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Mild cognitive impairment (MCI), an identified prodromal stage of Alzheimer’s Disease

(AD), often evades detection in the early stages of the condition, when existing

diagnostic methods are employed in the clinical setting. From an alternative perspective,

smartphone interaction behavioral data, unobtrusively acquired in a non-clinical setting,

can assist the screening and monitoring of MCI and its symptoms’ progression. In this

vein, the diagnostic ability of digital biomarkers, drawn from Fine Motor Impairment

(FMI)- and Spontaneous Written Speech (SWS)-related data analysis, are examined

here. In particular, keystroke dynamics derived from touchscreen typing activities, using

Convolutional Neural Networks, along with linguistic features of SWS through Natural

Language Processing (NLP), were used to distinguish amongst MCI patients and healthy

controls (HC). Analytically, three indices of FMI (rigidity, bradykinesia and alternate finger

tapping) and nine NLP features, related with lexical richness, grammatical, syntactical

complexity, and word deficits, formed the feature space. The proposed approach was

tested on two demographically matched groups of 11 MCI patients and 12 HC, having

undergone the same neuropsychological tests, producing 4,930 typing sessions and 78

short texts, within 6 months, for analysis. A cascaded-classifier scheme was realized

under three different feature combinations and validated via a Leave-One-Subject-Out

cross-validation scheme. The acquired results have shown: (a) keystroke features with

a k-NN classifier achieved an Area Under Curve (AUC) of 0.78 [95% confidence interval

(CI):0.68–0.88; specificity/sensitivity (SP/SE): 0.64/0.92], (b) NLP features with a Logistic

regression classifier achieved an AUC of 0.76 (95% CI: 0.65–0.85; SP/SE: 0.80/0.71),

and (c) an ensemble model with the fusion of keystroke and NLP features resulted

in AUC of 0.75 (95% CI:0.63–0.86; SP/SE 0.90/0.60). The current findings indicate

the potentiality of new digital biomarkers to capture early stages of cognitive decline,

providing a highly specific remote screening tool in-the-wild.
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1. INTRODUCTION

Mild Cognitive Impairment (MCI) (1, 2) affects 20% of people
over 65 years old worldwide, causing cognitive decline, beyond
normal aging, especially in the areas of memory and executive
functions, while increasing the probability for the manifestation
of the neurodegenerative Alzheimer’s disease (AD) (3). People
diagnosed with MCI have to be constantly tested over time
to ensure that they have not transitioned from mild to severe
dementia (4). Although there is currently no treatment for AD,
early diagnosis (5) is essential so that the patients, their family
and caretakers are better prepared, by making the necessary
financial and legal decisions and testing different lifestyle
interventions and medication in the MCI or another prodromal
stage, to potentially delay or even prevent AD development (6).
Studies have indicated that cognitive, behavioral, sensory and
motor changes may precede clinical manifestations of AD by
several years (7). Current diagnostic methods include a suite
of neuropsychological and physiological tests conducted in a
clinical setting, estimating key cognitive functions like memory,
comprehension, and coordination, alongside laboratory and
brain-imaging tests, estimating nerve degeneration and amyloid
protein concentration levels (8). However, these validated AD
diagnostic methods usually fail to efficiently distinguish early
MCI from the normal cognitive trajectory.

The production and comprehension of speech are correlated
with the activation and coordination of diverse sensory and
cognitive processes in regions of the cerebral cortex, including
semantic storage and retrieval, executive functions and working
memory (9). Therefore, multiple aspects of the language content,
correlated among others with lexical processing, grammatical,
and syntactic complexity and word finding, are degrading sharply
and rapidly with the progression of AD or the transition from an
asymptomatic phase to MCI, compared to healthy ageing (10).
Further alarming signs include word class deficits, with noun
rates usually decreasing and verb and pronoun rates increasing,
as well as limited lexical richness and vocabulary size (11).
Efforts to identify and assess linguistic deficits in AD and MCI
have mainly been focused on oral speech and its transcripts,
either in the form of conversational speech or in narrations,
naming tests and picture description tasks. Bucks et al. (12) using
measures dependant on word frequencies of lexical items during
spontaneous oral speech, managed to discriminate between
healthy controls (HC) and people diagnosed with probable
dementia, validating the decline in lexical richness and a lower
noun rate in the latter group. In parallel, in the various studies
analysing connected speech relevant to picture description tasks,
reviewed by (13), verbal fluency, semantic processing, and
pragmatic language use can be assessed even in prodromal stages,
while automatic speech analysis emphasizing on vocal features
in the work of (14) reaches an accuracy over 80%. Recent work
of (15), using multimodal language data and cascaded classifiers,
reveals that the language features alone reach an AUC of 0.70 and
their combination with other feature types greatly enhances the
system’s performance. Tools, like the computer-based software of
(16), collecting both textual and acoustic linguistic features from
different tasks, facilitate the research toward such direction. As

far as written speech is concerned, a longitudinal study of (17) on
the texts of three novelists, who developed dementia, indicates
the progressive lexical and syntactic changes associated with AD.
However, despite the rich research in the area of oral speech, a
lack of research in the field of SpontaneousWritten Speech (SWS)
interactions is evident.

