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A B S T R A C T

This essay focuses on transmissible gastroenteritis virus (TGEV), which is an enteropathogenic virus related to
contagious and acute diseases in suckling piglets. Previous literature suggests that the TGEV nucleocapsid
protein (N) plays a significant role in viral transcriptional process, however, there is a need to examine other
functions of TGEV N protein in the porcine intestinal epithelial cell (IEC) which is the target cell of TGEV. In the
present study, we investigated the degradation, subcellular localisation, and function of TGEV N protein by
examining its effects on cycle progression, endoplasmic reticulum (ER) stress, interleukin-8 (IL-8) expression,
and cell survival. The results showed that TGEV N protein localised in the cytoplasm, inhibited IEC growth,
prolonged the S-phase cell cycle by down-regulating cell cycle protein cyclin A, and was mainly degraded
through the proteasome pathway. Moreover, TGEV N protein induced ER stress and activated NF-κB, which was
responsible for the up-regulation of IL-8 and Bcl-2 expression. This report mainly considers the functions of
TGEV N protein in IEC. To be specific, in IEC, TGEV N protein induces cell cycle prolongation at the S-phase, ER
stress and up-regulates IL-8 expression. These results provide a better understanding of the functions and
structural mechanisms of TGEV N protein.

1. Introduction

TGEV belongs to the genus Alphacoronavirus of the family
Coronaviridae (de Groot et al., 2011). The infection of transmissible
gastroenteritis virus (TGEV) leads to severe diarrhoea especially in
piglets at age of up to 2 weeks, resulting in significant economic loss in
swine-producing areas around the world (Kim and Chae, 2001). TGEV
contains a large, single-stranded, positive-sense RNA genome (Sandrine
et al., 2012). About two-thirds of the TGEV genome (28.5 kb) encodes
the replicase gene (rep) at the 5′ end, and other one-third of the viral
genes encodes the structural, and non-structural, proteins at the 3′ end
(Rota et al., 2003). TGEV has four main structural proteins: spike (S),
integral membrane protein (M), nucleocapsid protein (N), and a small
envelope protein (sM), following the order 5′-S-3a-3b-E-M-N-7-3′
(Penzes et al., 2001).

TGEV N protein accumulation level is an important factor in effi-
cient transcription (Zúñiga et al., 2010). The N protein is located in the
nucleolus of infected cells and might delay the cell cycle (Wurm et al.,

2001). In addition, TGEV N protein causing cell cycle arrest in PK-15
cells has been reported (Ding et al., 2014). Infection by TGEV causes
villous atrophy throughout jejunum and the ileum, in other words,
infection by TGEV is observed mainly in the porcine intestinal epithelial
cell (IEC) (Pospischil et al., 1981); however, other concerns about the
TGEV N protein in IEC are not fully understood, particularly the N
protein-effected physiological changes in the host cells.

In this research, we investigated that TGEV N protein locates in the
cytoplasm, effects cell cycle progression by down-regulating cyclin A
expression, causes endoplasmic reticulum stress, and up-regulates NF-
κB, Bcl-2, and interleukin 8(IL-8) expression.

2. Materials and methods

2.1. Vectors, plasmids and cells

The TGEV Shaanxi strain was isolated from intestinal tract contents
of TGEV infected piglets in Shaanxi Province of China (Ding et al.,
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2011). The established IEC line,which was a kind gift from Prof. Yan-
Ming Zhang, was cultured as described normaly. (Wang et al., 2010).

2.2. Antibodies and reagents

Antibodies specific for cyclin A, GRP78, NF-κB, and β-actin were
obtained from Santa Cruz Biotechnology (Santa Cruz, Inc., CA, USA).
Anti-GFP monoclonal antibody was purchased from Millipore
(Millipore, Temecula, CA, USA). Horseradish peroxidase (HRP)-con-
jugated secondary antibody was purchased from Pierce (Pierce,
Rockford, IL, USA). Anti-TGEV N protein antibody was produced in our
laboratory (Chang et al., 2015). The nuclear staining dye Hoechst33342
and ER-Tracker™ Red probe were obtained from Invitrogen (Invitrogen,
Carlsbad, CA, USA). MG132 proteasome inhibitor was purchased from
Calbiochem (Calbiochem, San Diego, CA, USA).

