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LncRNA-Top: Controlled deep learning approaches
for lncRNA gene regulatory relationship
annotations across different platforms

Weidun Xie,1 Xingjian Chen,1 Zetian Zheng,1 Fuzhou Wang,1 Xiaowei Zhu,2 Qiuzhen Lin,3 Yanni Sun,4

and Ka-Chun Wong1,5,6,7,*

SUMMARY

By soaking microRNAs (miRNAs), long non-coding RNAs (lncRNAs) have the potential to regulate gene
expression. Fewmethods have been created based on this mechanism to anticipate the lncRNA-gene rela-
tionship prediction. Hence,wepresent lncRNA-Top to forecast potential lncRNA-gene regulation relation-
ships. Specifically, we constructed controlled deep-learning methods using 12417 lncRNAs and 16127
genes. We have provided retrospective and innovative views among negative sampling, random seeds,
cross-validation, metrics, and independent datasets. The AUC, AUPR, and our defined precision@k
were leveraged to evaluate performance. In-depth case studies demonstrate that 47 out of 100 projected
top unknown pairings were recorded in publications, supporting the predictive power. Our additional
software can annotate the scores with target candidates. The lncRNA-Topwill be a helpful tool to uncover
prospective lncRNA targets and better comprehend the regulatory processes of lncRNAs.

INTRODUCTION

The long non-coding RNAs (lncRNAs) are not translated into proteins and can span over 200 nucleotides.1,2 More than 16,000 lncRNAs were

reported in the Homo sapiens, as revealed in the human GENCODE project.3 Although lncRNAs are less characterized than protein-coding

genes, their annotations may impact downstream research.4 By controlling target gene expression levels, lncRNAs have various activities,

influencing motility, invasion, differentiation, apoptosis, and proliferation.5 Researchers have linked lncRNA dysregulation and mutations

with a greater propensity for complex disorders such as cancer.6,7

Finding new lncRNA relationships with targets as genes may be crucial for developing tailored therapies or discovering disease mecha-

nisms. However, as lncRNAs may affect genes8,9 in various ways,10 finding new relationships can be difficult. In vivo validation tests are time-

consuming and labor-intensive; thus, the in silico screen has great potential. In silico experiment relies on prior knowledge such as databases.

Fortunately, researchers have curated databases concerning lncRNA, such as LNCipedia11 for lncRNA sequences, lncRNAfunc12 for lncRNA

functions, LncRNADisease13 for lncRNA illnesses, and LncRNA2Target14 and LncTarD15 for lncRNA-target pairings. Those datasets provide

prerequisites for in silico experiments.

Previously, researchers have conducted in silico experiments on lncRNA. For instance, to predict latent lncRNA-disease interactions, Xuan

et al.16 combined heterogeneous networks with graph convolutional networks (GCN) and convolutional neural networks (CNN). DeepMNE17

merged the disease similarities derived from disease semantic information, functions, Gene Ontology terms, and lncRNA similarities origi-

nating from sequences and expression files, using known lncRNA-disease relations to predict new lncRNA-disease associations.

Other methods directly predict the relationships between lncRNA and other molecules. For instance, Huang18 designed a GCN autoen-

coder to predict lncRNA-microRNA (miRNA) relations frommolecular networks. Fukunaga19 collected tissue-specific expression profiles and

subcellular localization information to predict potential lncRNA-mRNA relationships. A recent study that employs deep learning to reveal po-

tential lncRNA-gene pairs is DeepLGP,20 which collects expression and genomic location features and constructs positive pairs based on

LncRNA2Target14 and negatives from random lncRNA-gene pairs. Additionally, GCN is applied to extract features, while CNN is employed

to make predictions farther down the line. IRDL21 integrated sequencing, gene expression, and chromatin accessibility to identify divergent

lncRNAs with target genes. The LPI-deepGBDT22 takes gradient-boosting decision trees and features from Pyfeat and BioProt for potential

lncRNA-protein relationship prediction. DNNMC23 proposes a lncRNA-protein-coding gene (PCG) computational method combining deep
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neural networks and inductive matrix completion using multi-omics data and known association. GAE-LGA24 leverages multi-omics features

of lncRNA and PCG as the source for the similarity calculation and applies the graph-autoencoder for potential relation interference. Most of

those methods considered expressional profiles, multi-omics data, or location of gene and lncRNA as features.

Nonetheless, few considered the functional mechanism, such as lncRNA playing a role as ce-RNA to regulate the gene.25,26 For example,

lncRNA-PNUTS, an alternatively spliced lncRNA fromPNUTS prematuremRNA, contains seven binding sites tomiR-205, enhancing ZEB1 and

ZEB2 mRNAs by reducing miR-205-binding ability.27 The miRNA can regulate gene post-transcription by binding to the 30UTR of genes.28

lncRNA can also provide binding sites for miRNA. Thus, building predictive models directly from lncRNA and gene 30UTR sequences seems

practical. The next thing is to select predictive models.