Apart from the speech-related area, there are several
indications that cognitive decline in MCI patients is associated,
to a certain degree, with motor dysfunction in both lower (18)
and upper (19) extremity level functions. Dual-task gait tests,
that involve walking while doing a cognitively demanding task,
have revealed poor gait performance for amnesic MCI patients
(20), while (21) managed to discriminate MCI and HC, with
AUC 0.83 and sensitivity/specificity 0.82/0.72, using dual-tasks
in a clinical setting and involving a sensor-based upper extremity
function motor task instead of walking. The search for useful
MCI markers and especially digital biomarkers (22), taking
advantage of the mobile and wearable consumer device-derived
data and their passive collection (23), is a promising new research
field, along the increasing plurality and sensitivity of smart
sensors for unobtrusive data acquisition. In this vein, focusing
on Fine Motor Control (FMC), variability in typing and finger
tapping speed in smartphone screens and computer mouses
have been used for early dementia detection, as they present a
sharper decline compared to their trajectory in healthy ageing
(24, 25). Computer-use behaviors are significantly associated
with performance on cognitive and functional assessments, with
the temporal characteristics of typing, number of pauses and
inter-keystroke intervals having been tested as potential markers
for cognitive decline (26). Keystroke dynamics, while typing in
computer keyboards and smartphone screens, can be captured
in a non-clinical setting and have thus been used for the early
detection of multiple conditions, such as Parkinson’s disease
(27), depression (28), and AD with guided copy tasks (29),
noticing again the absence of results in spontaneous unprompted
keyboard interactions, that better reflect the natural state of
the patient.

Having reviewed separately studies regarding linguistic
characteristics and keystroke dynamics, the potential
diagnostic properties of the cognitive load, associated and
partly overlapping with both written speech production
and motor dysfunction remain to be examined. Vizer and
Sears (30) use a statistical model of keystroke and linguistic
features, extracted from ordinary text-typing activities on
a computer keyboard, to monitor signs of early cognitive
decline in a PreMCI stage, showcasing the efficacy of a
combined feature set, reaching an AUC of 0.80, but using as
keystroke features time per key, pause rates and duration and,
therefore, not correlating with motor dysfunction symptoms.
These findings show the potential of multimodal features
and equivalent approaches are needed in an MCI stage,
reflecting the dysfunctions in multiple brain regions of the
pre-frontal cortex, existent in the early stages of dementia.
An overview of selected studies that attempted to detect MCI
or AD based on speech and motor deficiency-related data
or combinations of the above and their results can be found
in Table 1.
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TABLE 1 | References, feature sets, and results of studies regarding MCI and AD detection based on speech or motor deficiency-related features and multimodal data.

Feature Set Results

(12)

Noun- (N), pronoun- (P), adjective- (A), verb- (V) rate, type token ratio (TTR),

Brunet’s index (W), Honore’s statistic (R), clause-like semantic unit rate (CSU) in

transcribed conversational speech

87.5% correct classification, between individuals with probable dementia of

Alzheimer type (DAT) and healthy controls, DAT participants had higher mean P,

A, V- rate, lower N-rate, higher mean W, lower mean R and TTR, mean CSU did

not differ

(14)

Mean, median, ratio mean, standard deviation of voice and silence duration,

periodic vs. aperiodic speech, vocal reaction time, amount of

insertions-deletions, irregularity, semantic verbal fluency during short recordings

of vocal tasks in-the-clinic

79% accuracy with 20% equal error rate (EER) in classifying MCI vs. HC, 87%

accuracy with 13% EER in classifying AD vs. HC with equal SP-SE

(17)

TTR, lexical repetition, N and V specificity, word class deficit, fillers, syntactic

complexity with mean length of utterance, mean number of clauses per

utterance, parse tree depth, Yngve depths, D-level scale, use of passive voice in

fully parsed texts of three British novelists healthy or with AD

Vocabulary size, repetition and specificity measures validated pronounced

decline for authors with AD, syntactic and passive voice analysis did not yield

linear results

(13)

Semantic content, information conciseness efficiency, lexical diversity, total

number of words, syntax, V over N rates, coherence prosody, fluency, speech

rate in connected speech studies with picture description tasks

Semantic content and conciseness of information yield the best results in

detecting MCI and mild AD with picture description tasks

(24)

Touch and off phase during a finger tapping task of 15 s SP-SE 0.91–0.52 for ruling out cognitive impairment

(26)

Mouse operations (amount and time of clicks), keystrokes (amount and timing of

text and operational keystrokes), total duration of computer use and pauses

during semi-directed computer tasks within a 2-h single testing session

AUC 0.8–0.92 for different features and task combinations with SP 0.62–0.91

and SE 0.8–0.95

(21)

Motor function speed and variability as measured with two gyroscopes attached

to the wrist and upper-arm of the dominant hand during dual tasks (move

hand-count numbers) in-the-clinic

AUC 0.83 with SP-SE 0.72-0.82 in predicting MCI and AD

(15)

Language (26), speech (12), eye movement (22), comprehension (11) features

from audio recordings, text transcripts, comprehension questions, and eye

tracking during reading silently, aloud and picture description tasks in-the clinic

Combined features: AUC 0.71 and SP-SE 0.79–0.55, Picture description task:

AUC 0.72 and SP-SE 0.67–0.63, Verbal reading task: AUC 0.79–0.82 and

SP-SE 0.72–0.65, Silent reading task: AUC 0.88 with SP-SE 0.85–0.78 in task

fusion

(31)

370 linguistic (syntactic complexity, grammatical constituents, vocabulary

richness, repetitions, information content) and acoustic features (MFCCs) from

short narrative samples of the DementiaBank

Top 35 features: 81% accuracy in distinguishing people with AD from HC All the

features: 58% accuracy

(30)

Keystroke (timing, pauses, rates of words, sentence lengths) and linguistic

(unique words rate, word class rates, words indicating emotions and cognitive

complexity) features from computer-typed texts from older adults with and

without PreMCI

Linguistic features: 60% accuracy Keystroke timing features: 68.6% accuracy

Combined features: 77.1% accuracy with SP-SE 0.83–0.7 and AUC 0.8

MCI, Mild Cognitive Impairment; AD, Alzheimer’s Disease; HC, Healthy Controls; AUC, Area Under the Curve; SP-SE, Specificity–Sensitivity.

