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Cancerlectins are cancer-related proteins that function as lectins. They have been identified through computational identification
techniques, but these techniques have sometimes failed to identify proteins because of sequence diversity among the cancerlectins.
Advancedmachine learning identificationmethods, such as support vectormachine and basic sequence features (n-gram), have also
been used to identify cancerlectins. In this study, various protein fingerprint features and advanced classifiers, including ensemble
learning techniques, were utilized to identify this group of proteins. We improved the prediction accuracy of the original feature
extraction methods and classification algorithms by more than 10% on average. Our work provides a basis for the computational
identification of cancerlectins and reveals the power of hybrid machine learning techniques in computational proteomics.

1. Introduction

Lectins, which can combine with sugars, are proteins that
are produced and secreted by animal and plant cells. These
proteins play a key role in cell-to-cell recognition and cellular
adhesion, especially cellular interactive adhesion, because
they contain many carbohydrate-combining sites. Cancerlect-
ins are well-known lectins because of their source, sequences,
binding site architecture, quaternary structure, and carbohy-
drate specificity.They participate in cancer-related processes,
such as tumor cell differentiation, cancer cell monitoring,
tumor tissue cell marking, and cancer metastasis.

Cancerlectins are typically identified through biological
experiments, but these are costly and inefficient. As such,
computational prediction approaches have been employed
to verify novel cancerlectin protein sequences and to obtain
cancerlectin candidates. Prediction accuracy is an important
parameter, which when optimized can reduce the cost of
computational prediction approaches. However, the accuracy

rates of existing calculation and prediction methods are
approximately 70%, which is unsatisfactory and thus should
be improved. In the current study, we evaluated different
feature extraction algorithms and classifiers to establish novel
combinatorial machine learning strategy that can improve
prediction accuracy.

Machine learning techniques instead of traditional
sequence alignment methods, such as PSI-BLAST [1],
HMMER [2], and HAlign [3], are often used to identify
special proteins. Among these identification techniques, a
support vectormachine is themost common classifier used in
computational proteomics, which involves various processes,
such as classifying protein subfamilies [4–6], predicting
protein structural classes [7], and identifying thermophilic
proteins [8]. Random forest is also a common classifier that
works via an ensemble learning strategy and performs well in
protein fold recognition [9]. In addition to random for-
est, heterogeneous basic classifiers are combined to classify
imbalances [10] and improve accuracy [11–13]. Bioinspired
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computing models and algorithms can also be used to
design promising classifiers, such as spiking neural models
[14–18] and evolutionary algorithms [19, 20]. All of these
advanced machine learning methods have demonstrated sat-
isfactory performance in cancerlectin identification, which
has inspired us to combine different classifiers and feature
extractors to optimize the accuracy of prediction. After com-
paring their efficiency and popularity, we chose the feature
extraction methods and classification algorithms mentioned
above to demonstrate the impact of machine learning on the
field of cancerlectin identification.

Protein features are more important than machine learn-
ing techniques for achieving the high accuracy of protein pre-
diction.The protein featuresmost commonly used for feature
extraction and classification are k-mer and Chou’s PseACC
representation [21, 22]. They perform well in a range of
applications, including predicting protein submitochondrial
locations [23], identifying Golgi-resident protein types [24],
predicting microkit protein localization [25], and identifying
bacteriophage virion proteins [26]. Position-specific scoring
matrix is another good option, but obtaining it is time-
consuming [16], which limits its application. In some instan-
ces, an analysis of protein secondary structures helps improve
classification accuracy. However, the extraction of secondary
structure features is time-consuming. Some studies have
reduced the feature dimensions for biological sequences,
such as by using the minimum Redundancy Maximum Rel-
evance (mRMR) [27, 28] and Max-Relevance-Max-Distance
(MRMD) [29]. Nevertheless, studies have yet to combine
hybrid multisource features, which is the main contribution
of the current work.

Relatedmachine learning strategies have yet to be applied
to distinguish cancerlectins from other lectins. Song and Pan
[30] and Kumar et al. [31] employed SVM but obtained only
approximately 70% accuracy. They tested basic sequence
features and disregarded multiview feature combination. In
addition Damodaran et al. [32] collected more than 500 can-
cerlectins, which are used here as a positive training set for
machine learning. In this study, we aim to examine additional
features and classifiers and to determine the optimal com-
bination of hybrid machine learning techniques that can be
used to achieve optimal accuracy in cancerlectin prediction.

