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Early host-pathogen interactions drive the host response and shape the outcome of
natural infections caused by intracellular microorganisms. These interactions involve a
number of immune and non-immune cells and tissues, along with an assortment of host
and pathogen-derived molecules. Our current knowledge has been predominantly
derived from research on the relationships between the pathogens and the invaded
host cell(s), limiting our understanding of how microbes elicit and modulate immunological
responses at the organismal level. In this study, we explored the early host determinants of
healing and non-healing responses in human cutaneous leishmaniasis (CL) caused by
Leishmania (Viannia) panamensis.We performed a comparative transcriptomic profiling of
peripheral blood mononuclear cells from healthy donors (PBMCs, n=3) exposed to
promastigotes isolated from patients with chronic (CHR, n=3) or self-healing (SH, n=3)
CL, and compared these to human macrophage responses. Transcriptomes of L. V.
panamensis-infected PBMCs showed enrichment of functional gene categories derived
from innate as well as adaptive immune cells signatures, demonstrating that Leishmania
modulates adaptive immune cell functions as early as after 24h post interaction with
PBMCs from previously unexposed healthy individuals. Among differentially expressed
PBMC genes, four broad categories were commonly modulated by SH and CHR strains:
cell cycle/proliferation/differentiation, metabolism of macromolecules, immune signaling
and vesicle trafficking/transport; the first two were predominantly downregulated, and the
latter upregulated in SH and CHR as compared to uninfected samples. Type I IFN
signaling genes were uniquely up-regulated in PBMCs infected with CHR strains, while
genes involved in the immunological synapse were uniquely downregulated in SH
infections. Similarly, pro-inflammatory response genes were upregulated in isolated
macrophages infected with CHR strains. Our data demonstrate that early responses
during Leishmania infection extend beyond innate cell and/or phagocytic host cell
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functions, opening new frontiers in our understanding of the triggers and drivers of
human CL.
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INTRODUCTION

Clinical manifestations of human infections with Leishmania
Viannia species (primarily L. V. braziliensis and L.V.
panamensis) range from single self-healing skin lesions, to severe
and chronic cutaneous or mucosal disease (Weigle et al., 1993;
Murray et al., 2005). Contrary to infections where microorganisms
inflict direct damage to the host via toxins or cellular injury,
symptomatic dermal leishmaniasis (cutaneous, mucosal or muco-
cutaneous) results from parasite-elicited immunopathology, and
disease severity depends on the degree of immunopathology and
concomitant immunoregulation (Murray et al., 2005; Rodriguez-
Pinto et al., 2012). For these immunopathologically-driven
infections, the early host-microbe interactions and the elicited
innate immune responses, together with specific features of the
anatomical sites and tissues affected, shape the adaptive responses
that contribute to pathology and disease severity. However, the
triggers and drivers of immunopathology of dermal leishmaniasis
remain largely unknown.

Genotypic and phenotypic variability among Leishmania
isolates of the same species has been long-recognized. Within
the L. Viannia subgenus, a number of phenotypically discernable
populations (zymodemes) co-circulate in endemic foci of
transmission, with L. V braziliensis and L.V. panamensis being
the two species with the highest heterogeneity (Saravia et al.,
1998). Distinct host responses as well as intrinsic parasite
phenotypes have been correlated with different zymodemes.
Disease caused by L. V. braziliensis zymodeme 1.1 has been
associated with a longer time of evolution in humans (Saravia
et al., 1998), and L. V. panamensis zymodeme 2.3 has been
identified as a population intrinsically resistant to antimony
(Fernandez et al., 2014). Thus, parasite factors, as well as their
interaction with the host may contribute to the distinct
immunological responses unleashed upon infection with
different strains of the same Leishmania species. Although the
specific determinants of such responses are currently unknown,
variations in virulence factors involved in modulating the early
stages of the host-pathogen interaction [e.g. GP63 copy number
or function (Gomez and Olivier, 2010)], could contribute to
divergent clinical outcomes of disease.