Motivated by the aforementioned, the aim of this study
is to provide an automated method that can identify MCI
individuals and distinguish them from HC, based on digital
biomarkers, through their routine interaction with a smartphone
keyboard in a non-clinical setting. Specifically, it is firstly
assessed how cognitive decline is linked with the natural
language processing (NLP) of linguistic features of spontaneous
written speech (SWS) production and sequentially with the
keystroke information regarding specific motor impairment

symptoms. Then, their combination is examined with ensemble
models, aiming to capture the interlinked dysfunctions in the
respective brain regions associated with language and motor
skills; thus, improving the overall classification performance. The
promising results, when the proposed approach was tested on
data fromHC andMCI patients, show that such an analysis could
provide with predictive analytics of early stages of cognitive
impairment, taking into consideration the pragmatic conditions
of everyday living. This will contribute in automatic, unobtrusive,
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TABLE 2 | Demographics of participants (MCI, Mild Cognitive Impairment; HC,

Healthy Controls) including number of participants, gender (F, female; M, male),

age and education level (2: secondary education, 3: higher education, 4:

masters-PhD).

Demographics MCI HC Statistical significance

(p-value)

n 11 12 N.A

Gender F:M (%) 9:2

(81.8:18.2%)

7:5

(58.3:41.6%)

n.s (p)

Avg. Age (std) 67.2 (5.96) 66.2 (4.72) n.s.(p = 0.41)

Avg. Education

level (std)

2.63 (0.67) 2.75 (0.62) n.s.(p)

N.A., not applicable; n.s., not significant with p > 0.05.

remote monitoring, and recommendation of MCI and
AD diagnosis.

2. MATERIALS AND METHODS

2.1. Data Collection
2.1.1. Participants
The participants of this 6-month long study were recruited in
the Day Center “Saint John” of the Greek Alzheimer Association
and comprised two groups consisting of in total 12 HC, with
the official diagnosis of Subjective Cognitive Impairment (SCI)
related to the effects of normal aging and a group of 11 patients
diagnosed with MCI. During the duration of the study, there
was no clinical progression of the participants’ condition. All
participants had undergone the same clinical assessment for
the official diagnosis within the last 3 years, that included as
measures the Mini Mental State Examination-MMSE (32), the
Functional Rating Scale for Symptoms of Dementia-FRSSD (33),
and the Functional Cognitive Assessment Scale-FUCAS (34), all
translated in the participants’ native language and scored by
medical professionals. The participants were also evaluated in
the two main scales related to anxiety and depression, the Beck
Depression Inventory-BDI (35) and the Geriatric Depression
Scale-GDS (36), with 50% ofMCI patients having being identified
with minimal to mild depression, while the HC scored negatively.
Lastly, blood and neuroimaging tests were conducted and all the
study subjects were found negative to Parkinson’s Disease. All
the participants were 60–75 years old, had finished secondary
or higher education and had all been using a smartphone for
more than 12 months prior to the study. The groups did not
differ in age, gender, and education levels, based on the two-sided
Mann–Whitney U-test for the age and Chi-squared test for the
gender and the education levels (p > 0.05). The demographic
information of all participants is also presented in Table 2.

2.1.2. Study Protocol
Participants downloaded in their own smartphones the “Type
of Mood” mobile application from Google Play store (37) and
created an account, providing information about their gender,
date of birth, education, and income levels, smartphone usage, as
well as filling in the digitized version of the PHQ-9 questionnaire

on depression (38), while giving their consent in their data
processing within the app. The study was reviewed and approved
by Greece, Bioethics Committee of the Aristotle University of
Thessaloniki, Medical School, Thessaloniki, Greece (359/3.4.17)
and all participants provided their written informed consent
to participate in this study. Sequentially, they activated the
app’s custom keyboard, which replaced the default typing input
method across all aspects of the Android Operating System. The
keyboard recorded keystroke timing information, i.e., sequences
of timestamps of key presses and releases, as well as typing
metadata (delete rate, pauses, number of characters typed, and
typing sessions’ duration), in the background, without interfering
with participants’ routine typing and without capturing the
characters typed, rendering the process privacy-aware. For each
typing session (keyboard shown and afterwards hidden, with
at least one key tap in the meantime), the above-mentioned
keystroke timing information was stored in a JSON format and
indexed as database entries in a local SQLite database, available
only to the application. The application would periodically
transmit database entries to a remote cloud server (Microsoft
Azure), when the user’s device was connected to Wi-Fi and
charging, accompanied by the uniquely coded ID of the user.
Within 6 months, 4,930 typing sessions were collected, 3,000
from 11 MCI patients and 1,930 from 12 HC (more than 100
sessions per individual smartphone), while 3,139 of them, with
more than 40 key presses per session, were eventually used for
the analysis.

Simultaneously, participants were asked to type down on their
phones up to 4 short texts, around a paragraph in length, to
be used for the NLP analysis. To simulate SWS production the
suggested topics included: (1) a message to a loved one or a
good friend, (2) a description of one’s day, (3) giving advice on
someone, and (4) narrating a short story from a happy memory,
as those were the things they usually text their social circle
about. The participants typed the texts on their phones at home,
based on their own availability and without a time limit, to
simulate a non-clinical setting. They could not use the auto-
correction feature of their phones and they sent afterwards the
texts via email. In total, 10 MCI patients contributed 40 texts
and 7 HC contributed 28 texts. From all the participants, 10
MCI patients and 5 HC, respectively contributed for the fused
features analysis both texts and keystroke information through
their typing activities with the custom keyboard.