In other bioinformatics fields, deep learning has had considerable success, such as protein structure prediction,29 inference of

miRNA-gene links,30 compound-protein interactions,31 cancer survival analysis,32 and cell fate.33 However, deep learning is likely to

show considerable variance, especially when using tiny datasets with high dimensions, such as omics characteristics from biological fea-

tures,34 which deteriorates the model’s generalization ability. The model’s capacity for generalization demonstrates its flexibility in re-

sponding to new data. However, many previous deep learning models, such as our previous work, only considered the area under the

curves (AUC) values inside one dataset. Furthermore, when choosing the negative samples, how the random seeds may influence the

results is merely explored. That lack of generalization verification demands independent datasets and more experiments on different

random seeds.

Ensemble approaches are an excellent solution to increasemodel generalization. Combining the output frommany deep-learningmodels

can improve the model’s generalizability.35 Mixed deep-learning and machine-learning models may further improve generalization capabil-

ities.36 Ensemble techniques have been employed in many link prediction tasks of bioinformatics applications, including Cas9 off-target,

miRNA-target, microbiome-drug, and microbiome-disease. For instance, Zhang et al.37 used ensemble AdaBoost to predict CRISPR-Cas9

off-target activities by combining characteristics from synergizing methods, conservations, and chromatin annotations. EnANNDeep38 is

an ensemble method aggregating AkNN, DNN, and gcForst results for scoring lncRNA-protein pairs. The features of which are extracted

fromprotein sequences and structures. To predictmiRNA-target correlations, SRG-vote39 integrated several long short-termmemorymodels

trained with features from different aspects. Long et al.40 proposed an ensemble graph network with three models and several input sources

to identify potential relationships between medications and microorganisms. Chen et al.41 made soft voting of four CNN models for human

disease-microbiome prediction. These studies indicate that integratingmodels may have better performance. However, those methods only

considered ensembles inside one dataset with different models, not considering ensembles with different negative sampling random seeds

and validating them on the independent datasets.

Inspiredby this, we designed lncRNA-Top, the controlled deep-learning approach (random forest (RF)-CNNensemble) to predict lncRNA-

gene relationships leveraging sequence-based characteristics inspired by the lncRNA regulatory mechanism. In the meantime, we have ret-

rospected and revisited some spots and details that are easily ignored in deep-learning tasks, including negative sampling with varied

Figure 1. Verification using three different approaches on each dataset

(A–C) The barplot of AUC values inside IT, LC, and LCIT datasets with adjusted p value was annotated using the rank-sum test with Bonferroni correction using

type-1, type-2, and type-3 methods.

(D) The violin-swarm plot of AUC for type-3 10-fold cross-validation.

(E–G) The barplot of AUPR values inside IT, LC, and LCIT datasets.

(H) The violin-swarm plot of AUPR for type-3 10-fold cross-validation, each white point indicates one experiment with different sampling random seeds and

10-fold cut random seeds. Mann-Whitney-Wilcoxon tests were conducted, and p-values were calculated to compare the performance of each feature

extraction or prediction model. The figure’s error bar indicates a specific metric’s distribution range.
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random seeds, different types of cross-validation, results confidence by the statistical calculation, varied independent datasets, ensemble

verification on independent datasets, and differentiated metrics. Except for AUC, we also introduced other metrics, such as area under pre-

cision-recall (AUPR) curve and our definedprecision@K. If onemodel can get a higher AUPR, it can control the false positive rate (FPR),42 which

also means that the top-predicted pairs are more likely to be the ‘‘real-positive’’ pair. These metrics help us polish our ensemble policy when

predicting the actual scenario.

The contributions of lncRNA-Top are listed as follows.

(1) We designed a model to predict lncRNA-gene regulation relations from the lncRNA sequence and gene UTR 30 sequence by consid-

ering themechanismof how they interact. The featureswith simple random forest can achieve higher AUC/AUPR than the SOTA (state-

of-the-art) deep-learning methods.

(2) We have introduced multi-dimensional analysis to reveal the predictive ability of the proposed model (including statistical analysis,

transfer verification, and precision@k).

(3) We utilized hybrid ensemble controlled deep-learning approaches, significantly improving the deep-learningmodels’ robustness and

AUC/AUPR for predicting potential relations between lncRNAs and genes.

Figure 2. Comparison with the SOTA method

(A and B) The violin-swarm plot of AUC and AUPR of our methods, when compared with the SOTA method DeepLPG, in the low-throughput constructed (LC

dataset) dataset, 1, 2, 3 here mean the negative sampling random seeds. Adjusted p value with Bonferroni correction is annotated.

(C andD) The violin-swarmplot of AUC andAUPR of ourmethods, when comparedwith the SOTAmethodDeepLPG, in the high-throughput constructed dataset

(HC dataset).

(E) The barplot indicated the performance of features from LPI and ours. The x axis is the models and metrics. We introduced AUC, AUPR, F1, and MCC in this

experiment. Mann-Whitney-Wilcoxon tests were conducted, and p-values were calculated to compare the performance of each feature extraction or prediction

model. The figure’s error bar indicates a specific metric’s distribution range.
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RESULTS

Verification using three different approaches on each dataset

Three types of verification results for each sub-model, such as RF and CNN, on different datasets are shown in Figure 1. Rank-sum tests were

leveraged to calculate the adjusted p value with Bonferroni correction. Except for the type-1 and type-3 AUPR in the low-throughput con-

structed (LC) dataset, all datasets show that CNN performs better than RF with adjusted p values less than 0.05. From the results, some inter-

esting conclusions can be drawn, such as: Integrating the IT and LC datasets may improve the model’s performance and lower error bars;

leveraging more training data (90% of data instead of 80%) results in higher performance in type-3 than in type-1 and type-2.