2. Methods

2.1. Main Flow. Machine learning, which can be used in
protein mapping, has evolved from computational learning
theory and the field of pattern recognition. Algorithms are
initially used to extract the features of amino acids; different
classifiers are then employed to predict cancerlectins. Various
machine learning algorithms, which are more efficient and
accurate than traditional methods, such as SVM-Prot-based
feature extraction algorithm [33] and libSimpleVote classifier,
are also utilized to predict cancerlectins. Therefore, the
efficient combination of feature extraction algorithms and
classifiers has been extensively investigated.

Although numerous feature extraction algorithms and
classifiers have been widely used and studied in the field of

bioinformatics and in the computing industry, the combina-
tion of these two strategies has rarely been investigated and
the development of efficient cancerlectin prediction methods
has seldom been performed. Furthermore, the combination
of feature extraction and classifiers has been disregarded by
most researchers because of the large data requirement and
laboriousness of the work.

In the current study, various feature extraction algorithms
are investigated and different feature dimensions are com-
bined to determine an accurate feature vector. Feature extrac-
tion results are then applied to different classifiers to predict
cancerlectins. After performing these trials, themost accurate
and efficient combination of feature extraction algorithm and
classifier can be determined and the accuracy rate can be
calculated. Thus, this study aims to evaluate existing feature
extraction methods and to identify the appropriate dimen-
sions that can be used to predict cancerlectins with the high-
est accuracy. An appropriate classifier is also necessary to pre-
dict cancerlectins. Other tools and methods are also utilized
to reduce the dimension of feature vectors and to help
improve the accuracy of prediction. The following concepts
are considered in our study:

(1) Various feature vector files in .arff are calculated on
the basis of a specific database (CancerLectinDB), and
different dimensions are combined to create .arff files.

(2) Different classifiers are used to predict the mapping
of cancerlectin, and different prediction results are
compared in one table or graph to determine themost
accurate prediction method.

(3) Feature extraction and random forest based on Con-
joint Triad and Pseudo-Amino Acid Composition are
the most accurate combination of feature extraction
algorithms and classifiers to predict cancerlectins.

The main flow process is shown in Figure 1.

2.2. Data Preprocessing. CancerLectinDB, which is from a
web server named CalecPred [30] and was provided by
Professors Song and Pan, is used in this study to obtain
high-quality data regarding cancerlectins. All of the training
and the test sets were selected from this server as the data
set in this work. Within the data set, 178 cancerlectins and
226 noncancerlectins are used as a training set and 20 other
cancerlectins and noncancerlectins are utilized as a test set. In
some feature extraction algorithms found in ProtrWeb [34],
some cancerlectin and noncancerlectin sequences cannot be
included because the protein sequence is too long to fit
the methods; as such, we excluded these protein sequences
to ensure an appropriate fit with the corresponding feature
extractionmethods. Table 1 shows the number of lectins used
in some feature extraction algorithms in ProtrWeb after the
excluded data have been removed.

2.2.1. Sequence Motifs Discovery. In order to clearly visualize
the data, MEME [35] was used to analyze the conserved
motifs among the cancerlectins. Because there is a limitation
in the number of amino acids, we divided the set of cancer-
lectins into two groups. The five most significant conserved
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Table 1: The number of pieces of data used in the ProtrWeb.

Train set Test set
Cancerlectin Noncancerlectin Cancerlectin Noncancerlectin

Amino Acid Composition 178 226 20 20
Dipeptide Composition 178 226 20 20
Normalized Moreau-Broto
Autocorrelation 178 225 20 20

Moran Autocorrelation 178 226 20 20
Geary autocorrelation 178 226 20 20
Conjoint Triad 178 226 20 20
Sequence-Order-Coupling
Number 178 225 20 20

Quasi-Sequence-Order
Descriptors 178 225 20 20

Pseudo-Amino Acid
Composition 178 225 20 20

Amphiphilic Pseudo-Amino
Acid Composition 178 225 20 20

Cancerlectin
database

Noncancerlectin
database

Data
preprocessing

High-quality
data set for trial

Feature
extractionFeature vector

Dimension
reduction

Feature vector after
dimension reduction

Classification
training

Dimension
combination

Feature vector
after combination

Model

Classify

The result of
prediction

Figure 1: The main flow chart of the identification method of cancerlectin.
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motifs of the first group are shown in Figure 5 and Table 5,
and the motifs of the second group are shown in Figure 6 and
Table 6.