2.2. Models and Experiments
2.2.1. Pre-processing
The texts were delivered by the participants as emails and saved
as txt files with the equivalent user ID. The spelling mistakes
and accidental punctuation marks were corrected, to avoid
interference with the Part-Of-Speech (POS) Tagging process
(words receive tags based on their word class type i.e., noun,
verb etc.), given they do not represent studied measures in
the following experiments. Using a POS-Tagger trained for the
Greek language (39), each text was also stored with a CONNL-U
dependency parse tree format (40). Dependency parsing is based
on the notion that linguistic units, e.g. words, are interconnected
with directional links within a sentence. Therefore, the parsing
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tree reflects the syntactical relation of the words within the
sentence, with the “children” words being dependent from the
“root” word, while its depth corresponds to the overall syntactical
complexity of the sentence.

The timestamped sequences of the typing data, contained in
the stored JSON files, were used to extract keystroke dynamics
variables, namely the “hold time” (HT-time interval between
pressing and releasing a key) and “flight time” (FT-time interval
between releasing a key and pressing the next one), as shown:

HTn = trn − t
p
n with n = 1, 2, . . . , N, (1)

FTn = t
p
n+1 − trn with n = 1, 2, . . . , N-1, (2)

where t
p
n and trn refer to the pressing and releasing times,

respectively. With appropriate filtering, by keeping the HT values
smaller than 700 µs and the FT values smaller than 3 s, the
long pauses were excluded and the keystroke timing information
was less susceptible to noise. Zero-padding was used to achieve
common dimensionality of 100 values in HT and FT arrays for
each typing session.

2.2.2. Feature Extraction

2.2.2.1. NLP features
For each text, a set of nine features was extracted, using the
Natural Language Toolkit suite of tools and libraries (41), along
custommade functions and the mean value of each feature across
the different texts of each user was used in the final features array.
Specifically, each text was tokenized by breaking it up into words
and punctuation marks and the set of unique words, consisting
its vocabulary, was further extracted. The lexical diversity and
richness of the texts are expressed with three features. The ratio
of unique words over the total number of words is calculated as
shown below:

dvrst = V/W, (3)

where W denotes the total number of words and V the
total number of unique words, namely the vocabulary. The
Brunet Index—“BI” indicates richer language with lower values,
independently from the text’s length (42) and is calculated as
shown below:

BI = WV−0.165
. (4)

Honore’s Statistic—“HS,” indicating richer language with higher
values (43) is calculated as seen below:

HS =
100 ∗ logW

1− hap
V

, (5)

where hap denotes the number of hapaxes legomena (number of
words appearing only once within a text). The average number of
words per sentence is calculated as seen below:

wrd_sent = sum(w_sents)/len(w_sents), (6)

where w_sents denotes a list with the number of words per
sentence as elements. The ratio of the meaningful vocabulary
(words that are not part of the Greek stopwords from the NTLK
corpus) is expressed as shown below:

nonstop = len(content)/V , (7)

where content refers to the vocabulary words that are not
considered stopwords based on the NLTK corpus. Features
related to word class deficits were extracted from the POS-Tagged
texts. The nouns over verbs ratio is calculated as shown below:

NnVrb = nn/vrb, (8)

where nn denotes the number of nouns and vrb the number of
verbs within the text. The noun ratio and word finding difficulties
are expressed as seen below:

Nn = nn/(vrb+ nn). (9)

The pronoun ratio, which quantifies indirect referencing, is
presented below:

Prn = prn/(nn+ prn), (10)

where prn denotes the number of pronouns within the text.
Lastly, a form of the Mean Dependency Distance—“MDD” was
used (44) to express the syntactical complexity. Specifically, for
each text the MDD of each sentence was calculated separately
and then the sum of those MDDs was divided by the number of
sentences, getting a mean estimation of this feature for each text.
The MDD of each sentence is defined as the sum of the distances
of each “child”/dependent word from its “root”/head word over
the number of tokens of the sentence as shown below:

MDD(sentence) =
1

N − 1

N∑

i=1

|DDi|, (11)

where N denotes the number of tokens and DDi the dependency
distance from the i − th link. The latter was calculated with Pre-
order Tree Traversal (traverse the root, the left sub-tree, and then
the right sub-tree) of the dependency parsed trees format of the
sentences in the CONLL-U files. In Figure 1, there is an example
of a sentence with dependency parsing.

2.2.2.2. Keystroke features
As far as the keystroke dynamics are concerned, the extracted
features are associated with three indices Bradykinesia (B),
Rigidity (R), and Alternate Finger Tapping (AFT), the symptoms
describing Fine Motor Impairment (FMI). Specifically, one
dimensional CNN-based autoencoders, consisting of two
sequentially connected convolutional layers (kernel size of 5, 16
filters) without max-pooling layers, took as inputs the HT and
FT sequences of the typing data and were used to learn a neural
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FIGURE 1 | The dependency parsing of the sentence “I am the grandmother

of a wonderful grandson” is depicted. The ids of the words, representing the

position of the words in the sentence, are indicated with numbers 0–7 and the

word “grandmother” is identified by the parser as the root word. The arrows

have the direction from the head/root word to the dependent/children, the

dependency distance between the pair is indicated on the arrow head and

equals the difference of their id values. The words “the,” “am,” “I,” and

“grandson” are dependent from the word “grandmother” and the words

“wonderful,” “a,” and “of” are dependent from the word “grandson.”