Figures 1D and 1H demonstrate the overall performance of merging the results of type-3 verification of AUC and AUPR. We can see from

the images that for the 10-fold cross-validation, RF’s results are less variable thanCNN’s, demonstrating that deep learning exhibits significant

variance, which means that the deep-learning models (CNN) are more easily affected by the random seeds. The results further indicate that,

when conducting deep learning experiments inside one dataset, it is necessary to repeat the experiments from the negative sampling.

Comparison with the SOTA methods

Although our method is specially designed for the lncRNA-gene regulation relations, given that we share the same training datasets with the

SOTA method DeepLGP,20 we could still compare our AUC/AUPR with theirs. We also leveraged the 10-fold cross-validation. Details of the

results are shown in Figures 2A–2D.

From the results, we could see that the RF with Poly-kernel-PCA-transformed features could get significantly higher results (adjusted p

value with Bonferroni correction % 0.05) in both the LC and high-throughput constructed (HC) datasets. DeepLGP leverages GCN and

CNN to discover potential relationships between lncRNA and genes, a deep-learning-based model. We only leveraged our non-deep-

learning algorithm and got higher AUC/AUPR, demonstrating that our mechanism involved sequence-based methods that are working.

One rationale is that we utilized more advanced features than the SOTA approaches; and another is that we created more gene and

lncRNA features. We further explored the feature generated from different lncRNA-related predictive models. A detailed method compar-

ison can be found in Table 1. We compared those features in two steps. The first step is leveraging LPI-generated features in our predictive

framework; the results are shown in Figure 2E. The second step is to compare the performance of different features under the frameworkGAE-

LGA. Those features include original multi-omics features, LPI’s features, and our features. The results of different features under GAE-LGA

can be found in Table 2.

From the figure, we could find that the features generated by the lncRNA-Top can achieve better performance for all sub-models

and metrics. Table 2 demonstrates that the original multi-omics features are better than LPI’s generated features but inferior to ours

Table 2. Results of GAE-LGA with different features as input

Method

D1_

AUC

D1_

AUPR

D1_F1-

score

D1_

MCC

D2_

AUC

D2_

AUPR

D2_F1-

score

D2_

MCC

D3_

AUC

D3_

AUPR

D3_F1-

score

D3_

MCC

GAE-LGA_

(Adjust)

0.9522 0.5479 0.7691 0.6071 0.923 0.5984 0.8265 0.6907 0.8149 0.4169 0.7761 0.6007

GAE-LGA_

(LPI_Features)

0.9482 0.5407 0.7692 0.6072 0.918 0.5833 0.7901 0.633 0.8404 0.5312 0.8172 0.6524

GAE-LGA_

(Our_Features)

0.9489 0.5453 0.7726 0.6124 0.9242 0.6176 0.834 0.7019 0.8568 0.5683 0.8359 0.6809

Increment (%) �0.346 �0.476 0.4551 0.8730 0.1300 3.2085 0.9074 1.6215 5.142 36.315 7.7051 13.351

We first experimented in the adjusted network (after removing the lncRNA/gene we don’t have). We acquired a benchmark value of GAE-LGA, namedGAE-LGA

(Adjusted), as the adjusted network is smaller than the original one. The metrics calculated are slightly inferior to the original paper’s description. Then, we re-

placed the original multi-omics features with LPI features and our features and reconducted experiments again. The bold value corresponds to the best perfor-

mance method for each metric. The results show that our features can outperform most of the metrics.

Table 1. Comparison with the SOTA method

model No. of gene No. of lncRNA Feature dimension Feature sources

DeepLGP20 6782 427 16 Manually selected

LPI22 – – 410/351 Pyfeat/BioProt+PCA

GAE-LGA24 256–716 208–268 312 Multi-omics

Ours 16127 12417 4096 iLearn+kmer+KPCA

LPI is designed to predict lncRNA and protein relationships and provides feature generators from sequences. GAE-LGA is a graph-based method proposed for

lncRNA and PCG (protein-coding gene) relation prediction. In the framework of GAE-LGA, features were leveraged for similarity calculation. We compared our

method in their framework by replacing its original multi-omics features with LPI generated and our features.
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(for 10 out of 12 metrics). D1 (Dataset1), D2, and D3 are introduced datasets by GAE-LGA.24 D1 contains 208 lncRNAs, D2 contains 238

lncRNAs, and D3 contains 263 lncRNAs. Notably, the performance increased when more lncRNA was introduced to the dataset.

Transfer verification for independent datasets

The results (sorted by the models) of the transfer verification among independent datasets are shown in Figure 3. We compared the mean

value of AUC/AUPR of RF, CNN, RF-CNN, and our controlled ensemble methods, RF-CNN ensemble. As can be seen from the picture of

Figures 3A and 3B, the RF-CNN-ensemble (last four rows) can get lighter color in both AUC (yellow) and AUPR (blue), indicating that aggre-

gating the scores predicted from different random-seeds generated training sets can increase the metric of AUC/AUPR.

