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Abstract

Fever is a fundamental response to infection and a hallmark of inflammatory dis-

ease, which has been conserved and shaped through millions of years of natural

selection. Although fever is able to stimulate both innate and adaptive immune

responses, the very nature of all the molecular thermosensors, the timing and the

detailed mechanisms translating a physical trigger into a fundamental biological

response are incompletely understood. Here we discuss the consequence of hyper-

thermic stress in dendritic cells (DCs), and how the sole physical input is sensed as

an alert stimulus triggering a complex transition in a very narrow temporal window.

Importantly, we review recent findings demonstrating the significant and specific

changes discovered in gene expression and in the metabolic phenotype associated

with hyperthermia in DCs. Furthermore, we discuss the results that support a model

based on a thermally induced autocrine signalling, which rewires and sets a metabo-

lism checkpoint linked to immune activation of dendritic cells. Importantly, in this

context, we highlight the novel regulatory functions discovered for IGFBP-6 protein:

induction of chemotaxis; capacity to increase oxidative burst and degranulation of

neutrophils, ability to induce metabolic changes in DCs. Finally, we discuss the role

of IGFBP-6 in autoimmune disease and how novel mechanistic insights could lead

to exploit thermal stress-related mechanisms in the context of cancer therapy.
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1 | INTRODUCTION

The immune system of vertebrates is organized to respond either to

pathogens or to noxae that cause damage or trauma. In both cases,

the organism needs to activate a complex system composed of

warning signals, cellular receptors to respond, signalling pathways

and outputs in the form of physiological responses. Endogenous sig-

nals that alert the immune system on cell and tissue damage are

called “alarmins,” whereas pathogen-associated molecular patterns

(PAMPs) flag the presence of intruding pathogens. Together, alar-

mins and PAMPs constitute the larger family of damage-associated

molecular patterns, or DAMPs.1

It is well-known that exogenous PAMPs are recognized by cells of

the innate and adaptive immune systems through quite a number of

receptors, called pattern recognition receptors (PRRs), which include

Toll-like receptors, RIG-I-like receptors, NOD-like receptors and C-type

lectin receptors.2 On the other hand, alarmins are either rapidly released

upon cells undergoing necrosis or are secreted by immune cells. As for

PAMPs, they recruit and activate cells of the immune system, as PAMPs

are recognized by cellular receptors, especially expressed by DCs, and

finally should induce repair of the tissue that was damaged by direct

insult or secondary inflammation. The prototypical alarmin molecule is

represented by high mobility group box 1 (HMGB1), comprising heat

shock proteins (HSPs) and cytokines such as IL-1a, IL-33, IL-16.1,3-7
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The insulin-like growth factor (IGF) system is essential for growth

and development, and it has been implicated in several diseases.8

IGF activity is precisely regulated by a family of six high-affinity IGF

binding proteins (IGFBPs).9 Moreover, IGFBPs bind non-IGF ligands

in the extracellular space, cell membrane, cytoplasm and nucleus,

thereby modulating cell proliferation, survival and migration in an

IGF-independent manner.10

Fever, a hallmark of infection and inflammation, is comprised of

physiological and neurological circuitries that have been conserved

in warm and cold-blooded vertebrates for over 600 million years of

evolution. Significantly, fever represents a fundamental systemic

response which stems from the recognition of PAMPs by PRRs,

determining the production of cytokines, among which IL-6 is the

most important mediator for fever induction and orchestrating lym-

phocyte trafficking to lymphoid organs.

In this review, we have highlighted new findings related to the

effect of fever-range hyperthermia on the immune system, in partic-

ular DC activation and metabolic reprogramming, monocyte and T

cell chemotaxis, and neutrophil activation. A novel role for insulin-

like growth factor binding protein 6 (IGFBP-6) is also discussed in

this hyperthermia-induced rewiring of the immune system. Implica-

tions for the inflammatory response in autoimmune diseases and

cancer are also presented.