The MDD of this sentence based on the Equation (11) equals

(3+2+1+4+3+2+1)/7= 2.28.

network’s encoding mechanism for representing efficiently
the keystroke dynamics and reject the noise. The CNN was
trained in an unsupervised manner (80–20% train-test split on
34,000 typing sessions, back-propagation for 50 epochs with
mini-batches of size 64, RMSprop optimizer with learning rate
of 10−3 for the mean squared error loss function) on a dataset
of a relevant study of Parkinsonian screening (45), to learn the
inherent structure of keystroke dynamics and represent them
with a limited number of features. Indicatively, the in-the-wild
development dataset, used for unsupervised pre-training of the
neural network parameters consisted of 34,000 typing sessions
with keystroke dynamics drawn from subjects with age ≤ 40
years (self-reported). A two-layer fully-connected network with
50 hidden nodes was added to the already trained networks
and the final network was fine-tuned on an in-the-clinic
dataset of 33 subjects, by optimizing regression models with
leave-one-subject-out (LOSO) cross validation (50 epochs with
mini-batches of size 32) to each estimate the severity of the
symptoms Rigidity/Alternate Finger/Bradykinesia in relation
with the ground-truth Unified Parkinson’s Disease Rating Scale
(UPDRS) Part III single-item scores 22/23/31 (46). The number
of parameters reaches 10,500 altogether and the overall model
layout can be found in Figure 2.

The in-the-clinic development dataset consists of 274 typing
sessions in total (up to 10 text-excerpts for each user) with
keystroke dynamics from 33 demographically matched subjects
[18 early Parkinson Diseases (PD) patients and 15 HC], whom
underwent clinical examination by neurologists and their FMI
was evaluated by their UPDRS Part III single-item scores
22/23/31, expressing rigidity of upper extremity/alternate finger
tapping/general body bradykinesia-hypokinesia, respectively.
Before being tested to our dataset, consisting of more than
3,000 typing sessions of MCI patients and HC, the models
have also been tested in 4 in-the-wild datasets: (1) a dataset
with 216,000 typing sessions with keystroke dynamics from
clinically examined 214 subjects (PD vs. HC), with self-reported

FIGURE 2 | CNN model layout indicating input, convolution, flattening, dense,

and dropout layers, output shape of each layer and number of parameters.

demographics, through the iPROGNOSIS app, (2) a dataset with
36,000 typing sessions with keystroke dynamics from 39 subjects
(PD/HC:22/17), (3) a subset of the previous dataset with 7,600
typing sessions, drawn from de novo PD patients and the same
HC (de novo PD/HC: 9/17), (4) the union of the first two datasets
with 252,000 typing sessions with keystroke dynamics from
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TABLE 3 | Features from the natural language and typing processing.

Features Descriptions

NLP features

dvrst Lexical diversity

nonstop Meaningful content

wrd_sent Avg. No. words per sentence

BI Brunet index

HS Honore’s Statistic

NnVrb Noun per Verbs ratio

Nn Noun ratio

Prn Pronouns ratio

MDD Syntactical complexity

Keystroke features

R indices Rigidity

B indices Bradykinesia

AFT indices Alternate finger tapping

253 subjects (PD/HC: 67/186) The optimized scores produced
indicators that can be used in-the-wild prediction of UPDRS
scores 22/23/31, yielding correlation 0.66/0.73/0.58, respectively,
in the validation set of 36,000 typing sessions. The trainedmodels
were used to infer based on the typing data from 11MCI patients
and 12 HC, and estimations for each symptom (R/B/AFT 0-4)
were extracted for each typing session of each user (47). All the
features from the natural language and typing processing can be
found in Table 3.

2.2.3. Experiments and Classification Models
In order to address the study research questions, that is, the
exploration of the classification performance between MCI
and HC, using features drawn from the NLP, keystroke
dynamics, and combined feature spaces, three experiments,
i.e., EXP1, EXP2, and EXP3, with different feature sets
and demographically matched sub-cohorts were conducted,
accordingly. In each experiment, three different classifiers,
Logistic Regression, Random Forest, and k-Nearest Neighbors
are evaluated based on their accuracy and the receiver operating
characteristic (ROC) analysis, after multiple rounds of LOSO
cross-validation. ROC analysis is an iterative process of varying
the discrimination threshold of a binary classifier and outputting
the (Sensitivity, Specificity) pair for each threshold. The ROC
curve is then formed by plotting the output pairs of (1—
Specificity, Sensitivity). This analysis provides reliable insights
into the performance of a classification model even when
datasets are not completely balanced. To assess the statistical
significance of classification results, sampling with replacement
(1,000 bootstraps) is further used here to define a ROC
curve distribution, by obtaining the average value (solid line
in figures) and the confidence intervals (shadowed areas
in the figures) of the area under the ROC curve (AUC).
Where reported, specificity/sensitivity values correspond to
the optimal ROC-based cut-off point (decision threshold),
estimated by maximizing the Youden Index (48), for equal
cost of misclassifying MCI patients and HC. A Univariate

Feature Selection process was used, where each feature was
individually assessed with regards to its statistical significance
with the label and combinations of the features with the
highest correlation were chosen for the optimal feature set in
each experiment. Standardization and scaling was performed
in the feature sets when needed, by removing the mean
and scaling to unit variance. An overview of the pipeline
and the different experiments and cohorts can be seen in
Figure 3.