2.2.2. Training Set Balancing. There are 178 positive samples
(cancerlectins) and 226 negative samples (noncancerlectins)
in the training set.This inconsistency between the two groups
could result in inaccurate results. In order to optimize the
classification, we use the synthetic minority oversampling
technique (SMOTE) [36] algorithm in Weka to supervise
the instance. We also apply SMOTE to the training set of
two main feature extraction methods: Conjoint Triad and
Pseudo-Amino Acid Composition. The numbers of positive
and negative samples before and after balancing are shown
in Table 7. In addition, the comparisons before and after
balancing the training set are shown in Table 8. We can see
from Table 8 that, after balancing the positive and negative
samples, the accuracy of cross-validation increases, but the
accuracy of the method with the supplied test set decreases.

2.3. Feature Extraction Algorithm

2.3.1. Conjoint Triad Feature. Conjoint Triad Feature (CTF)
is a feature extraction algorithm used to obtain protein
dimensions. It is based on neighbor relationships in protein
sequences. This algorithm encodes each protein sequence by
using a triad frequency distribution, which is extracted from
a seven-letter reduced alphabet. It is also applied to formulate
protein samples and perform predictions. CTF clusters 20
amino acids into seven classes [37] and regards any three
consecutive amino acids among them as a single unit. A total
of 343 dimensions of cancerlectin sequences are extracted by
using the CTF algorithm. It transfers the file from .csv format
into .arff format. These .arff format files are then placed in
some classifiers, such as random forests, for analysis and
prediction.

A cancerlectin sequence is represented by 𝐶 and is
composed of 𝐿 amino acids:

𝐶 = 𝐴
1
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3
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normalized frequency of these corresponding trimers in a
sequence of a cancerlectin and is expressed as follows:

CTF = [𝐹
1
, 𝐹
2
, 𝐹
3
, . . . , 𝐹

𝑘
]
𝑇

, (2)

where 𝐹
𝑖
is the frequency of the three consecutive residues

and 𝑘 = 73 = 343. Because the 20 kinds of amino acids can
be divided into seven classes and we have three amino acids
in one unit, for each unit, there can be 7 × 7 × 7 different
combinations, so we finally obtain 343 dimensions [38].

2.3.2. Pseudo-Amino Acid Composition. Pseudo-Amino Acid
Composition (Pse-AAC) [39] is an approach incorporating
contiguous local sequence-order information and global
sequence-order information into the feature vector of a
protein sequence. This approach can be used to obtain

a feature vector with 50 dimensions. After some calculations
are performed in ProtrWeb, the feature vector file in .arff can
be created. The feature extraction vectors can then be placed
in classifiers to obtain prediction results.
𝐶 can be further expressed as follows:

𝐶 = 𝐴
1
𝐴
2
𝐴
3
, . . . , 𝐴

𝐿
. (3)

The Pse-AAC feature of a protein is defined as follows:

Pse-AAC = [𝐹
1
, 𝐹
2
, 𝐹
3
, . . . , 𝐹

𝑘
]
𝑇

, (4)

where 𝐹
𝑖
is the frequency of the amino acid calculated by the

Pse-AAC algorithm and 𝑘 = 50.

2.4. Classifier Selection and Tools

2.4.1. Weka and Random Forest. Waikato Environment for
Knowledge Analysis (Weka) is a well-known suite ofmachine
learning software, which is used for data analysis and pre-
dictive modeling. In this study, Weka is used as a classifier.
Among the options of Weka, “Classify” provides different
modes of classifiers, such as random forest, ZeroR, KStar, and
libSVM.

Random forests are used to obtain the average of multiple
deep decision trees and are trained on different parts of the
same training set to reduce variances. They are also consid-
ered a learning method for certain tasks such as classification
and regression. Furthermore, random forests are used as a
model for the rapid and efficient method of classification.
This model applies bagging but uses a modified tree learning
algorithm to select and split candidates during learning.
In this method, different decision trees are determined for
classification.

Weka also includes other test options, such as supplied
test set, cross-validation, and percentage split. In this study,
supplied test set and cross-validation are used to perform
prediction. In the supplied test, training data and test set data
should be provided for prediction. In the cross-validation, a
single data set is split into a test data set and a training data
set by using a specific algorithm.