Characterization of the early Leishmania-host interactions
has been primarily conducted in the context of isolated
phagocyte infections [macrophages, dendritic cells and
neutrophils, and predominantly using murine or human cell
lines (Cohen-Freue et al., 2007; Ovalle-Bracho et al., 2015)]. We
have previously shown that L. V. panamensis strains isolated
from patients with chronic cutaneous leishmaniasis (CL)
induced significantly more expression of pro-inflammatory
chemokines and cytokines in human macrophages (Navas
et al., 2014), consistent with parasite-elicited hyperactivation of
gy | www.frontiersin.org 2
the host-cell inflammatory response driving disease severity.
However, during natural vector-borne infections, the initial
host-parasite interaction involves a multitude of other immune
and non-immune cells, which constitute the cellular micro-
environment to which, promastigotes are exposed after
inoculation into the human host. Murine models of infection
have provided evidence of the early participation of keratinocytes
in susceptibility to L. major via induction of pro-inflammatory
chemokines and cytokines (Ehrchen et al., 2010; Ronet et al.,
2019). In humans, keratinocytes were proposed to participate in
the development of post-kala azar dermal leishmaniasis, and in
the pathologic changes of ulcerating skin lesions (Gasim et al.,
1998; Tasew et al., 2010). The participation of non-immune and
non-phagocytic immune cells in the early interactions of
L. Viannia species and the host, and the contribution of those
responses to development of symptomatic disease and in disease
severity, are not completely understood.

Gene expression profiling of peripheral blood mononuclear
cells (PBMCs) responses, both at the basal level and after
antigenic recall, has been successfully implemented as a tool to
identify immunological gene signatures of clinical and
therapeutic outcomes in human infections. Illustrating this,
transcriptional profiling of PBMCs has revealed gene
signatures associated with immunological protection in human
malaria vaccine studies (Moncunill et al., 2020), responsiveness
to antiviral treatment in human hepatitis C infections (Orr et al.,
2020), and long-lasting immune dysfunction in patients with
chronic ebola infection (Wiedemann et al., 2020), among others.
More recently, consistency between results from bulk RNA-seq
and single cell sequencing has been demonstrated with PBMCs
from COVID-19 patients (Arunachalam et al., 2020), supporting
the use of bulk transcriptomics to explore immunological
signatures of infectious diseases and disease severity.

Antigen-specific recall responses of PBMCs from CL patients
has demonstrated that a mixed Th1/Th2 response, accompanied
by immune deregulation, participates in the clinical
manifestations and disease severity caused by L. Viannia
(Carvalho et al., 1985; Saravia et al., 1989; Diaz et al., 2010). In
this study, we examined how clinical strains of L.V. panamensis
which cause different degrees of severity of CL in humans
(chronic or self-healing CL), modulate the early responses of
PBMCs within the first 24 hours of parasite-host interaction. We
hypothesize that these initial PBMC-promastigote interactions
contribute to define the nature and magnitude of activated or
repressed host functions, ultimately determining the clinical
outcome of infection. Identification of immunological
signatures associated with development of more severe disease
manifestations and triggered during the early phases of infection,
will serve as a knowledge base for the development of prognostic
tools, ultimately allowing timely intervention for these cases,
September 2021 | Volume 11 | Article 687607
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known to be more refractory to first-line antileishmanial drugs
(Amato et al., 2008; Maurer-Cecchini et al., 2009; Bamorovat
et al., 2021).
MATERIALS AND METHODS

Isolation of Total WBCs and PBMCs
Peripheral blood samples from healthy volunteers without history of
CL and residing in an urban non-endemic city, were collected and
processed to obtain total WBCs and PBMCs. WBCs were isolated
by centrifugation at 400 g for 15 min at RT and cells were collected
from the interface between the plasma and red blood cells. WBCs
were incubated in RBC lysis buffer ([150 mM] NH4CL, [10 mM]
KHCO3, [0.1 mM] Na2EDTA) for 5 min at RT, washed with PBS,
and resuspended in RPMI supplemented with 10% FBS for
subsequent procedures. PBMCs were obtained by centrifugation
of PBS-diluted (1:1) blood samples over a Ficoll-Hypaque gradient
(Sigma-Aldrich) following the manufacturer’s instructions.

Leishmania Strains
Clinical strains were obtained from the CIDEIM BioBank. Strains
were originally isolated by needle aspirate of cutaneous lesions or
from biopsies of mucosal lesions, propagated in Senekjie´s
biphasic blood agar and immediately stored in liquid nitrogen
until use. Strains were typed by immunoreactivity to monoclonal
antibodies. L. V. panamensis strains MHOM/CO/11/5430
(5430chr), MHOM/CO/08/5433 (5433chr) and MHOM/CO/08/
5397 (5397chr) were isolated from patients with chronic CL of > 6
months´ evolution. MHOM/CO/87/1320 (1320chr) and MHOM/
CO/85/2504 (2504chr) were isolated from lesion biopsies of nasal
mucosa from patients with >10 years of muco-cutaneous disease.
Strains MHOM/CO/85/2272 (2272sh), MHOM/CO/85/2271
(2271sh), MHOM/CO/89/2189 (2189sh) and MHOM/CO/83/
1022 (1022sh) were isolated from CL patients who clinically
resolved disease in the absence of any treatment (self-healing CL).