Ensemble composition

As ensemble policy from different training random seeds can increase the overall performance, the next thing is to figure out the optimal

composition of the ensemble. The LCIT-HC is more likely to be the actual scenario, where the pairs to be predicted are enormous, and

the training dataset is limited. Thus, we further generated ROC and PR curves of the CNN and RF ensemble on the LCIT training set. We

also introduced the sub-model-only results as a comparison. The results are shown in Figure 4.

Prediction ability comparison

To further assess the RF ensemble, CNN ensemble, and RF-CNN ensemble’s capacity for prediction, we trainedmodels on the LCIT dataset.

All pairs of lncRNAandgeneswere taken into consideration. The precision@K is leveraged for the comparison. The results are listed in Table 3.

Here, we select k between 10 and 100. The results demonstrate that the RF-CNN ensemble could get much higher precision@K in all sce-

narios, which denotes better predictive performance.

Figure 3. Transfer verification for independent datasets (Heatmap)

(A and B) Heatmap of average AUC/AUPR of different methods and training-testing sets. Each cube zipped one machine-learning method, one training dataset,

and an independent testing dataset in the heatmap. The AUC/AUPR values aremarked with light to dark colors, denoting the value from large to small. Every four

rows indicate models or ensemble methods, each column indicates each independent dataset for testing, and each row indicates model-trained datasets,

including HC, LC, IT, and LCIT.
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DISCUSSION

Parametrical analysis

In the framework of lncRNA-Top, we have plenty of parameters that might contribute to the model robustness. To further explore those fac-

tors, we conducted a parametrical analysis. The variables include kernels and dimensions of Kernel PCA when transforming the features,

different sub-machine-learning models (Figure S1), negative sampling rate (Figures S2–S4), and random seeds (Figure S5; Table S1) for

cross-validation and ensemble.

RF-CNN ensemble zoomed in comparison

As shown in Figure 5, the RF-ensemblemodel seems to be the best option as it can achieve higher true positive rate or grow fast when the FPR

rises in all predicting HC tasks. However, when we further screen the predictive results from the RF ensemble with all pairs of 12417 lncRNA

and 16127 genes, their top results frequently tend to be indistinguishable. (RF-ensemble predicted pairs shared identical scores, resulting in

the same rank.) Thus, by adding the CNN scores, the controlled deep-learning algorithms (RF-CNN ensemble) may produce more separable

top outcomes with slight deterioration to AUC/AUPR but a significant increase to the top-predicted results (precision@K). Another possible

reason why the RF-CNN ensemble is better in real predictive situations is that the RF-CNN ensemble is the aggregate results of six models. In

comparison, RF ensembles and CNN ensembles only contain three models.

Top predictive results

To further illustrate the predictive ability of lncRNA-Top, we searched the literature for the highly predicted lncRNA-gene relationships. The

top ten predicted results (those that have appeared in the training set are removed) are shown in Table 4.

Figure 4. Ensemble composition

The figure described the ROC and PR curves when using LCIT to predict the HC dataset. This project also leverages the small dataset to predict the large dataset,

which is the closest to the actual scenario. In the first picture, RF-only is barely overlapped with RF-CNN-only, and RF-ensemble is barely overlapped with the

RF-CNN ensemble. The ROC and PR curves are drawn based on the concatenated label and scores of the independent dataset (for example, if we leverage

the LCIT_rs1 to train the model and generate a score for the HC_rs2, rs3 sample, we would concatenate scores and labels to generate RF-only or CNN-only

ROC curves). The independent sample score is the sum of different random seeds trained models for ensemble methods. As can be seen from the picture,

the performance of ensemble methods like RF-ensemble and CNN-ensemble are increased compared with their sub-model. Also, the RF ensemble can get

the highest AUC and AUPR in this task. The RF-CNN-ensemble ranked second in this task.

Table 3. The prediction ability of the different ensemble strategies

Precision@K RF ensemble (training included) CNN ensemble (training included) RF-CNN ensemble (training included)

10 0.1 0 0.5

20 0.15 0.05 0.65

30 0.17 0.07 0.57

50 0.1 0.06 0.48

70 0.07 0.07 0.47

90 0.06 0.08 0.46

100 0.05 0.11 0.47
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The regulatory mechanism that inspired us to construct this predictive model is that the lncRNA can regulate miRNA (microRNA) while

miRNA can regulate genes. Thus, lncRNA can be a competitor to some genes that share the same target miRNAs. Our previous publica-

tions30,39 demonstrated that modelling miRNA-gene relationships between miRNA and 30UTR gene sequences worked. Inspired by this,

in this model, we also constructed our predictive models using 30UTR gene sequences.