2.4.2. libSVM and Grid. libSVM [40] is an open-source
machine learning library that implements the SMOalgorithm
for kernelized support vector machines and supports classi-
fication and regression; this library has been widely used to
solve many tasks in bioinformatics [41, 42]. To apply this tool
in our research, we download and install certain configura-
tion files, especially Python. We execute all commands in a
command line based on the runtime system of Python.

In this study, Grid was added to libSVM to tune param-
eters 𝑐 and 𝑔 and to enhance the accuracy of the prediction
results. 𝑐 and 𝑔 are two training parameters provided by SVM
with a Gaussian kernel function. Parameter 𝑐 controls the
overfitting of the model and parameter 𝑔 controls the degree
of nonlinearity of the model. 𝑔 is inversely related to 𝑐, which
represents the distribution around the statisticalmean. Larger
values of 𝑐 will result in a model with low bias and high
variance, and smaller 𝑔 also corresponds to a model with
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Figure 2: The accuracy rate of prediction in Part I.

low bias and high variance. Thus, the behavior of the kernel
is less distributed or more nonlinear. These two parameters
are determined by Grid search and cross-validation. The
model with the highest estimated performance determines
the selected training parameters. Then, these two parameters
are used to predict libSVM to establish an SVMmodel and to
obtain amore accurate prediction result. In the following sec-
tion, the combinations of feature extraction and classifier for
which the accuracy rate is >70% are reevaluated in libSVM.

3. Results and Discussion

3.1. Multidimension Combination Prediction. In this section,
the feature extraction algorithms excluded from ProtrWeb
are mainly investigated. These algorithms are referred to as
multiple dimension combination prediction (MDCP) tools
because their use involves different feature extraction meth-
ods and their combinations to obtain feature vectors and
perform prediction. In the feature extraction part, different
methods are employed to determine the vectors: 1-skip,
2-skip, 188-dimension feature extraction, 473-dimension
feature extraction, and some algorithm combinations. In
general, the 188-dimension feature extraction is based on
physicochemical characteristics, and the n-skip algorithm is
the same as a k-mer algorithm. In the classification part, the
supplied test set and the cross-validation set are used for
prediction.

After the combination of various dimensions and the
conversion of file format, various .arff files with different
dimensions are obtained with a specific file head. We place
the .arff files into random forest classifiers in Weka for
prediction. Table 2 lists the exact dimensions of the algo-
rithms. Figure 2 shows the prediction results based on cross-
validation and supplied test set validation. In Figure 2, 188-
dimension feature extraction yields the highest accuracy rate
of 75% when the supplied test set validation is applied.

3.2. ProtrWeb-Weka Prediction. In this section, the following
algorithms provided by ProtrWeb are examined: Amino Acid
Composition, Dipeptide Composition, Normalized Moreau-
Broto Autocorrelation, Moran Autocorrelation, Conjoint

Table 2: Dimensions of feature extraction algorithms in Part I.

Mode Dimension
Pse-in-one 22
188 dimensions 188
473 dimensions 473
1-skip 400
2-skip 400
188 dimensions + Pse-in-one 210
473 dimensions + Pse-in-one 495
473 dimensions + 188 dimensions 661
473 dimensions + 188 dimensions + Pse-in-one 683
473 dimensions + 188 dimensions + Pse-in-one +
1-skip 1083

473 dimensions + 188 dimensions + Pse-in-one +
2-skip 1083

Cross-validation (%)
Method with supplied test set (%)
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Figure 3: The accuracy rate of prediction in ProtrWeb.

Triad, Sequence-Order-Coupling Number, Quasi-Sequence-
Order Descriptors, Pseudo-Amino Acid Composition,
Amphiphilic Pseudo-Amino Acid Composition, Tripeptide
Composition, andC/T/D. Conjoint Triad and Pseudo-Amino
Acid Composition are among the most commonly used
algorithms. Tripeptide Composition is characterized by 8000
dimensions, which are too numerous to calculate. C/T/D is
an algorithm composed of three different methods and is too
complicated for prediction. As such, these two algorithms are
excluded, leaving the first 10 items in the list to be evaluated.
The classifier provided by Weka is used for classification.