2.3. Recombinant plasmid's construction and transient transfection

The N gene of TGEV Shaanxi strain was PCR amplified, then cloned
into the corresponding sites in the eukaryotic expression vector pEGFP-
N1 (GFP). According to enzyme digestion and DNA sequencing, the
recombinant plasmid (N-GFP) was confirmed. IEC was seeded into 6-
well dishes, and transfected with N-GFP or GFP vector: after 48 h of
transfection, N protein expression was directly observed by a fluores-
cence microscopy (Model TE2000, Nikon, Japan) and further confirmed
by Western blot analysis.

2.4. The observation of the protein degradation characteristic

Transfected cells were cultured with fresh medium which contains
20 μM MG132 and incubated for 24 h, then the cells were rinsed with
PBS and incubated with nuclear dye Hoechst33342 at 37 °C for 20min.
Images were collected, after the cells have been rinsed twice with PBS,
using fluorescence microscopy.

2.5. Confocal microscopy

Transfected cells were fixed with 4% formaldehyde at room tem-
perature for 30min after 24 h incubation, and then rinsed with PBS.
After steps mentioned above, Hoechst33342 were used to strain all cells
at 37 °C for 20min and rinsed with PBS. ER-Tracker Red probe were
used to incubate IECs at 37 °C for 20min followed by PBS rinsing. ER-
Tracker Red is a red fluorescent probe of ER and it can be used for
specific fluorescent staining of ER in live cells. To support the results
further, transfected IECs were also incubated with anti-N antibody,
followed by goat anti-rabbit secondary antibody. Using laser confocal
scanning microscope(Model LSM510 META, Zeiss, Germany), images
were viewed.

2.6. Western blot analysis

After rinsed with ice-cold PBS, transfected cells were harvested and
then lysed with ice-cold RIPA buffer with 1mM phenylmethyl sulpho-
nylfluoride (PMSF). Protein concentrations were assayed using BCA
Protein Assay Reagent (Pierce, Rockford, IL, USA). Equivalent amounts
of proteins were subjected to 8–12% SDS-PAGE and transferred to

polyvinylidene difluoride (PVDF) membranes (Millipore Corp, Atlanta,
GA., USA). The membranes were blocked in PBS buffer with 5% non-fat
dry milk at room temperature for 1 h, and then incubated with in-
dicated primary antibodies overnight at 4 °C, followed by HRP-con-
jugated secondary antibodies incubation at room temperature for 1 h.
The signal was detected by increased chemiluminescence (ECL) re-
agents (Pierce, Rockford, IL., USA).

2.7. Cell cycle analysis

Based on the principle that DNA content in nuclei were stained with
propidium iodide (PI), flow cytometric analysis was employed in order
to determine cell cycle progression in IEC transfected with recombinant
plasmid. Transfected cells were fixed in 75% ethanol for 5 days at 4 °C
and stained with PI. Coulter Epics XL flow cytometer(Beckman Coulter,
USA) were used to analyse DNA content.

2.8. Real-time quantitative PCR analysis

Total RNA was extracted from cells using Trizol reagent (Invitrogen,
California, USA). Reverse transcription was performed with M-MLV
reverse transcriptase, oligo (dT) 18 primers and 2 μg of total RNA, ac-
cording to manufacturer's instructions. The primers for real-time
quantitative PCR assay were shown in Table 1. Reactions were carried
out in a 25 μl-mixture containing AccuPower 2× Greenstar qPCR
Master Mix (Bioneer Corporation, South Korea), sense and anti-sense
primers (0.4 μM) and target cDNA (4 ng). The reaction entails a 5min
initialisation at 95 °C and 40 cycles of 5 s-denaturation at 95 °C, and
30 s-annealing and elongation at 60 °C. A negative control was included
in every test and melting curve (Tm value) were used to present each
amplification reactions' specificity. Using the respective CT value for
the porcine β-actin housekeeping gene to equalize genome, the in-
dividual samples were normalized. 2^-ddCT method was used to de-
termine target gene expression's relative quantification (Livak and
Schmittgen, 2001).