Infection
Promastigotes were grown at 25°C in Senekjie’s biphasic medium
and passed for a maximum of two sub-passages into RPMI 1640
supplemented with 10% heat-inactivated FBS and 5 mg/ml
hemin. Ten million WBCs or PBMCs were infected at a 10:1
parasite-to-monocyte ratio with human AB+ serum-opsonized
stationary phase promastigotes for 24h. Selection of 24 hours
post infection (hpi) as the time to characterize the early
interaction of PBMCs and Leishmania, was based on prior
transcriptomic data showing a strong modulation of gene
expression at 4 hpi, and stabilization of these responses at 24
hpi, remaining essentially unaltered up to 72 hpi (Dillon et al.,
2015; Fernandes et al., 2016).

Macrophage Samples
All macrophage samples used were those previously collected
and characterized in a previous study from our group (Navas
et al., 2014). Briefly, macrophages were differentiated from
PBMCs by adherence to cell culture plasticware in serum-free
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
RPMI for 2h, followed by culture for 7 days in RPMI
supplemented with 20% FBS at 37°C and 5% CO2. Cells were
infected for 24h at a 1:10 ratio as described above.

RNA Isolation and cDNA Synthesis
Total RNA was extracted from uninfected and infected cultured
cells using Trizol (Invitrogen, USA) followed by RNA cleanup
with RNeasy Mini Kit columns (Qiagen, USA). RNA integrity
was assessed using an Agilent 2100 bioanalyzer. For RNA-seq,
poly(A)-enriched cDNA libraries were generated using the
Illumina TruSeq v2 sample preparation kit (San Diego, CA)
and checked for quality and quantity using bioanalyzer and
quantitative PCR. For qRT-PCR analyses, RNA was reverse
transcribed with RT First Strand Kit (SABiosciences-Qiagen).

Gene Expression by qRT-PCR
Gene expression analysis of 84 inflammatory genes and receptors
was conducted by qRT-PCR using Qiagen PCR Arrays (PAHS-
077Z) on a BioRad® CFX-96 detection platform. Gene
expression was normalized to a five gene panel composed of
b2-microglobulin, hypoxanthine phosphoribosyltransferase-1,
b-actin, GAPDH and ribosomal protein L13a. Data was
analyzed using the DDCt method and fold change calculated
compared to uninfected cells and expressed as 2-DDCt. Data was
processed and analyzed on the RT² Profiler™ PCR Array Data
Analysis online tool provided by the manufacturer.

RNA-Seq Data Generation, Preprocessing,
and Quality Trimming
Paired-end reads (100 bp) were obtained using an Illumina
HiSeq 1500. Trimmomatic (Bolger et al., 2014) was used to
remove Illumina adapter sequences from reads and to trim bases
off the start or the end of a read when the quality score fell below
a threshold of 25. Sequence quality metrics were assessed using
FastQC (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/).

Mapping cDNA Fragments, Abundance
Estimation, and Data Normalization
Reads were aligned against the human (hg38 revision 91), L.V.
panamensis (TriTrypDb release 36), and L.V. braziliensis (release
26) genomes with TopHat (2.1.0) (Trapnell et al., 2012) using
parameters to randomly place multi-matches (-g 1), using an
existing set of splice junctions (-G), and using the more sensitive
bowtie2 options (–b2-very-sensitive). The resulting accepted hits
and mapped reads were sorted and indexed via SAMtools (Li
et al., 2009) and passed to HTSeq (Anders et al., 2015) for
generating count tables.

Global Data Assessment, Visualization and
Differential Expression Analysis
Biological replicates and batch effects were assessed and
visualized using the hpgltools (https://github.com/elsayed-lab/
hpgltools) R package. The process included creating density
plots, boxplots of depth, coefficient of variance, hierarchical
clustering analyses based on Pearson’s correlation coefficient
September 2021 | Volume 11 | Article 687607
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and Euclidean distance, variance partition analyses (Hoffman
and Schadt, 2016), and principal component analyses before and
after normalization. Several combinations of normalization and
batch adjustment strategies were evaluated. The normalization
methods tested included trimmed median of M-values, relative
log expression, and quantile. These were combined with different
batch evaluation strategies including: surrogate variable analysis
(SVA) (Leek et al., 2012), ComBat (in sva), RUV (Risso et al., 2014),
and batch factor removal via residuals (performedmanually and via
limma’s (Ritchie et al., 2015) removeBatchEffect function).
Normalized data were visualized using log2 transformed counts
per million reads following filtering to remove low counts (defined
as any gene with fewer counts than twice the number of samples or
when any sample had fewer than 2 counts).