Figure 3 illustrates the prediction results of cross-
validation and supplied test set validation.Weuse the random
forest as the classifier of extraction in Weka. The prediction
accuracy rate of Conjoint Triad and Pseudo-Amino Acid
Composition is 70%, which is higher than that of other
algorithms. We also reduce the number of dimensions of the
feature extraction algorithms by using MRMD [29]. Table 3
also lists the number of dimensions after they have been
reduced. Figure 4 reveals the accuracy rates of the prediction
before and after the dimensions have been reduced.
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Table 3: Dimensions of feature extraction algorithms in ProtrWeb.

Mode Dimension Dimension reduction
Amino Acid Composition 20 19
Dipeptide Composition 400 49
Normalized Moreau-Broto Autocorrelation 240 47
Moran Autocorrelation 240 43
Geary autocorrelation 240 220
Conjoint Triad 343 81
Sequence-Order-Coupling Number 60 17
Quasi-Sequence-Order Descriptors 100 42
Pseudo-Amino Acid Composition 50 23
Amphiphilic Pseudo-Amino Acid Composition 80 15

Before dimension reduction (%)
After dimension reduction (%)
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Figure 4:The accuracy rate of prediction before and after dimension
reduction.

3.3. ProtrWeb-libSVM Prediction. In this section, Conjoint
Triad and Pseudo-Amino Acid Composition from ProtrWeb
are included in libSVM for another cycle of evaluation.
Considering the high accuracy rate of these two algorithms,
which are classified by the classifiers in Weka, we aim to
determine whether a more accurate prediction result can be
obtained when a different classifier is used. Although Weka
is a software suite into which various classification tools
are integrated, some methods of prediction cannot be used
with it. Hence, we employ libSVM for prediction. Each step
in libSVM should be executed in the command line. For
libSVM, the parameters 𝑐 and 𝑔 are set as the default values.
Notably, 𝑔 = 1/𝑘, where 𝑘 is the number of the cancerlectins.

Despite the advantages of libSVM, this method is still
unable to achieve sufficient accuracy of prediction. Further
studies should include additional parameters in the com-
mand line to obtain a prediction result that is close to the
actual findings. To improve the predictive accuracy of this
method, Grid is used to optimize the parameters 𝑐 and
𝑔. Table 4 summarizes the prediction results obtained in
libSVM. The two methods fail to obtain high accuracy rates
when classification is performed after these parameters have
optimized.

Table 4: The prediction results of libSVM.

Mode libSVM (%) libSVM + Grid (%)
Conjoint Triad 55.9406 81.1881
Pseudo-Amino Acid
Composition 86.1042 70.9677

4. Conclusions

Amino acid feature extraction and classification are major
components of the prediction and classification of protein
function. With advances in biology, medicine, and the bio-
pharmaceutical industry, it should be possible to determine
the positions of different proteins in cells. Although various
amino acid feature extraction, fusion, and classification algo-
rithms have been developed [43], they are independent of one
another and are used for analyses in only one specific field
of study. The combination of the two algorithms of feature
extraction and classification has rarely been investigated
and efficient methods for protein function prediction have
seldom been developed. In this study, we comprehensively
considered the two algorithms of feature extraction and
classification in terms of their data set and basic logic.
In this way, we determined the optimal strategy for com-
bining feature extraction algorithms and classifiers. Thus,
we performed numerous experiments and trials involving
different algorithms. After conducting a substantial number
of tests, we proposed a prediction method of predicting
protein function comprising feature extraction and random
forest classification based on Conjoint Triad and Pseudo-
Amino Acid Composition. By using this combination, the
accuracy rate reached 70%, which is higher than those of
other prediction methods.

Our newly proposed method can thus be used to iden-
tify cancerlectins with reasonably high accuracy. Several
network-based computational methods have already been
applied to identify oncogenes [44] or oncomiRNA [45]. In
addition, advanced social network algorithms have helped
to predict the relationship between diseases and miRNA
[46, 47]. However, network-based methods involve similar
computation methods between miRNAs [48] or genes [49].
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Figure 5: The most significant 5 conserved motifs of the first group.
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Figure 6: The most significant 5 conserved motifs of the second group.
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Table 5: The 5 most significant conserved motifs of the first group.