Interestingly, although no miRNA information (as we directly modeled on lncRNA sequence and gene sequence) was introduced to our

method, they were mentioned in most publications. We list the miRNA in the table and find that five out of the top 10 lncRNA-gene relations

predicted by our framework are related to miRNA. Here are some examples: the miRNAmiR-370-3p can target gene mitogen-activated pro-

tein kinase (MAPK1), and therefore, lncRNA taurine-upregulated gene 1 (lncRNA TUG1) could reduce the level of functional miR-370-3p and

facilitate MAPK1 expression.43 The elevated level of miR-197 in cells treated with lipopolysaccharide (LPS) was inhibited by transfection with

TUG1, which can sponge miR-197 to enhance the level of p-MAPK/MAPK, thereby inducing autophagy, indicating the upregulating of TUG1

might inhibit the increase ofmiR-197 and enhanceMAPK.44 SNHG1 andMAPK1were significantly upregulated, whilemiR-125b-5pwas down-

regulated in the MPTP-induced PD mouse and MPP+-induced PD cell models.45 SNHG1 competitively binds to the miR-221/222 cluster and

indirectly regulates the expression of cyclin-dependent kinase inhibitor 1B (CDKN1B/p27).46 NEAT1 forms double-stranded RNA with

miR-222-3p, thus limiting miR-222-3p’s binding with CDKN1B, which indicates that the upregulate of NEAT1 will reduce the miR-222-3p.

Thus, CDKN1B would be upregulated.47 lncRNA NEAT1 was upregulated while miR-27a-3p was downregulated in SH-SY5Y cells, and

CASP-3 protein and its lytic cell protein were upregulated.48 Neat1_2 (a transcript variant of NEAT1) competitively binds to miR-129-5p

and prevents miR-129-5p from decreasing FADD, CASP-8, and CASP-3 levels, ultimately facilitating TEC apoptosis. Neat1 binding to miR-

129-5p, then the level of CASP-3 is increased.49 We further marked the direction of regulation that the papers indicated, and these cases

Figure 5. RF-CNN ensemble zoomed in comparison

(A and B) Zoomed in ROC curves of (A) LC predicts HC, (B) IT predicts HC, and (C) LCIT predicts HC. Here, the FPR is cut off by 0.01. As can be seen from the

picture, when the false positive rate (FPR) is small and begins to grow, the true positive rate (TPR) rises quickly. Considering we have 12417 lncRNAs and 16127

genes, the total pair is 200,000,619. Thus, even if a small part of the TPR increases, it can significantly increase the predictive ability.

Table 4. Top unknown lncRNA-target relations predicted by lncRNA-Top

Rank gene_name lnc_name Score Evidence/Year PMID (Regulating miRNA)

1 SNAI1 HOXA-AS2 0.9959

2 MAPK1 ⬆ TUG1 ⬆ 0.9952 43/2019
44/2019

31819520 (miR-370-3p)⬇

31115515 (miR-197) ⬇

3 MAPK1 ⬆ SNHG1 ⬆ 0.9952 45/2021 33911864 (miR-125b-5p)⬇

4 SNAI1 TUG1 0.9946

5 CDKN1B ⬇ SNHG1 ⬇ 0.9943 46/2019 31499060 (miR-221/222) ⬆

6 GSK3B HOXA-AS2 0.9943

7 CDKN1B ⬆ NEAT1 ⬆ 0.994 47/2021 33585566 (miR-222-3P) ⬇

8 CDKN1B TUG1 0.994

9 HAS2 HOXA-AS2 0.9934

10 CASP3 ⬆ NEAT1 ⬆ 0.9933 48/2021 34540002 (miR-27a-3p) ⬇

49/2022 35619557 (miR-129-5p) ⬇

The ⬆ means the molecule is upregulated, ⬇ means the molecule is downregulated according to the publications.
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Figure 6. The overall workflow of lncRNA-Top

The workflow can be divided into four parts. The yellow parts denote the feature generation, and the green part reveals the dataset for downstream works. The

reddish part indicates the ensemble model we take for the prediction, and the bluish part illustrates the verification we have done to validate our models.

(A and B) lncRNA/gene 30UTR sequences examples.

(C) Generation of iLearn features from the iLearn platform.

(D) Generation of k-mer (k = 3 to k = 8) features.

(E) LncRNA and gene feature transformation by the KPCA with poly kernels.

(G and H) Using the LC, IT, HC, and Case_study datasets to construct four embedding datasets using the previously generated features (with different random

seeds).

(I) RF model trained by datasets.

(J) CNN models trained by datasets.

(K) Validation methods (three types) inside each dataset and the transfer verification among each dataset.

(L) Controlled deep-learning strategy, using different random seeds to construct a dataset and train sub-models. We predict the final results with RF and CNN

models (controlled deep learning), differentiating the final scores and improving predictive performance.

(M) Software and web server demo.

ll
OPEN ACCESS

8 iScience 26, 108197, November 17, 2023

iScience
Article



indicate that the lncRNA and gene are regulated in the same direction. If the lncRNA is upregulated and the corresponding gene is upregu-

lated, the target miRNA is sponged and downregulated. The top-predicted lncRNA-gene pairs further indicate that building a predictive

model based on the lncRNA sequences and gene 30UTR sequences directly can reveal authentic gene transcriptional regulations by lncRNA

through mechanisms such as competitive endogenous RNA. We also marked the year of publication. Those recent publications are not

included in any dataset demonstrating lncRNA-Top’s predictive performance.

We tested the prediction of the case study dataset. Results can be found in Table S2.