2 | HYPERTHERMIA INDUCES SPECIFIC
GENETIC AND METABOLIC
REPROGRAMMING OF DENDRITIC CELLS

Febrile temperatures (ie, ranging from 38-41°C; DT~1-4°C above

baseline) boost the effectiveness of the immune response during

infections by stimulating both the innate and adaptive arms of the

immune system.11 Indeed, hyperthermia elicits neutrophil functions,

DC maturation and DC ability to stimulate T cells, enhance T cell

trafficking through lymph nodes and effector T cell differentiation.

AS fever is known to confer a survival advantage by warding off

attack by invading pathogens, it is crucial to understand in greater

details how it activates sensors, transducing pathways and effector

mechanisms.

A wealth of data on the role of metabolic pathways controlling

immune cell function have shed new light on both the innate and

adaptive immune response, and led to the discovery of

“immunometabolism” as an important area of research.12-14 Notably,

metabolic processes (eg, glycolysis, the Krebs cycle and fatty acid

metabolism) have all been shown to have highly specific effects on

DCs function15,16 and, most importantly, alterations of either one of

these metabolic pathways have been shown to dramatically alter the

functioning of these cells in ways not simply linked to energy

production or general biosynthesis.17

Recently, we explored how a short-term mild hyperthermal acti-

vation of monocyte-derived dendritic cells (MoDCs) intertwined with

changes in the metabolic phenotype.18 In this context, we focused

mainly on the mitochondrial respiratory and oxidative

phosphorylation (OxPhos) activity given their pivotal role in the cell

bioenergetics. In summary, we found that: (i) fever-like hyperthermia

(3 hours exposure at 39°C) induces cytokine release in MoDCs, (ii)

hyperthermia rewires MoDC metabolism by inhibiting mitochondrial

OxPhos, (iii) the process is linked to interplaying nitric oxide (NO)

and reactive oxygen species (ROS) release and mitochondrial (mt)

Ca2+ accumulation, (iv) antioxidants or mitochondrial Ca2+ uniporter

(MCU) inhibition prevents mt-OxPhos inhibition and cytokine

release. Figure 1 depicts the main findings of this study.

Strikingly, the same hyperthermic conditioning, that in MoDCs

cause a significant change in the mitochondrial physiology, resulted

in no change at all in mitochondrial respiratory activity of undifferen-

tiated monocytes, which mainly rely on glycolysis.19

And in fact, in monocytes we observed no variation in OxPhos-

related respiratory activity and of the redox and Ca2+ homoeostasis.

This clearly points to a cell-specific sensitivity of the mitochondrial

activity to the thermal stress and suggests that metabolic pathways

under thermal control are of pivotal importance in DCs physiology.

Our priority in fact has been to study DCs-specific response to

hyperthermia as a mean to better understand fundamental mecha-

nisms controlling immunity.

Importantly, re-conditioning of the 39°C-treated MoDCs to nor-

mothermia did not appreciably recover the mitochondria-related

activities showing the irreversible nature of this observation. Again

this fact suggests that response to fever in DCs is a fundamental

and solid process which rapidly activates complex and important

pathways in DCs, not easily inhibited after activation.

As activation of immune-competent cells is also known to be

accompanied with changes in the cell secretome,20 we tested if

release of factors by thermally stressed MoDCs might contribute to

the observed alterations of the metabolic phenotype. Insightfully,

incubation of normothermic MoDCs with the conditioned medium of

the 39°C-treated cells caused a depression of the mitochondrial res-

piratory activity as well as of the ROS/reactive nitrogen species

(RNS) and Ca2+ homoeostasis comparable with that attained in ther-

mally challenged MoDCs. The relevance of our findings was even

magnified as we discovered that a relatively small number of genes

vary in expression upon brief exposure to mild hyperthermia in DCs

when we studied a small group of bona fide normal subjects. In our

hands, IGFBP-6 was in fact the only specifically up-regulated under

hyperthermic conditions by MoDCs.21

Therefore, we explored in our recent publications21-23 whether

recombinant IGFBP-6 could be part of a comprehensive working

model, amenable to experimental validation, of the possible mecha-

nism driving the physical thermal input into a physiological adapta-

tion in MoDCs.