Differential expression analyses were performed using a single
pipeline which performed all pairwise comparisons using the
Bioconductor packages: limma, edgeR (Robinson et al., 2010),
DESeq2 (Love et al., 2014), EBSeq (Leng et al., 2013), and a
statistically uninformed basic analysis. In each case (except
EBSeq and the basic analysis), the surrogate variable estimates
provided by SVA were used to adjust the statistical model in an
attempt to address the batch/surrogate effects. The quality of
each contrast was evaluated by the degree of agreement among
methods, but the interpretations were primarily informed by the
DESeq2 results. Detailed information on the analytical pipeline
and scripts is available at (https://github.com/abelew/cideim_
early_leukocyte).

Genes with significant changes in abundance (fold change ≥ |1.5|
and false discovery rate adjusted P values ≤ 0.05) were passed to a
few gene set enrichment methods including: GOseq (Young et al.,
2010), clusterprofiler (Yu et al., 2012), topGO, GOstats (Falcon and
Gentleman, 2007), gProfileR (Reimand et al., 2016) and gene set
variation analysis (GSVA) (Hanzelmann et al., 2013). Gene
ontology analyses were supplemented with manual data curation.
GSVAwas performed to produce an enrichment score for each gene
set per sample. These scores were passed to limma to evaluate the
difference in GSVA score distributions for each gene set in the
samples. Limma results were then filtered according to log2 fold
change, adjusted p-value, and maximum GSVA score mean. GSVA
was conducted using the immunologic signature gene sets publicly
available at GSEA|MSigDB (C7 collection) (Liberzon et al., 2011).
Network analyses were done with STRING 11.0 (Szklarczyk
et al., 2019).

Detection of Leishmania RNA Virus (LRV)
Total RNA was extracted from stationary-phase promastigotes
using TRIzol (Invitrogen, USA), and cDNA was synthesized
using a high-capacity cDNA reverse transcription kit (Applied
Biosystems). LRV was detected by qRT-PCR using the primer
sets described by (Zangger et al., 2013): Forward 5′-CTG ACT
GGA CGG GGG GTA AT-3′ and Reverse 5′-CAA AAC ACT
CCC TTA CGC-3′, derived from LRV1-4 genome sequences
(GenBank accession number: NC_003601). As a quality control
procedure for nucleic acids, a 372 bp fragment of the Leishmania
b-tubulin gene was also amplified. Positive and negative controls
for LRV were included in each run: L. V. guyanensis M5313
(WHI/BR/78/M5313 – LRV+) and L. V. panamensis (MHOM/
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
CO/2002/3594 stably transfected with the luciferase reporter
gene, L.p.LUC 001, LRV-).
RESULTS AND DISCUSSION

Profiling of Inflammatory Mediators
in WBCs and PBMCs Reveals a
Similar Signature
The macrophage-Leishmania infection model has been
consistently used as the preferred in vitro and ex vivo
experimental system, because it portrays the interaction of the
parasite and its primary host cell. However, recruitment of other
cells to the inflammatory microenvironment generated during
the vector blood meal, implies that the early interaction between
the parasite and the host extends beyond the macrophage-
Leishmania contact. Different experimental approaches and cell
preparations can be used to explore these Leishmania-leukocyte
interactions (e.g. whole blood, total white blood cells -buffy coat-,
isolated PBMCs). To select the ex vivo cellular system for our
experiments, we performed a comparative expression profiling of
84 immune response genes in total human white blood cells
(WBCs) and PBMCs collected from healthy donors (n=3), which
were then exposed to L.V. panamensis promastigotes for 24
hours. Eleven genes (ccl11, ccl16, ccl21, ccl8, crp, IL17a, il23r, il9,
kng1, nos2 and sele) were not detected in either PBMCs or WBCs.
Il22 was only detected in infected PBMCs from one donor, and
ccl19 was not detected in WBCs, but was induced in infected
PBMCs (Table S1). 56 genes were modulated by exposure to L. V.
panamensis (fold change, FC ≥ |1.5|), and 39 were common in
PBMCs and WBCs (28 upregulated and 11 downregulated).
Modulation of il1r, il1rap and tlr1 was mainly found in WBCs,
which is consistent with the predominant expression in
granulocytes (Uhlen et al., 2015). The magnitude of modulation
was consistently higher in PBMCs than WBCs, in line with higher
transcriptional activity of mononuclear compared to
polymorphonuclear cells (Ericson et al., 2014; Grassi et al., 2018)
(Figure 1). The similarity of gene expression profiles supports the
use of PBMCs as an informative cell population to explore the
predominant immunological signatures elicited during the early
stages of L.V. panamensis infections.