In particular, at EXP1, 78 texts from 10 MCI patients
and 7 HC were used to extract NLP features and test
the predictive potential of SWS production. In EXP2, 3,139
typing sessions from 11 MCI patients and 12 HC were used
to extract the keystroke related features that quantify FMI
symptoms and test their predictive potential linked to cognitive
decline. In EXP3, NLP and keystroke feature sets, combined
differently in 3 models (A, B, C), were used to assess the
performance of fused feature sets against models with separate
NLP and keystroke features (“Just NLP,” “Just Keys”), from 10
MCI patients and 5 HC contributing both texts and typing
sessions. Model “A” concatenates the probabilities/predictions
of the “Just NLP” model with keystroke features and feeds
them into another Random Forest classifier, while model “B”
concatenates the probabilities/predictions of the “Just Keys”
model with NLP features and feeds them into another k-
Nearest Neighbors classifier. Lastly, model “C” concatenates
the probabilities/predictions of both the “Just Keys” and “Just
NLP” models and feeds them into another Random Forest
classifier. The cohorts and the chosen optimal feature sets of each
experiment can be found in Table 4.

3. RESULTS

Table 5 along with Figure 4 summarize the acquired results from
all three experiments. In the following subsections, the specific
results per experiment are presented.

3.1. First Experiment
Combinations of the features “nonstop,” “dvrst,” “HS,” and
“MDD,” comprising the optimal feature set, were used with the
different classifiers. The Logistic Regression classifier has an AUC
of 0.76, accuracy 76% and specificity/sensitivity of 0.80/0.71,
respectively. The Random Forest Classifier has an AUC of 0.73,
accuracy 71% and specificity/sensitivity of 0.83/0.43 respectively.
The k-nn classifier with seven nearest neighbors has an AUC
of 0.69, accuracy 71% and specificity/sensitivity of 0.80/0.57,
respectively. The Logistic Regression classifier appears to have
the best performance, whereas the Random Forest one, due
to the small number of data wasn’t able to perform that well.
We observe higher specificity than sensitivity levels. The three
ROC curve distributions of the first experiment can be found in
Figure 4A.

3.2. Second Experiment
Combinations of the “B” and “R” indices, comprising the
optimal feature set, were used with the different classifiers.
The Logistic Regression classifier has an AUC of 0.69, accuracy
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FIGURE 3 | System pipeline and experiments’ overview. Texts and typing sessions were collected from MCI patients and HC through the custom keyboard of the

TypeOfMood application in a non-clinical setting. The total dataset was split accordingly (D1, D2, D3) to the needs of the three experiments that tested NLP models

(EXP1), keystroke models (EXP2), and models with fused feature sets (EXP3). Multiple rounds of LOSO experiments yielded the best performing models to distinguish

among MCI and HC.

TABLE 4 | Cohorts (number of MCI:HC), optimal feature sets and models of the

experiments EXP1, EXP2, EXP3.

Cohort (MCI:HC) Feature set Model

EXP1: NLP features

10:7 nonstop, dvrst, HS, MDD N.A

EXP2: Keystroke features

11:12 B and R indices N.A

EXP3: Fused features

10:5

Nonstop, dvrst, MDD Just NLP

B and R indices Just Keys

Probabilities of Just NLP & B indices A

Probabilities of Just Keys & dvrst, nonstop, MDD B

Probabilities of Just NLP & probabilities of Just Keys C

N.A., not applicable.

70% and specificity/sensitivity of 0.54/0.83, respectively. The
Random Forest Classifier has an AUC of 0.65, accuracy
66% and specificity/sensitivity of 0.55/0.75, respectively. The
k-Nearest Neighbors classifier with seven nearest neighbors
has an AUC of 0.78, accuracy 77% and specificity/sensitivity
of 0.64/0.92, respectively. The k-Nearest Neighbors classifier
appears to have the best performance and we observe
higher sensitivity than specificity levels. The three ROC curve
distributions of the second experiment can be found in
Figure 4B.

TABLE 5 | Results of the three experiments with NLP features, keystroke features

and their combination in cascaded classifiers.

Classifier Accuracy AUC Specificity Sensitivity Model

EXP1

LR 0.76 0.76 0.80 0.71 N.A

RF 0.71 0.73 0.83 0.43 N.A

k-nn 0.71 0.69 0.80 0.57 N.A

EXP2

LR 0.70 0.69 0.54 0.83 N.A

RF 0.66 0.65 0.55 0.75 N.A

k-nn 0.77 0.78 0.64 0.92 N.A

EXP3

LR 0.67 0.60 0.80 0.40 Just NLP

k-nn 0.80 0.75 0.90 0.60 Just Keys

RF 0.75 0.68 0.90 0.40 A

k-nn 0.80 0.75 0.90 0.60 B

RF 0.73 0.65 0.90 0.40 C

Bold values denote the highest performing models. N.A., not applicable.

3.3. Third Experiment
The “Just NLP” model resulted in an AUC of 0.60, accuracy
67% and specificity/sensitivity of 0.80/0.40, respectively. The
“Just Keys” model resulted in an AUC of 0.75, accuracy
80% and specificity/sensitivity of 0.90/0.60, respectively.
Model “A,” resulted in an AUC of 0.68, accuracy 75% and
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FIGURE 4 | Comparison of Receiver Operating Characteristics (ROC) curves of all the models in the first (A), second (B), and third (C–E) experiment. Area Under the

Curve (AUC) values for models are shown with 95% Confidence Intervals. LR, Logistic Regression; RF, Random Forest; knn, k-Nearest Neighbors.

specificity/sensitivity of 0.90/0.40, respectively (Figure 4C).
Model “B” resulted in an AUC of 0.75, accuracy 80% and
specificity/sensitivity of 0.90/0.60, respectively (Figure 4D).
Model “C” resulted in an AUC of 0.65, accuracy 73% and
specificity/sensitivity of 0.90/0.40, respectively (Figure 4E). It is
validated that the feature sets that have combined the potential of
both NLP and keystroke dynamics have better performance, even
though the dataset tested and the number of data subjects was
quite limited and we observe, once more, higher specificity than
sensitivity levels. The highest performance in the current dataset
is accredited to model “B,” with similar results with the “Just
Keys” model, while model “A” also has very high specificity levels.