3 | IGFS AND IGFBP-6 HAVE MULTIPLE
IMPORTANT FUNCTIONS

Insulin-like growth factors (IGFs) have a key role in normal growth

and development,8 whereas their deregulation is associated with
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many diseases, including cancer, diabetes, atherosclerosis and neu-

rodegeneration.24 IGF-I mediates many, but not all, of the growth

factor actions, while both IGF-I and IGF-II stimulate proliferation,

survival and migration of several cell types. IGFs actions are medi-

ated by binding to various receptors, namely IGF type I (IGF-IR), IGF

type II receptor (IGF-IIR), insulin receptor type A (IR-A), insulin

receptor type B (IR-B) and hybrid insulin/IGF-I receptor.25 The

cation-independent mannose 6-phosphate/insulin-like growth factor

receptor (CI-MPR) is in fact the IGF-IIR and it is involved in binding

of the serine proteinase granzyme B and crucial for the rapid induc-

tion of target cell apoptosis by cytotoxic T cells.26 Most IGF actions

are mediated by the IGF-IR. This receptor binds IGFs and insulin

with the following hierarchical affinity: IG-I > IGF-II > insulin.27

Insulin-like growth factor actions are regulated by a family of six

high affinity binding proteins (IGFBP 1-6). All IGFBPs have been

shown to inhibit the IGF-associated actions by preventing IGF-I

receptor binding; however, IGF-independent cellular effects of

IGFBPs have also been demonstrated. Strikingly, IGFBP-6, which is

the focus of the present review, binds and inhibit IGFs, with a rela-

tively higher propensity towards IGF-II than IGF-I. As for the cog-

nate IGFBP 1-5, IGFBP-6 presents two domains at the N- and

C-terminal of the 240 amino acids long chain.25 The N-terminal

domain is responsible for binding to IGFs, and it is constituted by

two subdomains with the one proximal to the N-terminal showing

unstructured features and a set of disulphide bridges not shared

with the other IGFBPs. This subdomain is responsible for the higher

affinity to IGF-II. The C-terminal domain contributes to IGF binding

as well as to IGF-independent actions. The N- and C-domains are

connected by a linker domain which is site of post-translational mod-

ifications (Figure 2). IGFBP-6 is the only IGFBP that preferentially

binds IGF-II over IGF-I by more than two orders of magnitude.28-30

IGF-II exerts its actions through the IGF-IR, IGF-IIR and IR-A.31 IGF-

IR mediates many of the biological effects of IGF-II and shares struc-

tural similarities and properties with the insulin receptor. IGF-IIR/CI-

MPR exhibits the highest affinity for IGF-II, consists of a single chain,

has no tyrosine kinase activity and is involved in internalization and

degradation of IGF-II,32 thus acting as a scavenger receptor to regu-

late extracellular IGF-II levels. IGF-II concentration in plasma is 10-

to 100-fold higher than that required for its effect in vitro, a conse-

quence of association with the IGFBPs. Notwithstanding its high cir-

culating levels in adult life, IGF-II is probably more important in

regulating embryonic/foetal growth. IGF2 is an imprinted gene,

meaning that one of the two parental alleles of a locus is expressed.

Loss of imprinting of IGF2, resulting in abnormal expression of IGF-

II, occurs in a number of cancers, sporadic Wilms’ tumour and often

in patients with Beckwith–Wiedemann syndrome, characterized in

the neonate by overgrowth with risk of developing Wilms’ kidney

tumours.31 Moreover, IGF-II is involved in cardiovascular disease,

likely because it has been shown to influence the size of atheroscle-

rotic lesions.33

Here we briefly review the main IGFBP-6 categories of actions:

IGF-I and IGF-II dependent, as well as IGF independent functions.