In this study, we proposed lncRNA-Top, controlled deep-learning approaches that predict potential lncRNA-gene regulatory relations

inspired by regulatorymechanisms. The overall workflow of lncRNA-Top is illustrated in Figure 6. The usage and purpose of different datasets

in this manuscript are shown in Table 5. Details of the constructed datasets leveraged for machine learning model training can be found

in Table 6.We explored the influence of random seeds, ratios of negative sampling, different cross-validation, and transfer verification among

datasets and conducted a multi-dimensional analysis of the predicted results. The controlled deep-learning approaches hybrid ensemble

datasets and results of machine-learning and deep-learning models, increasing the AUC/AUPR/Precision@k of the predictive method.

The case study denotes that our suggested approaches can accurately identify those lncRNA and gene regulatory relationships with substan-

tial evidence. The code, features, software, and website are provided.

Limitations of the study

In our framework, we only considered the sequence-based feature extractors. However, there are many features from other domains, such as

multi-omics and graph-based features. Introducing those features might contribute positively to the performance. We will explore more fea-

tures in the next version of lncRNA-Top.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

Table 6. The details of the constructed datasets

Constructed datasets Inc Gene Positive pairs Negative pairs Source

LC 118 276 493 493 LncRNA2Target14
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Case study 8 9 9 9 Review paper10

Table 5. Datasets and their usage in our method

Datasets Usage/Purpose

Original datasets Provide positive pairs (known pairs,

such as14,15)

Constructed datasets Provide positive/negative pairs with random

seeds.

Constructed embedding datasets Generate from constructed datasets and

provide training/testing set for downstream

machine-learning algorithms.

Independent datasets To verify the performance of the trained model

LNCipedia v511 Provide lncRNA sequences

’biomaRT’ R package52 Provide gene 30UTR sequences (13815/16127

genes were protein-coding genes)

LncRNA2Target v2.014 Provide positive samples, an independent

dataset for15

lncTarD15 Provide positive samples, an independent

dataset for14

Case study datasets10 Extracted from,10 the Independent dataset

for14,15

ll
OPEN ACCESS

iScience 26, 108197, November 17, 2023 9

iScience
Article



B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

d METHOD DETAILS

B Overall workflow

B Dataset collection

B Negative sampling with random seeds

B Feature extraction

B Kernel principal component analysis

B Constructed embedding datasets and metrics

B Three types of verification inside each dataset

B Transfer verification

B Ensemble predictor

d QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2023.108197.

ACKNOWLEDGMENTS

This researchwassubstantially sponsoredby the researchprojects (grantno. 32170654and32000464) supportedby theNationalNatural Science

Foundation of China and was substantially supported by the Shenzhen Research Institute, City University of Hong Kong. The work described in

this paper was substantially supported by the grant from the Research Grants Council of the Hong Kong Special Administrative Region [CityU

11203723]. This project was substantially funded by the Strategic Interdisciplinary Research Grant of City University of Hong Kong (Project No.

2021SIRG036). The work described in this paper was partially supported by the grant from City University of Hong Kong (CityU 9667265).

AUTHOR CONTRIBUTIONS

W.X. and K.-C.W. conceived the study; W.X. designed and implemented the algorithms; W.X., X.C., Z.Z., and F.W. conducted the result anal-

ysis. W.X., X.Z., Q.L., Y.S., and K.-C.W developed the software, designed the web server, and wrote the manuscript. K.-C.W. funded and su-

pervised the study. All authors read and approved the final manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interest.

Received: April 24, 2023

Revised: August 10, 2023

Accepted: October 10, 2023

Published: October 12, 2023

REFERENCES
1. Carninci, P., Kasukawa, T., Katayama, S.,

Gough, J., Frith, M.C., Maeda, N., Oyama, R.,
Ravasi, T., Lenhard, B., Wells, C., et al. (2005).
The transcriptional landscape of the
mammalian genome. Science 309,
1559–1563.

2. Guttman, M., Amit, I., Garber, M., French, C.,
Lin, M.F., Feldser, D., Huarte, M., Zuk, O.,
Carey, B.W., Cassady, J.P., et al. (2009).
Chromatin signature reveals over a thousand
highly conserved large non-coding RNAs in
mammals. Nature 458, 223–227.

3. ENCODE Project Consortium, Good, P.,
Guyer, M., Kamholz, S., Liefer, L.,
Wetterstrand, K., Collins, F., Gingeras, T.,
Kampa, D., Sekinger, E., et al. (2004). The
ENCODE (ENCyclopedia of DNA elements)
project. Science 306, 636–640.

4. Uszczynska-Ratajczak, B., Lagarde, J.,
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Dr. Ka-ChunWong (kc.w@cityu.

edu.hk).

Materials availability

This study did not generate new biological data.

Data and code availability

The authors analyze existing and publicly available data. These accession numbers for the datasets are listed in the key resources table.

All original code has been deposited at GitHub and is publicly available as of the date of publication. DOIs are listed in the key resources

table.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

This paper analyses existing, publicly available data. The study does not use experimental models typical in life sciences.

METHOD DETAILS

Overall workflow

The workflow of lncRNA-Top is illustrated in Figure 6.