Motif Width 𝐸 value Best possible match

1 50 1.3𝑒 − 157

FA[ED][RK]L[YH][KQ][AS]MKG[AL]GT[RD]D[KN][TV]LIRI[ML]
[VI]SR[SA]E[ITV]D[LM][LN]DI[RK][AS][EH][FY][KQR][KRE][KM]
YGKSL[YS][SH][MD]I

2 50 3.3𝑒 − 131
[YW]F[EQ][EY][LI]G[KL]YD[EMP]G[ML][ED][IV]WGGEN[FL]E
[IL]SF[RK]VW[QM]CGGS[LV]EI[ILV]PCSRVGH[IV][FY]RK[KQ]HP

3 50 6.2𝑒 − 105

MKG[ALV]GTDED[CAV]LIE[IV]L[AC][ST]R[TS][NP][EK][EQ][IL]
[RQ][EAQ]IN[ER][AV]Y[KQ][EA][QE][FY][KG][KR][DS]LE[DEK]
[DA][IL][KRT]S[DE]TSG[HD][FL]

4 50 1.6𝑒 − 089

VD[EP][AD]L[AV][DQ]QDA[QR]DLY[EAD]AGEK[RK][WK]GTD
[EV]XKF[IN]T[IV]L[CT][NST]RS[YR][PQ][HQ]L[RL][ALR]VF[DQ]
EY[QK]

5 41 2.1𝑒 − 086
PTTS[VI][IV]I[TV]FHNE[AG][WR]STLLRT[VI]HSVL[KN]R[ST]P
[PR]HL[LI][KA]EI[IV]LVDD

Table 6: The 5 most significant conserved motifs of the second group.

Motif Width 𝐸 value Best possible match
1 15 8.2𝑒 − 066 CPENWIX[FY][GQ]N[KS]CY[YL]F

2 29 2.1𝑒 − 071
[WF]XD[AS][QEK]XXCXXXG[AG]HL[VA][VS][IV]D[SN]XEEQ
[NDE]F[LI]QQ

3 15 2.6𝑒 − 034 WNDXXC[ND]XK[LN][YL][FS][IV]C[EK]

4 40 7.7𝑒 − 033
YD[AST]GM[DE][IV]WGGENLE[IF]SFRIW[QM]CGG[KTV]L
[EF][IT][HLV][PT]CS[HR]VGH[VI]F[RP]K

5 15 1.6𝑒 − 030 WIG[LV]S[DR]XXSEGXWQW

Table 7: The numbers of positive and negative samples of training set.

Before balancing After balancing
Cancerlectin Noncancerlectin Total Cancerlectin Noncancerlectin Total

Conjoint Triad 178 226 404 356 226 582
Pseudo-Amino Acid
Composition 178 225 403 356 225 581

Table 8: The comparisons before and after balancing the training set.

Before balancing After balancing

Cross-validation Method with
supplied test set Cross-validation Method with

supplied test set
Conjoint Triad 54.9505% 70% 71.134% 67.5%
Pseudo-Amino
Acid Composition 57.8164% 70% 72.4613% 67.5%

Information on interactions involving lncRNA [50, 51] and
cell death [52] systems can improve prediction of the rela-
tionship between RNA and diseases. As another example
of network constructing, a random walk [53] technique
has been commonly employed to construct networks and
predict unknown relationships. Nevertheless, network-based
methods have been disregarded in cancerlectin identification.
It is suggested that network features should be considered to
improve classification accuracy. Further studies should also

focus on the combination of network-based methods and
classification techniques. Moreover, big data technologies,
includingMahout andHadoop, could be utilized to copewith
large-scale data [54].
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[14] X. Zhang, L. Pan, and A. Păun, “On the universality of axon P
systems,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 26, no. 11, pp. 2816–2829, 2015.

[15] X. Zhang, Y. Liu, B. Luo, and L. Pan, “Computational power of
tissue P systems for generating control languages,” Information
Sciences, vol. 278, pp. 285–297, 2014.

[16] X. Zeng, L. Xu, X. Liu, and L. Pan, “On languages generated
by spiking neural P systems with weights,” Information Sciences,
vol. 278, pp. 423–433, 2014.

[17] J. X. Tao Song and L. Pan, “Spiking neural P systems with
request rules,” Neurocomputing, vol. 193, pp. 193–200, 2016.

[18] T. Song, J. Xu, and L. Pan, “On the universality and non-
universality of spiking neural P systems with rules on synapses,”
IEEE Transactions on Nanobioscience, vol. 14, no. 8, pp. 960–
966, 2015.