F IGURE 1 Effect of mild hyperthermic stress on dendritic cells. The picture shows schematically the main results of a study18 carried out
on cultured human monocyte-derived dendritic cells (MoDCs) exposed for 3 h from 37 to 39°C. The major outcomes, observed in hyper-
thermic MoDC appear to involve the mitochondrial oxidative metabolism and consisted in decreased activity of the mitochondrial respiratory
chain and consequent oxidative phosphorylation (OxPhos), enhanced production of reactive nitrogen and oxygen species (RONS) and overload
of intramitochondrial (mt) Ca2+ ions. This was accompanied with increased glycolysis, suggesting metabolic rewiring, and release of pro-
inflammatory cytokines. All the above reported effects were re-capitulated in normothermic MoDCs exposed to the conditioned medium of
the 39°C-treated cells thus suggesting the involvement of secretome-contained factors. On the basis of results of a transcriptome study
performed on the same cells under identical hyperthermic conditioning,21 HSP70 and IGFBP-6 are indicated as putative candidates acting via
an autocrine mechanism. The shown protein structures of IGFBP-6 and HSP70 were taken from the RCSB-protein data bank (www.rcsb.org/)
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3.1 | IGF-I-dependent actions of IGFBP-6

Growth hormone (GH) is the major factor stimulating IGF-I biosyn-

thesis and release, and IGF-I mediates many, but not all, of its activi-

ties.25,34 The post-natal growth of bone and muscles depends on

pre- and post-pubertal levels of IGF-I.35 IGFBP-3 appears to be the

main IGFBP regulating the availability of IGF-I systematically, as

most of the IGF-I and IGF-II molecules in serum are found in a 150-

kDa ternary complex formed by an IGF, IGFBP-3 and a glycoprotein

known as the acid labile subunit (ALS), all synthesized by the liver.36

Not only IGF-I has endocrine activities, but also autocrine/paracrine

ones involved in local growth and response to inflammation.37

Human IGFBP-6 is found predominantly in cerebrospinal fluid (CSF)

and serum38; however, its physiological significance in regard of IGF-

I at systemic and local levels remains to be elucidated.39 Indeed,

most studies have failed to show IGF-I inhibition by IGFBP-6.25

3.2 | IGF-II-dependent actions of IGFBP-6

IGF-II has been implicated in mitosis, growth and organ development

by paracrine and endocrine pathways in cell culture studies and ani-

mal models.9,37 The main function of IGFBP-6 is inhibiting IGF-II

mediated actions concerning cell proliferation, differentiation, migra-

tion and survival in many cell lines.40,41 In consequence of its inhibi-

tory effect on IGF-II, IGFBP-6 has been shown to inhibit the growth

and survival of numerous adult and pediatric tumors.