Exposure of PBMCs to L. Viannia
Modulates Transcriptional Signatures of
Lymphocyte Activation
PBMCs from three healthy donors from a non-endemic area,
were exposed for 24h to stationary phase promastigotes isolated
from patients with chronic (CHR, n=3) or self-healing (SH, n=3)
CL. Leishmania virulence factors such as the major surface
metalloprotease GP63, lipophosphoglycan (LPG), and the
Leishmania RNA virus (LRV), contribute to disease severity in
murine models of infection (Beverley and Turco, 1998; Gomez
et al., 2009; Ives et al., 2011). However, a clear relationship of
these and other virulence determinants in the clinical outcome of
human infections remains elusive. We evaluated the presence
of LRV in all clinical strains used in this study. All strains except
September 2021 | Volume 11 | Article 687607
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for the positive control L. V. guyanensis M5313, which was LRV
(+) with an avergae Ct value of 24,3.

Poly(A)-enriched cDNA libraries were constructed and 100
bp paired-end reads were generated (Table S2 and Figure S1).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
Each sample from infected cells consisted of a pool of mixed
RNAs from parasites and humanmacrophages. Post-experimental
authentication of Leishmania strains used in these experiments
was carried out by SNP profiling of parasite-derived sequences.
This confirmed that all strains used corresponded to L.V.
panamensis, except for strain MHOM/CO/11/5430 which was
identified as a mixed L. V. panamensis/L. V. braziliensis isolate.

A principal component analysis (PCA) showed that a
significant amount of the variance observed in the host
transcriptomic data resulted from either the infection status
(infected vs. uninfected, Figure 2A) or, in the absence of
uninfected samples, from inter-donor variability (Figure 2B).
To account for these sources of variance, an adjusted statistical
model was developed using SVA. A PCA of the SVA-adjusted
data showed a partial separation of samples based on infection
with CHR vs. SH strains (Figure 2C).

Differential expression (DE) analysis of the transcriptomes
from PBMCs exposed to SH strains against CHR strains yielded
no statistically significant DE genes. Considering that most of the
variance between samples was attributed to either donor
variability or infection status, we conducted three additional
analyses: 1) an independent DE analysis of infection with CHR
vs. SH strains for each donor; 2) a grouped analysis of PBMCs
from the three donors infected with SH strains against
uninfected controls, and 3) a grouped analysis of PBMCs from
the three donors infected with CHR strains against uninfected
controls. For the independent donor analyses, transcriptomes of
PBMCs from one donor did not identify statistically significant
DE genes. For the second and third donors, only 3 and 28 DE
genes were found respectively (Table S3). Grouped analysis of
infected PBMCs against uninfected controls yielded over 2800
significantly DE genes in infections with either SH or CHR
strains. Of these, 2208 (78.8%) were common to CHR and SH
infections: 1408 upregulated and 800 downregulated (cut off
values: p ≤ 0.05; log2FC ≥ |0.58|, i.e. fold change ≥ |1.5|),
Figure 2D. Despite the statistical significance of this
enrichment analysis, the biological information extracted from
these GO categories is limited.

Among up- and down-regulated genes, the top 10
significantly enriched categories (ranked by % representation
within the dataset) corresponded to broad categories related to
immune functions, cell signaling, transcription, and cell
proliferation, among others (Table S4).

To provide a more insightful biological interpretation of the
effect of early exposure of PBMCs to L.V. panamensis, and to
explore the potential contribution of specific cell types to the bulk
transcriptomic profile of PBMCs, we conducted gene set
variation analysis (GSVA) using the immunologic signature
gene sets publicly available at GSEA|MSigDB (C7 collection)
(Liberzon et al., 2011). 140 categories were significantly and
differentially enriched in L.V. panamensis infected vs. uninfected
PBMCs (Figure 3 and Table S5), independent of whether
cells were exposed to CHR or SH strains. Interestingly, 37 gene
sets were derived from experiments involving microbial
agents, including infections with old world Leishmania species
(L. donovani and L. major) and other intracellular microbes
FIGURE 1 | Differentially expressed genes in WBCs and PBMCs upon L. V.
panamensis infection. Fold change gene expression (infected vs. uninfected)
of genes modulated in WBCs and PBMCs from three healthy donors after ex
vivo infection with L. V. panamensis for 24h. Insert: Venn diagram
representing the number of upregulated and downregulated genes.
September 2021 | Volume 11 | Article 687607
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(Toxoplasma gondii and Mycobacterium tuberculosis). This
potentially shows common early response mechanisms against
intracellular pathogens.