4. DISCUSSION

Digital and Connected Health is an emerging field, encompassing
novel, efficient, effective, and accessible technological tools,
that could contribute greatly to early disease diagnosis and
management. The aim of this study has been the development
of an objective tool for the detection of MCI patients against HC,
by exploiting linguistic characteristics and keystroke dynamics,
during routine typing on mobile touchscreens. The adopted
design reflects the natural spontaneous state of the users
and its unobtrusive data collection fashion meets the need

of long-adherence. Simultaneously, such a tool assists the
longitudinal passive monitoring and diagnosis of the condition,
in an interpretable way, facilitating physicians and medical
interpretation, through high-frequency sampled data streams.
Overall, the study further verifies the relationship between
cognitive functions and motor dexterity, being consistent with
the overlapping cognitive and motor neural circuitry in the
brain, and paving the way toward new approaches for dementia
risk screening.

A number of studies have shown that speech and language,
being ubiquitous in everyday communication, can provide
early signs of MCI and other prodromal stages of AD (49),
while being correlated with a lapse in episodic and semantic
memory. Episodic memory refers to the multifaceted process
that enables the retrieval of detailed evocative memories from
the past, while semantic memory is linked with the retrieval of
general conceptual knowledge divested of specific spatiotemporal
contexts (9). Word finding difficulties and pronounced word
class deficits are considered as some of the earliest manifestations
of language breakdown in MCI and AD and implicate loss of
semantic knowledge and difficulties in encoding new information
(12). Our study further validates these impairment patterns per
MCI subject, with lower mean number of nouns [both overall
(Nn) and when compared to verbs (NnVrb)], and higher mean
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number of pronouns (Prn) in MCI patients compared to HC,
despite the fluctuation noticed in the number of words per
sentence within subjects over successive text sessions (wrd_sent).
The measures of the vocabulary size and lexical diversity (dvrst,
BI, HS) were decreased within the group of MCI patients as
expected (11), with slightly higher mean values of the BI and
greatly lower values of the HS, indicating pronounced lexical
repetitions with less hapaxes and lexical richness deficits for the
MCI patients. Regarding the nonstop metric, that was part of all
optimal feature sets in all experiments, theMCI patients appeared
to use less connecting words/stopwords, reflecting potentially
a decreased syntactical complexity, as an expected remedy of
their memory loss capacity (50), that was further validated with
the lower mean values of the MDD metric. Although the MDD
metric has been primarily used to assess the general complexity
of different languages (44), we are using it for the first time on a
micro-level and it managed, in our context, to efficiently reflect
the syntactical complexity of written speech per subject.

Regarding motor dysfunction in the upper extremities in
early stages of dementia, several studies suggest that mild
Parkinsonian signs are associated with MCI patients (51) and the
degree of motor impairment may help identify those at risk for
AD (18). Our machine learning-based estimation of dominant
hand bradykinesia (slowness of movement) and rigidity (muscle
stiffness) indices managed to efficiently distinguish between
MCI patients and HC, validating the connection between FMI
and cognitive decline, given that none of our participants
was diagnosed with PD. The diagnostic potential of keystroke
dynamics has been proven in previous studies (52) and our
results of longer, more variant pressing of the keyboard keys
and slower finger coordination across the screen for the MCI
patients, further strengthens this potential. These findings are
also aligned with studies experimenting with finger tapping speed
(24), associated with short-memory lapses and other fine motor
dexterity (53) and upper extremity function (21) tests conducted
in a clinical setting (data in-the-clinic). Nevertheless, our
approach goes several steps further by encapsulating the natural
state of the users, capturing non-invasively and longitudinally
their typing sessions, without the need for special technical
equipment and during their pragmatic real-life activities (data
in-the-wild), thus enabling a continuous monitoring of the very
early stages of the condition.

Taking it a step further, the study evaluated the combined
diagnostic potential of the NLP and keystroke related features,
in various models, to validate the clinical suggestions that hand
dexterity and FMI co-exist with MCI, possibly sharing similar
pathogeneses (54). The combined feature sets in EXP3 had
indeed an increased performance in detecting MCI patients from
HC, especially model B that combined cascadedly the predictions
of the JustKeys model of solely keystroke features with NLP
features, being aligned with other studies evaluating multimodal
data combinations (15, 30). The rationale of this association of
features resides in the fact that hand dexterity requires complex
cognitive processes, beyond sensorimotor coordination of the
limbs with the eyes, linked with executive functions, such as
attention, judgement, planning, and memory (20). Our results
further reinforce the relationship between cognitive and motor