3.3 | IGF-independent actions of IGFBP-6

IGFBP-6 is capable, however, of actions independent of IGF-II,

including regulation of proliferation, apoptosis, angiogenesis and cell

migration.10,42 For example, IGFBP-6 was shown to be effective at

attenuating the IGF-II-mediated increase in cell contractility of

fibroblasts obtained from Dupuytren’s disease (DD) patients, while it

inhibited DD fibroblast proliferation through mechanisms that are

independent of IGF-II sequestration.43

3.4 | Nuclear actions of IGFBP-6

Some IGFBPs are also nuclear proteins with independent functions from

IGFs, and their actions drive the cell fate. IGFBP-3 and IGFBP-5 are

translocated into the nucleus via the importin-5 subunit.44,45 Both

IGFBP-3 and IGFBP-5 modulate osteoblast differentiation via interac-

tion with vitamin D receptor (VDR).46,47 IGBP-6 is shuttled to the

nucleus via the interaction of its C-terminal domain with a-importin,

determining apoptosis in rhabdomyosarcoma cells.48 Once in the

nucleus, IGFBP-6 regulates osteoblast differentiation by binding to VDR

and possibly inhibiting retinoid X receptor (RXR)/VDR heterodimeriza-

tion.49 This interaction brings to the inhibition of VDR-induced osteocal-

cin promoter activity and alkaline phosphatase activity (a marker of

osteoblast differentiation). Another interaction with nuclear receptors

has been highlighted for the thyroid hormone receptor-a1 (TRa1). Over-

expression of IGFBP-6 suppressed osteoblastic differentiation regulated

by TRa1 in the presence of 3,30,5-Triiodo-L-thyronine.50 IGFBP-6 was

demonstrated to bind to the promoter of EGR-1 (early growth response-

1), a zinc-finger protein regulator of transcription and thus modulator of

cell differentiation and mitogenesis. Overexpression of IGFBP-6 signifi-

cantly suppressed the proliferation, invasion and metastatic activity of

nasopharyngeal carcinoma cells and increased their apoptosis,51 indicat-

ing that IGFBP-6 as a putative tumour suppressor gene. Finally, IGFBP-6

binds Ku80, that is part of Ku complex involved in the non-homologous

end joining repair, in the cytosol, whereas binds to histone H2Br, which

maintains the structural integrity of DNA, in the nucleus.52 Overall, these

interactions could be part of a mechanism by which IGFBP-6 regulates

apoptosis. Moreover, it could be implicated in other anti-tumoural

effects of IGFBP-6, such as senescence.53,54

The specific impact of IGFBP-6 on cell metabolism largely relies on its

ability to modulate the bioavailability of IGFs thereby antagonizing their

receptor(s)-mediated signalling. A part from their effects on growth and

development, IGFs also have insulin-like effects on metabolism with dif-

ferent tissue-specific outcomes. However, although IGFs exert an estab-

lished control on glucose and lipid homeostasis as well as a net anabolic

effect on protein metabolism, the molecular mechanisms of their actions

are not completely understood. Recent evidences suggest the involve-

ment of the IGF-IR-mediated signalling in preserving the mitochondrial

structure and function achieved by controlling mitochondrial biogenesis

and mitophagy as well as reactive oxygen species homeostasis.55,56 In

addition to IGFs-related effects, IGFBPs proved to activate directly recep-

tor-mediated signaling pathways (see ahead). If and how such direct

effects of IGFBPs impact on cell metabolism remains to be established.

Intriguingly, one of the recognized IGFBP-6 receptor is prohibitin-2

(PBH2).57,58 Although PBH2 is located as a single transmembrane helix

spanning protein in the cell membrane, the majority of PBH2 is located in

a ring-shaped oligomer in the inner mitochondrial membrane where it

functions as a crucial mitophagy receptor.57 To notice, intracellular bind-

ing partners for IGFBP-6 have been identified supporting alternative

modalities of action thereof.10 However, the possible interplay between

IGFBP-6 and the mitochondrial PBH2 has not yet been investigated.

Intracellular and intranuclear actions of IGFBP-6 are depicted in Figure 3.

Moreover, more recently other functions of IGFBP-6 related to

the immune system have been discovered (Figure 2), as we found

that IGFBP-6 in vitro acts as a chemoattractant towards neutrophils,

monocytes and T cells, but clearly not B cells.21,23

As hyperthermia could induce an increased expression of IGFBP-

6 by at the level of dendritic cells (DCs), as well as their metabolic

reprogramming, we are currently testing the ability of IGFBP-6 to

induce metabolic reprogramming in DCs. The implications of all

these findings for cancer biology and pathogenesis of inflammatory

disorders are further discussed below.

4 | THE IGF SYSTEM, IGFBP-6 AND
CANCER

The involvement of the IGF system in cancer is multifaceted. IGFs in

general and IGF-II in particular are involved in promoting tumour
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growth in situ in an autocrine or paracrine fashion once the tumour

has been established. Many cancers overexpress IGF259 by mecha-

nisms including loss of imprinting (LOI) and loss of heterozygosity

(LOH).60,61 Interestingly, other observations indicate that the IGF

system might be important also for tumour cell death. IGF-IIR/CI-

MPR acts as a receptor for intracellular lysosomal enzymes and,

importantly, for granzyme B, a mediator of CTL-induced apoptosis of

target cells.26 These findings may implicate that tumours carrying

non-functional IGF-IIR/CI-MPR would have also an inherent resis-

tance to CTLs, implying the development of novel strategies of

immunotherapy of cancer.