Among enriched categories, 47 corresponded exclusively to
innate cell signatures (monocytes, macrophages, NK cells,
dendritic cells), while 56 were related to signatures derived from
adaptive immune cells (CD8 and CD4 T cells, Th17, Tregs, T
follicular cells, B cells) (Table S5). This indicates that as early as
24h after interaction, Leishmaniamodulates adaptive immune cell
functions in PBMCs from previously unexposed healthy
individuals, revealing a largely unexplored and exploitable
dimension of the host-pathogen interactome in Leishmania
infections. The mechanism(s) mediating this rapid activation,
especially of naïve T cells, remains to be determined, but could
occur via bystander (antigen-independent) activation of naïve or
memory T cells (Kim and Shin, 2019; Lee et al., 2020), cross-
reactivity of memory T cells, or potentially via antigen-presentation
by circulating fibrocytes (Chesney et al., 1997; Grab et al., 2004).
Interestingly, bystander activation of Lysteria-specific and LCMV-
specific memory T-cells has been reported in chronic L. donovani
infection of Lysteria-immune mice (Polley et al., 2005), and in
acutely L. major infected mice, respectively (Crosby et al., 2014).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
Exposure of PBMCs to SH and CHR
Strains Differentially Modulate Genes
Related to IFN Responses and the T
Cell Synapse
We next analyzed the gene set differentially modulated by SH
and CHR infections. A total of 387 genes were uniquely
modulated in PBMCs after exposure to SH strains (240 down-
and 157 up-regulated), and 287 were unique to infection with
CHR strains (159 down- and 128 upregulated) (Table S6).
Functional interpretation of DE genes was performed via GO
enrichment, complemented by network analyses and manual
curation. For infections with SH strains, no significantly enriched
GO categories were found. For infections with CHR strains, a
single GO category was enriched (FDR=0.00029): Type I IFN
signaling (reactome pathway HSA-1606322) (Table S7).

Upon manual curation, 17 functional categories were defined
(all containing ≥ 5 genes, except for “antimicrobial activity”).
Four categories (metabolism of macromolecules, cell cycle/
proliferation/differentiation, immune signaling and vesicle
trafficking/transport) were common to infections with SH and
CHR strains (Table S7). Genes involved in metabolism of
macromolecules (lipid, glycan and nucleic acids metabolism)
A B

DC

FIGURE 2 | Principal Component Analysis plots and Differential Expression analyses of PBMCs exposed to SH and CHR strains. An initial PCA was performed
(A) using log2, quantile, count per million (cpm), low-count-filtered data and displayed a strong clustering with respect to the three donors (represented as the different
symbol shapes). (B) This donor-specific effect was made even clearer when the uninfected samples (green) were removed from the analysis. (C) When surrogate variable
estimates from SVA were included, it became possible to visualize differences between the PBMCs exposed to CHR (red) and self-healing (blue) strains. (D) Venn
diagrams showing the relationships between the overlaps of differentially expressed genes in SH vs. uninfected (Nil) and CHR vs. uninfected samples.
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were found in both upregulated and downregulated gene lists,
however, most of these genes were significantly downregulated in
infected PBMCs. Rapid downregulation (at 4hpi) of fatty acid
metabolism, amino acid catabolism and glycan degradation has
been previously documented in murine and human
macrophages infected with L. major (Dillon et al., 2015;
Fernandes et al., 2016); here we show that this is maintained as
long as 24hpi. This suggests that basic metabolic functions are
stalled during the early time-points of Leishmania infection in
both phagocytic host cells and other blood leukocytes, potentially
revealing an early re-programming of basic metabolic functions
towards a state of immune cell activation (O'Neill et al., 2016).