[19] X. Zhang, Y. Tian, R. Cheng, and Y. Jin, “An efficient approach
to nondominated sorting for evolutionary multiobjective opti-
mization,” IEEE Transactions on Evolutionary Computation, vol.
19, no. 2, pp. 201–213, 2015.

[20] Y. T. Xingyi Zhang and Y. Jin, “A knee point driven evolutionary
algorithm for many-objective optimization,” IEEE Transactions
on Evolutionary Computation, vol. 19, no. 6, pp. 761–776, 2015.

[21] B. Liu, F. Liu, X. Wang, J. Chen, L. Fang, and K. Chou, “Pse-
in-One: a web server for generating various modes of pseudo
components of DNA, RNA, and protein sequences,” Nucleic
Acids Research, vol. 43, no. W1, pp. W65–W71, 2015.

[22] B. Liu, S.Wang, and X.Wang, “DNA binding protein identifica-
tion by combining pseudo amino acid composition and profile-
based protein representation,” Scientific Reports, vol. 5, article
15479, 2015.

[23] H. Lin,W. Chen, L.-F. Yuan, Z.-Q. Li, andH. Ding, “Using over-
represented tetrapeptides to predict protein submitochondria
locations,” Acta Biotheoretica, vol. 61, no. 2, pp. 259–268, 2013.

[24] H. Ding, S.-H. Guo, E.-Z. Deng et al., “Prediction of Golgi-
resident protein types by using feature selection technique,”
Chemometrics and Intelligent Laboratory Systems, vol. 124, pp.
9–13, 2013.

[25] W. Chen and H. Lin, “Prediction of midbody, centrosome and
kinetochore proteins based on gene ontology information,”
Biochemical and Biophysical Research Communications, vol. 401,
no. 3, pp. 382–384, 2010.

[26] H. Ding, P.-M. Feng, W. Chen, and H. Lin, “Identification of
bacteriophage virion proteins by the ANOVA feature selection
and analysis,” Molecular BioSystems, vol. 10, no. 8, pp. 2229–
2235, 2014.

[27] Y. Cai, T. Huang, L. Hu, X. Shi, L. Xie, and Y. Li, “Prediction
of lysine ubiquitination with mRMR feature selection and
analysis,” Amino Acids, vol. 42, no. 4, pp. 1387–1395, 2012.

[28] G. Huang, L. Lu, K. Feng et al., “Prediction of S-nitrosylation
modification sites based on kernel sparse representation classi-
fication and mRMR algorithm,” BioMed Research International,
vol. 2014, Article ID 438341, 10 pages, 2014.

[29] Q. Zou, J. Zeng, L. Cao, and R. Ji, “A novel features ranking
metric with application to scalable visual and bioinformatics
data classification,”Neurocomputing, vol. 173, pp. 346–354, 2016.

[30] T. Song and L. Pan, “Spiking neural P systems with rules on
synapses working in maximum spikes consumption strategy,”
IEEE Transactions on Nanobioscience, vol. 14, no. 1, pp. 37–43,
2015.



International Journal of Genomics 11

[31] R. Kumar, B. Panwar, J. S. Chauhan, andG. P. Raghava, “Analysis
and prediction of cancerlectins using evolutionary and domain
information,” BMC Research Notes, vol. 4, article 237, 2011.

[32] D. Damodaran, J. Jeyakani, A. Chauhan, N. Kumar, N. R.
Chandra, andA. Surolia, “CancerLectinDB: adatabase of lectins
relevant to cancer,”Glycoconjugate Journal, vol. 25, no. 3, pp. 191–
198, 2008.

[33] C. Z. Cai, L. Y. Han, Z. L. Ji, X. Chen, and Y. Z. Chen, “SVM-
Prot: web-based support vectormachine software for functional
classification of a protein from its primary sequence,” Nucleic
Acids Research, vol. 31, no. 13, pp. 3692–3697, 2003.

[34] N. Xiao, D.-S. Cao, M.-F. Zhu, and Q.-S. Xu, “Protr/ProtrWeb:
R package and web server for generating various numerical
representation schemes of protein sequences,” Bioinformatics,
vol. 31, no. 11, pp. 1857–1859, 2015.

[35] T. L. Bailey, M. Boden, F. A. Buske et al., “MEME Suite: tools for
motif discovery and searching,” Nucleic Acids Research, vol. 37,
no. 2, pp. W202–W208, 2009.

[36] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: synthetic minority over-sampling technique,” Journal
of Artificial Intelligence Research, vol. 16, pp. 321–357, 2002.