2.9. NF-κB activity's detection

The GFP and N-GFP alteration proteins of NF-κB activity was mea-
sured using Western blot assay and the NF-κB p65 TransAM kit (Active
Motif). Briefly, transfected cells' nuclear extractions protein were ex-
tracted using the Nuclear Extract Kit (KeyGEN, Nanjing, China) and
BCA Protein Assay Reagent (Pierce, Rockford, IL, USA) were used to
determine nuclear protein concentrations. Lysates (50 μg total proteins)
were incubated in ELISA wells coated with the oligo-nucleotide motif
recognised by active p65, followed by HRP-conjugated secondary an-
tibody incubation. Finally, the sample was measured using colorimetric
reaction at 450 nm.

2.10. Enzyme-linked immunosorbent assay

The culture medium of transfected IEC was harvested and analysed
using swine IL-8 ELISA kit.

Table 1
Sequences of primer pairs used for qRT-PCR.

Gene Forward primer(5′–3′) Reverse primer (5′–3′) Accession no.

Cyclin A AAGTTTGATAGATGCTGACCCGTAC GCTGTGGTGCTCTGAGGTAGGT 194 GQ265874
GRP78 AATGGCCGTGTGGAGATCA GAGCTGGTTCTTGGCTGCAT 114 X92446
IL-8 CTGGCTGTTGCCTTCTTG TCGTGGAATGCGTATTTATG 113 M86923
Bcl-2 TTGTGGCCTTCTTTGAGTTCG CTACCCAGCCTCCGTTATCC 150 XM_003121700.1
β-actin GGACTTCGAGCAGGAGATGG AGGAAGGAGGGCTGGAAGAG 138 XM_003124280.1
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2.11. Statistical analysis

All data are presented as the means± SD of three independent ex-
periments done in triplicate. For each assay, t-test was used for statis-
tical comparison and a p value of< 0.05 is considered statistically
significant.

3. Results

3.1. TGEV N protein expression and degradation characteristics

The Western blot analysis demonstrated that the protein molecular
mass produced by the cells transfected with GFP-N plasmid is ap-
proximately 70 kDa, as was detected with anti-GFP monoclonal anti-
bodies (Fig. 1A) and anti-TGEV N protein antibodies (Fig. 1B). The
molecular mass of GFP is approximately 27 kDa, indicating that N
protein, whose molecular mass is approximately 43 kDa, was success-
fully expressed. Meantime, no signal was detected from untransfected
cells.

Fluorescence microscopyhe were used to observe N proteins' de-
gradation characteristics (Fig. 1C) and its degradation level was de-
tected by Western blot assays (Fig. 1A, B). The results show that GFP-N
protein level in the cells treated with MG132 was higher than that in
untreated cells, while there were no GFP protein expression differences

between MG132 treated and untreated ones.

3.2. TGEV N protein subcellular localisation

Confocal fluorescence microscopy were used to investigate the
subcellular localization of N protein. And results show that GFP-N
proteins distribute predominantly in the cytoplasm, while the GFP
protein was localised in the whole cell (Fig. 2A, B).

3.3. TGEV N protein prolongs the S-phase cell cycle by down-regulating cell
cycle protein cyclin A

To investigate in which particular phase TGEV N-effected cell cycle
arrest occurred, cell cycle profiles were analysed by flow cytometry
(Fig. 3A) and cyclin protein were examined by RT-PCR and Western-
blot assay (Fig. 3C, D). Besides, in order to confirm the percentage of
cells in each phases of the G0/G1, S, and G2/M(Fig. 3B), histograms
quantitative analysis was employed. These data suggest that the DNA
content of S-phase increased, while the G0/G1 and G2/M phases
showed slight changes and that TGEV N protein prolonged the S-phase
cell cycle and prevented GFP-N expressing cells from entering the G2/M
phase. The results show that TGEV N protein could cause S-phase
prolongation. As shown in Fig. 3C, comparing with control cells, the
Cyclin A protein level was significantly decreased in N protein