As we have outlined above, the role of IGFBP-6 in cancer is

complex and stems from its primary role as a modulator of IGF-II

bioavailability and hence as a negative regulator of cancer cell

growth. Indeed, it has been considered a tumour suppressor gene.

On the other hand, IGFBP-6 inhibits angiogenesis and induces apop-

tosis of cancer cells in an IGF-independent manner.25 Moreover,

IGFBP-6 promotes cancer cell migration (see below).

5 | CELL MIGRATION AND CHEMOTAXIS
IN TUMOUR MICROENVIRONMENT

The tumour microenvironment (TME) plays a fundamental role in

tumour cells’ acquirement of cancer hallmarks, thus being involved in

cancer formation but also in its progressive and invasive phases.62,63

Many cellular components are part of the TME, including fibroblasts,

myofibroblasts, neuroendocrine cells, adipose cells, immune-inflam-

matory cells, and the lymphatic and blood vascular network. Stem-

ming from the historical definition that “cancer is a wound that does

not heal”,64 it has been comprehended that indeed inflammation and

immune response in the tumour microenvironment have many can-

cer promoting effects.65,66 They are implicated in direct supply of

mitogenic signals, modification of the ECM by proteases and thus

uncaging bioactive mitogenic agents, cleavage of cell–cell and cell–

ECM adhesion molecules, binding to tumour cells avoiding their

apoptotic response, induce and foster angiogenesis, invasion and

metastasis.

F IGURE 2 Extracellular actions of IGFBP-6. IGFBP-6 presents both IGF-dependent and IGF-independent actions. A subdomain of N-
terminus and the C-terminal domain likely contribute cooperatively to the IGF-II-binding preference.25 By binding to IGF-II and displacing it
from its receptors (IGF-IR, IGF type I receptor; IR-A, insulin receptor type A; IR/IGF-IR HR, insulin receptor/IGF receptor hybrid receptor),
IGFBP-6 inhibits IGF-II-induced cell proliferation, differentiation, migration and survival. The binding of IGF-II to the IGF-IIR/CI-MPR (IGF
receptor type II/cation-independent mannose 6-phpsphate receptor) is also shown leading to IGF-II internalization and degradation. The double
arrows underpin the equilibrium between IGF-II-bound and IGF-II-unbound IGFBP-6 IGF receptors. IGFBP-6 binding to prohibitin-2 (PBH2)
mediates IGF-independent inhibition of cancer cell migration induced by IGFBP-6. Other IGF-independent actions of IGFBP-6 are inhibition of
angiogenesis, inhibition of fibroblast proliferation and induction of apoptosis. Recent evidences support that IGFBP-6 has also a regulatory role
in the immune system by inducing chemotaxis of T cells, monocytes and neutrophils (PMN), as well as by increasing oxidative burst of
neutrophils. All these actions are mediated by unknown receptors. The shown protein structures of IGFBP-6, IGF-I, IGF-II and IGF receptors
were taken and pictorially modified from the RCSB-protein data bank (www.rcsb.org/). See text for further details
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A complex network of chemokines regulates chemotaxis of

tumour cells in TME, and both cancer and inflammatory cells produce

several cytokines and chemokines that attract and activate tumor-

infiltrating cells, including tumour-associated macrophages (TAMs)