function in other functional activities, such as written speech
production in our context, beyond the typical mobility tasks
and self-reporting as suggested by (19), with a novel FMI
detection tool. Moreover, SWS production activates primarily
the prefrontal cortex of the brain, associated with both executive
cognitive functions and hand dexterity, while being consistent
with the overlapping and reciprocal neural circuitry of motion
and cognition in the cerebellum and the subcortical structures
(55). Therefore, our fused models reflect the overall intricacies
related to SWS production, as the thought and cognition process,
linked with motor deficiencies, materialize to the actual speech
production, providing a highly valuable patient phenotype. The
high specificity levels of the NLP models are further enhanced
with the highly sensitive and granular information coming
from the greater amount of typing sessions against the fewer
text samples, resulting in a robust system. In a correlation
analysis (using the Pearson correlation coefficient) between
the clinical scores of MMSE, FUCAS, and FRSSD scales and
the predictions of our models and individual features, the
bradykinesia indices significantly correlated (r=−0.56, p < 0.01)
with the MMSE clinical scores and the predictions of the NLP
models significantly correlated (r= −0.55, p < 0.01) with the
FUCAS clinical scores. These correlations tangibly showcase the
connection of the FMI symptoms, like bradykinesia, with the
clinically verified cognitive decline, aligned with the relevant
literature (19, 51, 53), and showcase how linguistic deficiencies,
captured with the NLP analysis, reflect clinically measured
functional deficiencies in everyday life tasks (9), as those used for
the FUCAS measure. The estimated correlation levels (around
0.5) between the overall predictive models and the chosen
measures were anticipated, since these scales have low sensitivity
and variation within the MCI spectrum and the diagnosis at such
an early stage is greatly dependant from additional neuroimaging
and physiological tests beyond these individual scores.

The novelty of the current study is that it sets up
an interpretable framework of unobtrusive assessment of
individual symptoms of the early stages of dementia and MCI,
harvesting data in-the-wild and thus reflecting the natural
state of the user, while still reaching for high correlation
with the equivalent clinical scores. The latter is of high
importance toward personalized monitoring of different risk
factors preceding clinical diagnosis, while the detection of the
severity level of FMI and cognition-related symptoms could
also facilitate personalized interventions for better management
of the patient’s condition and increased quality of life. In
parallel, such analyses are linked with the use of smartphones
and virtual keyboards, assisting further the mobile health
booming. The high specificity levels of the proposed models
are aligned with the requirements of a remote monitoring
system that needs to limit “false alarms” for the HC and the
CNN architecture paves the way for new methodologies in
digital diagnostic systems. Future work could examine whether
interventions targeting neuromuscular traits, such as hand
and motor dexterity, may also benefit higher cognitive and
functional outcomes. Furthermore, the combination of other
data sources, e.g., acoustic features of oral speech (31), gait
performance (56), behavioral and social metrics (57), along
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the further sophistication of the linguistic features extraction,
can yield greater performance. Moreover, scaling the study
to a larger pool of clinically validated subjects, along a
continuous data stream acquisition, will lead to evenmore robust
values in diagnostic performance and thus assist physicians
in their clinical estimations and treatment responses of the
condition. Therefore, beyond the micro-level approach of this
tool, targeted to the user’s needs, the benefits extend to the
realm of precision medicine toward more efficient clinical
decision making.

4.1. Limitations and Implications
Despite the promising results presented here, there are some
limitations to be considered. Firstly, the overall size of the
cohort was small as the study demanded specific educational
levels, technological familiarization, and an extensive suite of
neuropsychological and physiological tests for both MCI patients
and HC. Clearly, this resulted in a difficult recruitment process
at the specific age group. Nevertheless, the models have been
designed with scalability in mind and re-analyzing data collected
from a larger cohort will lead to a more accurate and robust
performance. The validity of the self-reported demographics
of the study’s participants could also be considered as another
limitation, but these characteristics did not yield any statistical
significance and therefore could not greatly affect the end result.
As far as the NLP analysis is concerned, large population
observational studies with a greater amount of text samples
are required to account for inter- and intra- subject variability
in written speech production, given the expected heterogeneity
in linguistic changes among individuals in both normal ageing
and dementia. Although linguistic decline is accelerated in the
presence of MCI, these changes are also highly correlated with
the educational and literacy level and familiarization with written
speech production, demanding a longitudinal monitoring of
speech characteristics of the participants for more generalized
results. Moreover, syntax and word choice is also dependent
on the stylistic choice of each participant’s writing style and
thus may account for differences in the metrics that are linked
with syntactical complexity. Nevertheless, here we focused on
metrics that could yield diagnostic potential despite the limited
number of texts and reflect the most common linguistic changes
linked to cognitive decline and analyzed the data, bearing in
mind these constraints. Furthermore, errors of the Greek POS-
Tagger in the part of speech tagging process, although rare,
may occur and thus can affect the accuracy of the syntactical
parsing process and other measures like the noun, pronoun
and verb ratios. As far as the keystroke dynamics analysis
is concerned, the algorithms identifying early FMI symptoms
were trained on an extensive PD and HC cohort of a relevant
study (45), as the MCI and HC cohort of this study was
relatively small. However, this does not interfere with the
validity of the process, as the algorithms detect the motor
symptoms’ severity and not Parkinson’s condition itself, even
though clinically these symptoms do have similarities in these
two neurodegenerative diseases (51). Moreover, the results have
been calculated with a confidence interval to take into account

potential deviations and the longitudinal nature of the data,
collected in a non-clinical setting during the routine typing of
participants, gave us an ecologically valid and more realistic
picture of the FMI symptoms. Lastly, although this study can be
materialized as a diagnostic tool to be used at a clinical setting,
privacy, and security issues related to the written speech content
and the medical data of the participants have to be catered
properly, while abiding with all the guidelines for digital health
tools (58).

5. CONCLUSION

In this work, a new perspective in the detection of
MCI, based on natural language and touchscreen typing
processing during SWS production, was presented. Linguistic
features, keystroke dynamics and their fusion, reflecting
both cognitive and motor deficiencies and their reciprocal
expression in MCI patients, are assessed as digital biomarkers.
Experimental results in demographically matched cohorts
and machine learning models have justified an efficient
discrimination performance for the fused feature sets
(AUC ≥ 0.75), that provide a complete phenotype of MCI-
related symptoms. The promising results presented here
pave the way toward a holistic, objective patient-centric
AD detection tool to be even successfully deployed in a
non-clinical setting.
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