[37] J. Shen, J. Zhang, X. Luo et al., “Predicting protein-protein
interactions based only on sequences information,” Proceedings
of the National Academy of Sciences of the United States of
America, vol. 104, no. 11, pp. 4337–4341, 2007.

[38] H. Wang and X. Hu, “Accurate prediction of nuclear receptors
with conjoint triad feature,” BMC Bioinformatics, vol. 16, no. 1,
article 402, pp. 1–13, 2015.

[39] B. Liu, X. Wang, Q. Zou, Q. Dong, and Q. Chen, “Protein
remote homology detection by combining chou’s pseudo amino
acid composition and profile-based protein representation,”
Molecular Informatics, vol. 32, no. 9-10, pp. 775–782, 2013.

[40] C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support
vector machines,” ACM Transactions on Intelligent Systems and
Technology, vol. 2, no. 3, article 27, 2011.

[41] B. Liu, J. Xu, X. Lan et al., “iDNA-Prot—dis: identifying DNA-
binding proteins by incorporating amino acid distance-pairs
and reduced alphabet profile into the general pseudo amino acid
composition,” PLoS ONE, vol. 9, no. 9, Article ID e106691, 2014.

[42] R. Wang, Y. Xu, and B. Liu, “Recombination spot identification
based on gapped k-mers,” Scientific Reports, vol. 6, article 23934,
2016.

[43] J. Zeng, D. Li, Y. Wu, Q. Zou, and X. Liu, “An empirical study
of features fusion techniques for protein-protein interaction
prediction,” Current Bioinformatics, vol. 11, no. 1, pp. 4–12, 2016.

[44] Q. Zou, J. Li, C. Wang, and X. Zeng, “Approaches for rec-
ognizing disease genes based on network,” BioMed Research
International, vol. 2014, Article ID 416323, 10 pages, 2014.

[45] X. Zeng, X. Zhang, and Q. Zou, “Integrative approaches for
predicting microRNA function and prioritizing disease-related
microRNA using biological interaction networks,” Briefings in
Bioinformatics, vol. 17, no. 2, pp. 193–203, 2016.

[46] Q. Zou, J. Li, Q. Hong et al., “Prediction of microRNA-disease
associations based on social network analysismethods,”BioMed
Research International, vol. 2015, Article ID 810514, 9 pages,
2015.

[47] X. Zeng, X. Zhang, Y. Liao, and L. Pan, “Prediction and
validation of association between microRNAs and diseases by
multipath methods,” Biochimica et Biophysica Acta (BBA)—
General Subjects, 2016.

[48] Q. Zou, J. Li, L. Song, X. Zeng, and G. Wang, “Similarity
computation strategies in the microRNA-disease network: a
survey,” Briefings in Functional Genomics, vol. 15, no. 1, pp. 55–
64, 2016.

[49] X. Zeng, Y. Liao, y. Liu, and Q. Zou, “Prediction and validation
of disease genes usingHeteSimScores,” IEEE/ACMTransactions
on Computational Biology and Bioinformatics, no. 99, p. 1, 2016.

[50] C. Yang, D. Wu, L. Gao et al., “Competing endogenous RNA
networks in human cancer: hypothesis, validation, and perspec-
tives,” Oncotarget, vol. 7, no. 12, pp. 13479–13490, 2016.

[51] J. Chen, X. Wang, and B. Liu, “iMiRNA-SSF: improving the
identification of microrna precursors by combining negative
sets with different distributions,” Scientific Reports, vol. 6, article
19062, 2016.

[52] D.Wu, Y. Huang, J. Kang et al., “ncRDeathDB: a comprehensive
bioinformatics resource for deciphering network organization
of the ncRNA-mediated cell death system,” Autophagy, vol. 11,
no. 10, pp. 1917–1926, 2015.

[53] Y. Liu, X. Zeng, Z. He, and Q. Zou, “Inferring microRNA-
disease associations by random walk on a heterogeneous net-
work with multiple data sources,” IEEE/ACM Transactions on
Computational Biology and Bioinformatics, 2016.

[54] Q. Zou, X.-B. Li, W.-R. Jiang, Z.-Y. Lin, G.-L. Li, and K. Chen,
“Survey of MapReduce frame operation in bioinformatics,”
Briefings in Bioinformatics, vol. 15, no. 4, pp. 637–647, 2014.