and T cells.67 Several major events are affected by chemotaxis in the

context of the TME: immune evasion, angiogenesis, invasion and dis-

semination. For example, CCL2 (MCP-1) and CCL5 (RANTES) are

major attractants of monocyte precursor cells in tumours and, when

accumulated, these cells play an important part in tumour non-

responsiveness by suppressing antigen-specific T cell responses.68

IGFBP-6 is likely involved in the attraction of inflammatory and

immune cells in this context.25 Previous studies have shown that in

both normal and cancer cells, IGFBP-6 impairs migration by inhibiting

IGF-II actions40-42 and by promoting EGR (early growth response pro-

tein)-1 transcription in an IGF-independent manner.51 On the other

hand, IGFBP-6 promotes rhabdomyosarcoma (RMS) cell migration by

an IGF-independent mechanism that involves MAPK pathway activa-

tion.69,70 These results raised the possibility that a receptor or mem-

brane protein may be involved. It was further demonstrated that

prohibitin-2 (PBH2) binds IGFBP-6 on the cell surface of RMS cells.58

Although PBH2 was indispensable for IGFBP-6-induced cell migration,

this action was not dependent on MAPK activation. Therefore, PBH2

is essential for IGFBP-6-induced RMS migration either by acting as a

downstream effector of MAPKs or regulating migration independently

of MAPK activation. Which cell type is producing IGFBP-6 to attract

tumour cells is not clear yet.

IGF-II, wild-type (wt) and mutated IGFBP-6 were shown to deter-

mine alteration in the migration of ovarian cancer cells.71 IGFBP-6

increased migration of SKOV3 ovarian cancer cells (transitional pheno-

type) in an IGF-independent manner. However, IGFBP-6 inhibited

migration of HEY ovarian cancer cells (aggressive phenotype). As IGF-

II reversed the inhibitory effects of wt but not mutant IGFBP-6 in

HEY cells, these data suggest that IGFBP-6 inhibited migration by

both IGF-dependent and IGF-independent mechanisms. MAP kinases,

and in particular the JNK and ERK pathways, were partially implicated

in these effects on both cell lines, so that this involvement cannot

explain the opposite direction of the migratory responses. It should

be further investigated whether a differential molecular landscape,

linked to a different phenotype, might be underlying the differential

effects of IGFBP-6 on migration of these cells. Overall, these results

F IGURE 3 Intracellular actions of IGFBP-6. IGFBP-6 is shown to be imported into the nucleus, via an a-importin-mediated mechanism,
where it binds to VDR (vitamin D receptor) interfering with formation of the transcription complex RXR (retinoid X receptor)/VDR. Further
proven interactors of IGFBP-6 are TRa1 (thyroid hormone receptor-a1) and H2Br (histone cluster 1 H2br). Moreover, IGFBP-6 can bind to the
promoter of EGR-1 (early growth response-1). In the cytoplasm, IGFBP-6 is shown to affect the nuclear import of Ku80 (Lupus Ku autoantigen
protein p80) involved with Ku70 in NHEJR (non-homologous end join repair). In addition, it hypothesized the interaction between IGFBP-6 and
the mitochondrial PHB1/2 (prohibitions 1 and 2) complex. See text for further details
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indicate that IGFBP-6 effects on migration of tumour cells are based

strongly on the tumorigenesis stage, although this should be corrobo-

rated by in vivo evaluation of tumour behaviour.

6 | IGFBP-6 NEW ROLE IN THE
INFLAMMATORY RESPONSE AND
INFLAMMATORY DISORDERS

Inflammation and innate immunity are complex phenomenon that

are apparently redundant but that may be evolutionarily driven to

comply with encounters with diverse damaging and infectious

agents.72 These defensive responses may be eventually subverted in

cancer and autoimmune diseases by a wealth of mechanisms,73

including macrophage and neutrophil plasticity, and loss of immuno-

logical tolerance mediated by DCs.74

Neutrophils are the main cell type involved in the acute inflam-

matory response. Upon bacterial product release or cytokine produc-

tion, these cells are primed in the circulation, are attracted into the

inflamed tissue where they exert their main defence actions by

phagocytosis, ROS production and release of the their granule con-

tent.75,76 While neutrophil elastase (NE) and myeloperoxidase (MPO)