Downregulation of central elements of cell cycle progression
and pro-growth signaling (MAPK and PI3K), and concomitant
induction of genes involved in oxidative phosphorylation and
intracellular vesicle trafficking, were also observed (Table S7).
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Downregulation of genes involved in cell cycle and metabolism
of macromolecules, and induction of genes of the tricarboxylic
acid (TCA) cycle, is consistent with a state of arrested cell cycle
progression. High metabolic demands (provided by metabolism
of macromolecules, and not the TCA cycle) are required during
cell proliferation and differentiation, while oxidative
phosphorylation is a major metabolic pathway in non-
proliferative cells (O'Neill et al., 2016). These data further
support that the early interaction of L. Viannia with PBMCs
leads to reduced metabolic capacity, potentially skewing immune
cells towards mechanisms of fast energy production to support
rapid immune cell activation in otherwise metabolically “paused”
cells (Alonso and Nungester, 1956; Newsholme et al., 1986).

Among the uniquely downregulated genes in PBMCs infected
with SH strains were primary cilium proteins (Table S7). The
primary cilium was long considered a vestigial organelle
FIGURE 3 | Hierarchical clustering heatmap of significant mSigDB c7 gene sets. GSVA was performed using the normalized expression data and the mSigDB c7 gene
sets. The resulting scored gene sets were examined using limma and by de-novo comparisons of the mean group scores in order to extract the most significant gene
sets. The remaining scores were passed to a hierarchical clustering algorithm and plotted. Each column corresponds to an independent sample, each row to a unique
gene set. Columns 1- 3, uninfected PBMCs from three independent healthy donors (A–C). Columns 4-18, infected PBMCs. Sample codes correspond to the phenotype
of the disease caused by the Leishmania strain (sh, self healing; chr, chronic), followed by the strain code and the PBMC donor.
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(Cassioli and Baldari, 2019), and re-discovered as a signaling hub
(Nachury and Mick, 2019). Although hematopoietic cells do not
have primary cilia, a more recent understanding of the T cell
immunological synapse (IS) suggests participation of ciliary
proteins in IS formation (Cassioli and Baldari, 2019). The
assembly and function of the IS and the primary cilium depend
on cytoskeleton dynamics and polarized vesicle trafficking, and
evidence of strong modulation of these processes was found in the
transcriptomic profiles of L. Viannia-infected PBMCs (Table S7).
Within the first hour of interaction between T-cells and antigen
presenting cells (APC), an actin-rich invasive pseudopodia emerges
fromT-cells and probes deepwithin the APC. The actin cap is then
cleared to allow orientation of the microtubule organization center
(MTOC) to the IS, resulting in a matured IS (Ueda et al., 2015).
Interestingly, disruption of the MTOC does not impact the level of
cytokine production in T cells; however, it does change the
“directionality” of cytokine secretion so that it is no longer
directed at the IS (Ueda et al., 2015). Dampened expression of
molecules involved inprimary cilia/IS formationduring infectionof
PBMCs with SH strains suggests a cytokine micro-environment
that may lead to subtler activation of APCs during interaction with
T cells, potentially limiting excessive pro-inflammatory cytokine
production that can result in uncontrolled inflammation and
immunopathology (Scott and Novais, 2016).

Macrophage Functions Are Central Drivers
of the Divergent Immune Responses
Elicited Upon SH and CHR Infections
Weexplored the effect of SHandCHR infections inmacrophages as
one of the central APCs and principal host cells for Leishmania.
Total transcriptomic profiles were obtained from primary
macrophages infected for 24 h with SH and CHR strains [RNA
samples used here were those previously reported in (Navas et al.,
2014)]. PCA showed clustering of samples by disease phenotype
(Figures 4A and S2). Macrophages infected with SH strains
clustered together and close to uninfected cells, indicating
minimal modulation of macrophage gene expression by SH
strains, and supporting the controlled APC response that also
emerged from SH-infected PBMC transcriptomes.

Differential gene expression analysis of macrophages infected
with CHR vs. SH strains identified 884 DE genes (Figure 4B and
Table S8), representing 30% more DE genes compared to those
in PBMCs. The macrophage DE gene profile consisted
predominantly of upregulated inflammatory response genes in
infections with CHR vs. SH strains [also previously reported in
microarray and qRT-PCR datasets of L.V. panamensis infected
macrophages (Ramirez et al., 2012; Navas et al., 2014)]. In
infections with CHR strains, up-regulation of chemokines
involved in monocyte (CCL2, CCL13 and CCR1) and CD4+-
TH1 (CXCL10) activation and recruitment (Figure 5 and Table
S8), as well as genes associated with TLR and IFN signaling
(TLR4, CD14, TLR1, IFNGR1, IFNAR1, JAK2) were found. In
addition, an upregulation of complement components including
C3, C1QA, C1QC, CFD and CFP (complement factors D and
properdin), ficolin (FCN1), CR1 and the anaphylatoxin receptor
C5AR1 (and downstream signaling molecules Rap1b, Rap2a)
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was observed, which have been associated with a potent
induction of inflammation and cell recruitment during acute
and chronic inflammatory processes.
A

