years. A subset of sphingolipid metabolites has been shown to
have growth inhibitory effects on bacteria as well as fungi [127,141–144]. The inhibition of
growth depends on the structure of the sphingolipid as well as on the microorganism. So far,
sphingosine in particular shows a promising antibacterial effect. Fischer et al. determined
the antimicrobial activity for sphingosine against E. coli, S. aureus and Corynebacterium spp.
with minimal inhibitor concentrations of 1.3 to 7.8 µg/mL [144,145]. Of note, inhaling
sphingosine in cystic fibrosis patients prevents respiratory infections and can even cure
an existing P. aeruginosa infection [146]. Furthermore, dihydrosphingosine shows a good
effectiveness against multiresistant Mycobacterium tuberculosis isolates [147]. Synthetic
analogues of dihydrosphingosine, which are also effective against M. tuberculosis, were
presented in 2009 [147].

An effective antibacterial activity of sphingosine against pathogenic Neisseria spp. was
first demonstrated for N. meningitidis by Bibel et al. in 1993 [127]. In addition, recently
published data demonstrated that short chain ceramides (C6-ceramide) and the synthetic
azido-modified analogue of C6-ceramide (ω-azido-C6-ceramide), initially developed for
monitoring sphingolipid dynamic in living mammalian cells as outlined above, also ex-
hibited an effective antibacterial activity against N. meningitidis and N. gonorrhoeae [133].
Importantly, the compound showed no cytotoxic effects on eukaryotic cells [133].

However, although the antimicrobial activity is known for a long time, the underling
mechanism of the growth inhibitory effect remains elusive. Recently, one publication
pointed towards a possible mechanism of the antimicrobial effect of sphingosine against
P. aeruginosa and E. coli. The authors demonstrated that bacterial membrane disruption is
induced by the interaction of the protonated primary amid of sphingosine with the highly
negatively charged cardiolipin in the plasma membrane of the bacteria [148]. This finding
provides a plausible explanation for the effect observed for sphingosine, but cannot explain
the antibacterial effect of short-chain ceramides and their analogues, where the primary
amid is reduced to a secondary amid for the coupling of the fatty acid side chain [133,137].

Of note, the native or an azido-modified analogue of sphingosine displayed an antimicro-
bial activity against Neisseria spp. even stronger than against E. coli and S. aureus [18,133,137],
whereas the synthetic analogue of C6-ceramide was completely inactive against E. coli and
S. aureus [133,137].

With the azido-modified ceramide and the azido-modified sphingosine, drug candi-
dates had been developed which also made it possible to visually follow and represent
their incorporation in bacteria with the aid of correlative light and electron microscopy.
Pre-embedding labeling used during this application added another level of versatility to
the super-resolution array tomography workflow. It enabled super-resolved localization
of incorporated fluorescent tags in the full ultrastructural background without on-section
labelling [137]. This novel approach allowed to clearly localize the analogues being in-
corporated in the outer membrane, resulting in its detachment from the inner membrane
and rupture. These findings could be substantiated by mass spectrometric analyses after
separation of both membranes [137].

11. Conclusions and Outlook

Sphingolipids display a tremendous structural variety, which is reflected by their
diverse involvement in cellular processes. Therefore, it is not surprising that pathogens
developed strategies to use this pathway for their advantages. This fact has been acknowl-
edged by the scientific community during the past decade, and the study of the interaction
between pathogens and host cell derived sphingolipids has become a focus of research
in infection biology. The development and combination of modern analytical techniques,
including mass spectrometry, super-resolution fluorescence microscopy and biorthogonal
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functional chemistry significantly improve our tools to investigate and understand the
interactions between pathogens and host host-derived sphingolipids.

Understanding the mechanisms of how pathogenic Neisseria spp. interact with the
host cell sphingolipid metabolism, may allow for identification of novel targets to treat,
or prevent infections caused by this pathogen. Of importance, the antimicrobial activity
observed for a subset of sphingolipids—and their azido-functionalized analogues—against
pathogenic Neisseria spp. may lead to the development of novel, sphingolipid-based,
antimicrobial compounds.
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