Themain framework can be divided into four parts: feature generation (a-f), dataset (g-h), ensemble model (i-j), and verifications (k-m). We

first extracted sequence-based features of both 30UTR complementary genes sequence and lncRNAs from the iLearn platform50 and the

k-mer. In Figures 6A and 6B, we visualized the raw sequences by Weblogo51 and generated the features for each sequence (c-d). Then,

we concatenated all generated features and applied kernel PCA (KPCA) with the poly kernel to perform feature transformation and reduce

dimension (e). We constructed embedding datasets using known lncRNA and gene relationships as positive and randomly selected pairs as

negatives with random seeds, as described in Figure 6H. The deep learning (CNN) and machine learning (RF) models were then trained on

constructed embedding datasets. (k-l) Different types of cross-validation, verification among varied independent datasets, random seeds-

based ensemble method verification, and metrics exploration. (m) The software would list the top-predicted target and scores by inputting

names of genes or lncRNA.

Dataset collection

We considered different dataset types in this manuscript. The usage and purpose of different types of datasets are shown in Table 5. lncRNA

sequences were downloaded from LNCipedia,11 and gene sequences were downloaded from biomaRT’ R package.52 In detail, we leveraged

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

LNCipedia https://lncipedia.org/ https://doi.org/10.25504/FAIRsharing.84c1a7

biomaRT https://bioconductor.org/packages/release/bioc/html/biomaRt.html SCR_019214

LncRNA2Target http://123.59.132.21/lncrna2target LC/HC

lncTarD https://lnctard.bio-database.com/ IT

Software and algorithms

LncRNA-Top This study (http://lncrna.cs.cityu.edu.hk/)

(https://github.com/Xshelton/LncRNA-TOP)

LncRNA-Top

iLearn Platform https://github.com/Superzchen/iLearn iLearn

DeepLGP https://github.com/zty2009/LncRNA-target-gene DeepLGP

LPI-deepGBDT GitHub - plhhnu/LPI-deepGBDT LPI

GAE-LGA GitHub - meihonggao/GAE-LGA GAE-LGA
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the lncRNA sequences and 30 UTR complementary sequences from genes as input data for feature extraction. The LncRNA2Target v2.0 14

contains low-throughput and high-throughput datasets. High-throughput datasets contain more genes but fewer lncRNAs than low-

throughput datasets. We constructed three independent datasets from the low-throughput data (LC), the high-throughput data (HC), the

lncTarD15 dataset (IT), and the union set of LC and IT (named LCIT). Another independent dataset is manually curated from the literature10

and named a Case study dataset. We filtered the datasets in advance to include unique lncRNA-gene pairs to avoid AUC/AUPR inflation. The

case study dataset overlaps HC, LC, IT, and LCIT differently, as depicted in Figure 6G. Details of the constructed datasets can be found in

Table 6.

Negative sampling with random seeds

We preserved the positive pairs and randomly chose the negative pairs to build embedding datasets. The random seed is noted after the

dataset. For example, If we use the random seed ’one ’to generate the negative samples for the LC dataset, we remark them as LC_1. For

our final ensemble predictor, we trained RF and CNN on the LCIT_1,2,3, tested it on the HC_1,2,3, and verified the top 100 predicted pairs

with precision@k.

Feature extraction

We leveraged the iLearn platform50 and the k-mer for sequence-based features. The iLearn platform is an open-sourced sequence feature

calculation platform (software). We can generate a series of sequence-based features by inputting DNA, RNA, or protein sequences into

the platform. We first generated all the features that do not need alignment in advance with the default parameters. Those features include

Pseudo k-tuple composition (PseKNC), Dinucleotide-based Auto Covariance (DAC), and Series correlation pseudo dinucleotide composition

(SCPseDNC) et al. The k-mer is one of the rudimental features for sequence analysis. It contains essential information such as the statistical

distribution, palindromic clips, and possiblemotifs. Taking "3-mer" as an example, assumingwe have a sequence of "GTAC," then applying a

sliding window to the sequence from right to left, such as "GTA" and "TAC." The count of those "k-mer" is the feature of one sequence.

Herein, we set k from three to eight to guarantee variety but not the sparsity of the features. Features details can be found in Table S3.

Kernel principal component analysis

After the feature generation, the total feature dimensionality is exceptionally high (more than 84,000). If we build our machine-learningmodel

directly and integrate all these characteristics, it is not computationally efficient. Thus, we applied feature transformation algorithms. The orig-

inal feature space is usually non-linear separable. Thus, we applied Kernel Principal Component Analysis (Kernel PCA) with the poly kernel to

extract the most variance-explaining features from the initial feature space. Mathematically, we denote the original features as xi. Applying a

high-dimensional non-linear feature transformation ø to the data xi. We get:

xi /øðxiÞ (1)

If we assume v is a linear combination of a high-dimension vector:

V =
Xn
i = 1

ai ø ðxiÞ (2)

Where ai are learned weights from the component of v. Thus, for a new point x�, the coefficient is based on the data points’ similarity. The

kernel PCA coefficient w for v is calculated as:

w = ø ðx�ÞTv =
Xn
i = 1

ai ø ðx�ÞT ø ðxiÞ =
Xn
i = 1

ai kðx�; xiÞ = kT�a (3)

Here, k is the p-order polynomial kernel function:

kðx; xiÞ = ½ðx$xiÞ+1�p (4)

In this study, we selected 4096 features for the final prediction due to their overall good performance among different datasets.