B

FIGURE 4 | Gene expression profiles of human macrophages infected with SH
and CHR L. V. panamensis strains CL. The (H) sapiens RNA-seq expression
data for annotated coding genes after low-count filtering (7,019 genes
remaining) and log2[quantile(cpm)] normalization was examined via PCA (A).
Each glyph represents an experimental sample where the color represents the
infection state, the shape represents the experimental batch. The 0.90, 0.95
confidence intervals are shown as shaded ovals. Differential expression analysis
was performed using DESeq2, including experimental date (batch) in the
statistical model. The volcano plot (B) shows the distribution of significance (-log
adjusted P value) with respect to log2-fold change. Points colored in blue are
deemed significantly downregulated in the macrophage samples infected with
CHR vs. SH strains while those in red are significantly up-regulated.
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Genes involved in opsonophagocytosis and vesicle mediated
transport were also induced in CHR-infectedmacrophages relative
to SH-infected cells (Figure 5 and Table S8). Among those were
CR1, properdin and C3b, which have been associated with
opsonophagocytosis of intracellular pathogens (Rosales and
Uribe-Querol, 2017; Lu et al., 2018). Complement receptors
participate in uptake of Leishmania by macrophages, and a
direct relationship between permissiveness of macrophage
infection, CR1 and CR3 activity, and chronic CL caused by L. V.
panamensis has been reported (Robledo et al., 1994). Increased C3
gene expression has been demonstrated in lesion biopsies from CL
patients unresponsive to antimonial treatment, potentially leading
to enhanced recruitment of polymorphonuclear cells to the
affected tissues, promoting immunopathology and a non-healing
phenotype (Navas et al., 2020). Induction of multiple Fc gamma
receptors (FcgR, including the high affinity receptor FcgR1 as well
as low affinity receptors 2a, 2b, 3a and 3b), and a number of genes
involved in vesicle-mediated transport (sortins, syntaxins),
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
phagolysosomal acidification (Rab39A, Rab32, Rab20, Vamp7,
lamp1, lamp2, V-ATPase subunits among others), and antigen
processing and presentation (MHC-II molecules, lyzozyme,
cathepsine L) was also observed in macrophages infected with
CHR strains, supporting enhanced opsonophagocytosis (Lu et al.,
2018) and intracellular parasite killing. Consistent with this
hypothesis was the finding that parasite loads were lower in
primary human macrophages infected with CHR compared to
SH strains (Table S2, Figure S3).
CONCLUDING REMARKS

The exploration of transcriptomic signatures from both isolated
human primary macrophages and PBMCs consistently provides
evidence that pathology and severity of CL infection is determined,
at least in part, by the immune response. Chronic CL is
characterized by the induction of pro-inflammatory leukocyte
FIGURE 5 | Network representation of genes significantly upregulated in macrophages infected with CHR vs. SH strains. Line thickness represents the strength of
data support (displaying relationships > 0.9 confidence value). Interaction sources for network building in STRING included experiments, databases, co-expression,
neighborhood, gene fusion and co-occurrence. Nodes not in networks are hidden.
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responses, while benign, self-resolving CL, may be primarily
marked by limited and controlled T-cell and APC activation. The
early interaction of PBMCs and L. Viannia provides a more
comprehensive view of additional mechanisms involved in the
establishment of infection in the human host. Downregulation of
genes involved in biosynthesis andmetabolism ofmacromolecules,
cell cycle progression and cellular proliferation, together with
upregulation of functional categories related to glycolysis and
oxidative phosphorylation, suggest that the parasite-host interplay
of Leishmania and PBMCs drives cellular functions and energy
production towards immunological activation rather than to
promote metabolism of macromolecules. Whether this
immunological activity is skewed towards a pro-inflammatory
environment or a controlled adaptive response, emerges as a
potential key aspect for defining the course of human CL. Results
from this study instigate further explorations of the Leishmania-
host interactions involving functional aspects of B and T
lymphocytes in the early response to infection (within the first 24
hours of contact). Whether the functions modulated in these cells
are dependent onAPCs, are a direct effect elicited by the parasite, or
are a bystander mechanism of adaptive cell activation, remains to
be determined.
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