Fig. 1. The expression products and protein degradation characteristics of TGEV N protein in IEC.
Cells were transfected with N-GFP expression vector or GFP vector and treated with MG132 for 24 h. (A) The cells were subjected to Western blot analysis using anti-
GFP antibodies. (B) The cells were subjected to Western blot analysis using TGEV N protein antibodies. (C) Protein degradation characteristics were observed by
fluorescence microscopy. All the data shown are representative of three independent experiments.
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expressing cells. To further support these findings, real-time quantita-
tive PCR assay were uesd to determine the cyclin A mRNA level. The
results show that, in the GFP-N expressing cells, cyclin A mRNA levels
are significantly lower than that in control cells (Fig. 3D), suggesting
that S-phase prolongation induced by TGEV N protein is closely related
to cyclin A protein degradation and can down-regulate cyclin A tran-
scription.

3.4. TGEV N causes ER-stress and up-regulates expression of IL-8 and Bcl-2

GRP78 is widely used as a key regulator for ER stress. The levels of
GRP78 expression in transfected and untransfected cells were detected
by Western blot assays (Fig. 4A) and real-time PCR assay (Fig. 4B). The
results show that GRP78 and expression level in transfected cells ex-
pressing N protein are both significantly higher than that in un-
transfected cells. Western Blot assay (Fig. 4C) and ELISA assay (Fig. 4D)
results show that the NF-κB expression level presents the same trends as
GRP78.

In this research, ELISA assay (Fig. 4E) and real-time PCR assay
(Fig. 4F) results showed that TGEV N up-regulates IL-8 expression in
IEC, suggesting that TGEV N expression result in ER stress, and NF-κB
activation, are responsible for the up-regulation of IL-8.

In this research, Western blot(Fig. 4G) and quantitative real-time
PCR (Fig. 4H) were used, showing that the expression of Bcl-2 in N-GFP
protein expressing cells is higher than that in untransfected cells. The

results suggest that TGEV N protein is able to up-regulate Bcl-2 ex-
pression both at the gene, and protein, levels which might be induced
by ER stress response through the NF-κB signalling pathway.

4. Discussion

TGEV N protein has been reported to induce apoptosis, but its ef-
fects on host cell physiological changes are not clear. In this study, we
investigated the TGEV N protein's degradation, subcellular localisation,
and function by examining its effects on cycle progression, IL-8 ex-
pression, and ER stress in IEC.

Knowing the subcellular localisation of a protein enables us to have
a better understanding of its function (Marcos et al., 2013). With the
SARS-CoV N protein located in the cytoplasm of A549 and Vero E6 cells
(Diemer et al., 2008), PEDV N protein in the ER (Xu et al., 2013), TGEV
N protein in the nucleolus of a small number of infected cells (Wurm
et al., 2001) and the Golgi–ERGIC of infected ST cell lines (Calvo,
2005), our study demonstrated that TGEV N protein was located in the
cytoplasm of IEC. According to these results, we think that TGEV N
protein may be located in different sub-cellular positions in a cell type-
dependent way.

It has been shown that many coronaviruses' N protein could inhibit
cell cycle progression although the mechanism governing this remained
unclear. SARS-CoV N protein binds to, and subsequently inhibits ac-
tivity of the cyclin-CDK complex, resulting in inhibition of S phase
progression (Surjit et al., 2005). Chicken anaemic virus (CAV) apoptin
protein and Herpes simplex type 1 (HSV-1) ICP0 protein block cell cycle
progression at the G2/M phase (Teodoro et al., 2004; Lomonte et al.,
2001). PEDV N protein prolongs the S phase of cell cycle (Xu et al.,
2013). In this research, our results showed that TGEV N protein was
able to prolong the S-phase cell cycle. The cyclin A levels in the
transfected cells were lower than those in untransfected cells. This data
suggested that TGEV N protein prolonged the S phase of cell cycle and
played a crucial part in both cyclin A protein expression and cyclin A
transcription.