Constructed embedding datasets and metrics

The lncRNA-gene pairs from the original datasets14,15 were positive samples. The negative samples were randomly selected with random

seeds.20 The number of negative samples is equal to the number of positive samples. We generated the constructed datasets several times

to increase the robustness and calculatemetrics statistics. Themerge of positive and negative samples was regarded as the constructed data-

set. We concatenated the lncRNA and gene sequence-based transformed features for each positive/negative lncRNA-gene pair to build

embedding datasets and append them with label 1/0. Assuming Fi;j as one row of lncRNA i and gene j, and Li;n and Gj;n represent the

n-th value of embedding, then the Fi;j can be represented as:

Fi;j =
�
Li;0，Li;1:::Li;n;Gj;0;Gj;1:::Gj;n

�
; (Equation 5)
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Those embedding datasets were fed into machine-learning/deep-learning models for training and fine-tuning. The machine learning

method distinguishes positive and negative samples by leveraging extracted features.

The metric we leveraged to evaluate model performance is the AUC/AUPR values. We also defined another metric, precision@K, to eval-

uate the predictive ability. For a model that predicted k unknown pairs, we cut the top k results and searched the pair of keywords in PubMed

(https://pubmed.ncbi.nlm.nih.gov/). We denoted a publication containing both keywords as a hit. The precision@K is defined as:

precision@k =
hits

k
(Equtaion 6)

Random forest and convolutional neural network

For our controlled deep-learning strategy, we choose RandomForest (RF) as our basicmachine-learning algorithm and the convolutional neu-

ral network (CNN) as the deep-learning model. We generated construct datasets via different random seeds and trained an equal number of

RF and CNNmodels between those datasets. The algorithms’ details are as follows: An RF implemented bagging to vote from the Decision

Tree classifier and aggregate prediction results from different tree classifiers. RF can be directly applied to the transformed dataset, while for

CNN, to apply the 2D-convolutional layer, we need to first cut the number of the features into the power of the largest integer. Then, we

reshaped the embedding into a squared shape and applied the CNN. For the 2D convolution, assume we have theW to form a 2D filter tem-

plate, then the filter response h can be calculated by

h = f

 X
x;y

Wx;yPx;y

!
(Equation 7)

Where P is an image patch, its size is the same as the size of W. f(x) is the activation function, which is applied to each dimension to get the

output. We leveraged the ’tanh’ function as the activation function for the convolutional layers:

tanhðxÞ =
sinhðxÞ
coshðxÞ =

ex � e� x

ex+e� x
(Equation 8)

For the output layer, the sigmoid function was applied:

sðxÞ = 1 = ð1 + e� xÞ (Equation 9)

For the loss function, we chose categorical cross-entropy.

Loss = �
Xoutput size

i = 1

yi$logbyi (Equation 10)

We leveraged the RMSProp (Root Mean Squared Propagation) for the optimizer with a learning rate of 2e-06.

Three types of verification inside each dataset

Most methods may only consider one type of validation. As we want to explore further the relations between different verification methods

inside each dataset, we designed three types of verification inside each dataset (Figure 6K). We set another random seed for splitting the

dataset. The first type is to cut the dataset to 80% of training and 20% of testing, repeat ten times with different random seeds. The random

seed guaranteed that the split could be reproducible and unique. For the type two verification, we divided the dataset into 80%, 10%, and 10%

for training, validation, and testing, respectively. We grid-searched the best parameters on the validation set and applied the best model to

obtain test scores on the testing set. For the type three verification, we implemented 10-fold cross-validation. Each dataset was split into ten

parts for cross-validation, each serving as a different test set. SOTA approaches also employ this technique.20 In our experiments, each data-

set underwent all three verification methods.

Transfer verification

We introduced four independent datasets here. They are LC, IT, HC, and the case_study. The transfer verification means each dataset will be

tested in turn. First, we trained RF and CNN on LC, IT, LCIT, and HC, and regarding the rest of the datasets as independent datasets. We

recorded the average AUC/AUPR to indicate the predictive transfer ability of each sub-model. As for each independent dataset, we varied

with different random seeds. We further explored the random seeds ensemble policy, which leverages different random seeds to generate

training sets and ensemble their predictive results to generate the final scores.

Ensemble predictor

We selected the RF as a robust model among discrepant datasets, while CNN can fit for the best performance inside each embedding

dataset alone. Applying the ensemble will train three RF and three CNN models via different random seeds generated training sets. Finally,
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each pair of lncRNA and gene ensemble would have individual scores derived from several models. They would all be added together to

determine the final score. The score and rank for each lncRNA/gene can be retrieved by our software published on our web server.

QUANTIFICATION AND STATISTICAL ANALYSIS

In this manuscript, Mann-Whitney-Wilcoxon tests (M.W.W. in figures, also known as rank-sum tests) were conducted to compare the perfor-

mance of each feature extraction or predictionmodel. For cross-validation, each fold’s results (AUC/AUPR values) would be regarded as min-

imal operation elements for statistical tests. The mean value is also calculated to show the overall performance of each model.
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