are stored in primary granules, tertiary granules are enriched with

metalloproteases (MMPs), in particular MMP-9.77 At the mucosal

level, this multi-step process leads to migration across the endothe-

lium, the extracellular matrix and the epithelium because of a

chemoattractant gradient.78 We recently investigated whether

IGFBP-6 could have any effect on neutrophils’ functions as diverse

ROS production, degranulation and chemotaxis.23 IGFBP-6 induced a

significant increase in ROS production in neutrophils obtained from

healthy donors at all the concentrations tested as compared to

untreated controls, with a peak obtained at 1 lg/mL. In relation to

degranulation, IGFBP-6 increased significantly MPO levels but did

not modify MMP-9 levels as compared to controls. Finally, IGFBP-6

was tested as chemoattractant in a polarized model of airway epithe-

lium in the physiologically relevant mode, that is, adding neutrophils

to the basolateral side of the epithelium and IGFBP-6 to the apical

side.79 Under these experimental conditions, IGFBP-6 attracted neu-

trophils maximally at the concentrations of 0.1 and 1 lg/mL. The

addition of known agonists of neutrophils’ function, such as phorbol

myristate acetate (PMA) or N-formylmethionyl-leucyl-phenylalanine

(fMLP), after IGFBP-6 incubation did not exert any synergistic effect,

indicating that IGFBP-6 does not act as primer for neutrophils and

suggesting that it might exert its action through the same signal

transduction pathways elicited by either PMA or fMLP, including

phospholipase C (PLC), phosphatidylinositol 3-kinase (PI3K), and

Src-family kinases for fMLP,80,81 and protein kinase C for PMA.82

Recently, we have shown that IGFBP-6 has chemoattractant prop-

erties towards monocytes and T cells but not B cells.21 Recombinant

IGFBP-6 increased monocyte migration in a dose-dependent fashion

to a maximum of 187 � 31% of control (P < .05 as compared to cells

migrating in the absence of IGFBP-6). T cell chemotaxis was also sig-

nificantly increased, showing a peak at 4 nmol/L (0.1 lg/mL;

180 � 29% of control, P < .05), with a behaviour similar to SDF-1.

Concentrations of IGFBP-6 lower than 4 nmol/L had no chemotactic

activity for T cells. The specificity of the chemotactic effect was shown

by the preincubation of IGFBP-6 with an anti-IGFBP-6 antibody that

abolished its chemotactic activity.

Rheumatoid arthritis (RA) is a chronic inflammatory disorder,

where pannus development and cartilage and bone damage at the

joint level recall tumour development and invasion. In a recent study,22

we have shown that IGFBP-6 serum levels are higher in RA than in

healthy controls and patients with osteoarthritis (OA). On the other

hand, RA synovial fluid (SL) and synovial tissue (ST) presented lower

and higher levels of IGFBP-6 as compared to OA SL and ST, respec-

tively. High levels of IGFBP-6 in ST may be relevant for immune cell

chemoattraction into the inflamed synovia; indeed, in vitro experi-

ments confirmed that IGFBP-6 acts as chemoattractant for RA

immune cells, in particular T lymphocytes, and that this effect was par-

tially inhibitable by dexamethasone. Intriguingly, infiltrating monocytes

and fibroblasts expressed IGFBP-6, likely pointing out to these cell

types as the source for IGFBP-6 in the context of inflamed synovia.

7 | CONCLUSION

In summary, recent findings are consistent with the emerging notion

that any immunological response to external stimuli needs to cope

with a specific metabolic rewiring of the immunocompetent cells. The

consequence of hyperthermic stress discussed here in MoDCs, mim-

icking physiological febrile temperatures in humans, unveiled that the

sole physical input is sensed as an alert stimulus triggering a transition

in dendritic cells from a quiescent state into a pre-activated state.

Such a transition occurs in a narrow temporal window and is accompa-

nied by a significant change in the metabolic reprogramming which

therefore is a very early event in the immune response functioning.

Finally, IGFBP-6 seems to play an important role in the control

of cell-specific immunologic adaptation following hyperthermia. In

vivo experiments are warranted to fully explore the role of IGFBP-6

in pathology and to discover how we might exploit its functions in

diagnosis and therapy.
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