GRP78, an ER resident protein belonging to Hsp70 family, is the
major regulator of the cell's unfolded-protein response (UPR)of a cell,
which is the cellular response to ER stress (Wu et al., 2011). Activated
UPR can decrease protein translation and increase ER capacity, which
leads to a GRP78 up-regulation, and thus relieves ER stress. It is im-
portant to notice that the UPR will induce apoptosis when ER home-
ostasis is not restored (Pfaffenbach and Lee, 2011). Our data showed
that TGEV N protein up-regulate GRP78 expression, which suggested
that TGEV N protein was responsible for ER stress, and might partici-
pate in cell apoptosis.

Over-expressed GRP-78 can cause an ER stress response (ER stress
NF-κB3) through the NF- κB pathway, which leads to both an in-
flammatory response and cell survival signalling pathways (Baker et al.,
2011). It also prevents apoptosis by increasing anti-apoptotic genes
expression, such as that of Bcl-2 (Jang and Surh, 2004). Bcl-2 family
members are important regulators for apoptosis, and Bcl-2 over-ex-
pression enhances NF-kB-dependent transcriptional activity (Ricca
et al., 2000).Our data showed that TGEV N protein can up-regulate NF-
κB and Bcl-2 expression. Therefore, TGEV N protein may play a crucial
part in protecting the host cells from morphological and functional
damage or apoptosis.

IL-8, as a prototypic human chemokine factor, plays an important
role in the promotion of cell survival signalling and antagonises the
anti-viral activities of interferon. Coronaviruses generally do not induce
a high inflammatory response such as IL-6, IL-1, and IL-8 (Hoffmann
et al., 2002). IL-8 production plays an important role in the over-ex-
pression and modulation of Bcl-2 (Escudero-Lourdes et al., 2012). In
this study, we found that the TGEV N protein up-regulated IL-8 ex-
pression in host cells. The degradation of the TGEV N protein, when
inhibited by MG132 proteasome inhibitor, was mainly through the
proteasome pathway. More researches showed that, in untransfected

Fig. 2. Subcellular localization of TGEV N protein in IEC. Cells were transfected
with N-GFP expression vector or GFP vector.
(A) Cells were stained by Hoechst33342 and ER-Tracker ™ Red. (B) Cells were
stained with anti-N antibody, followed by goat anti-mouse antibody.
Bar= 20 μm for all the figures. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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cells treated with MG132, IL-8 production was much lower than that in
untreated cells; however, in the N-GFP expressing cells, IL-8 production
showed a slight change than that in untreated cells, indicating that
MG132 was able to inhibit IL-8 expression in untransfected cells and
that TGEV N protein contributed to antagonism of the effects of MG132.
Taken together, TGEV N protein can cause ER stress and activated NF-
κB. As a result, the IL-8 expression was increased and thus enhanced the
expression of Bcl-2.

In conclusion, the present study demonstrated that, following de-
graded through the proteasome pathway and localised in the cytoplasm
of IEC, TGEV N protein could prolong the S-phase in the cell cycle,
which was in the way of the degradation and decreased cyclin A tran-
scription. NF-κB, IL-8 and Bcl-2 have closely relationship that regulate
cells' survival, propagation and apoptosis. In our research, ER stress

response and NF-κB activation up-regulated the expression of IL-8 and
Bcl-2 in IEC, which induced by TGEV N protein. Results reveals a
comprehensive understanding in cell cycle and ER stress induced by
TGEV N protein, which may provide new insight into TGEV and IEC
interaction.
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Fig. 3. Cell cycle arrest and the expression of cyclin
A induced by TGEV N protein. Cells were transfected
with N-GFP expression vector or GFP ector for 48 h.
(A) Flow cytometry analysis of cells by propidium
iodide staining. (B) The percentage of cells in each
phase of the cell cycle from flow cytometry data. (C)
The level of cyclin A expression was determined by
western blot. β-actin was used as an internal loading
control. (D) Real-time PCR analysis of cyclin A
mRNA levels were normalized to the corresponding
CT value for porcine β-actin mRNA. The results are
mean ± SD from three independent experiments. *
p < 0.05 versus the control groupversus the control
group (the cells expressing GFP and untransfected
IEC cells).
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