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Abstract

The objective of this study is to analyze the accuracy and applicability of the AncesTrees software with respect to a set of cranial measurements
of a Brazilian sample consisting of 114 identified skulls from two osteological collections, predominantly composed of European (n = 59), African
(n = 35), and admixed individuals (n = 20). Twenty-four different craniometric measurements are performed and input to AncesTrees via two
algorithms, one of which is used in three configurations, with different ancestral groups integrated in the model. The software exhibits superior
performance in the estimation of European individuals, reaching 73% accuracy, compared with 66% in the African individuals. Those individuals
classified as admixed produce a variety of ancestral classifications, mainly European. Overall, the most accurate combination of AncesTrees
is obtained using ancestralForest with only the European and African groups integrated into the algorithm, where the accuracy reaches 70%.
The applicability of this software to a specific population is fragile because of the high admixing load, making it necessary to create a more
representative anthropometric database of the Brazilian people.

Key points

• Ancestry estimation methods are seldom validated in Brazil.
• AncesTrees performed poorly on our sample, with a maximum accuracy of 70%.
• Brazil’s highly mixed population hinders ancestry estimation.
• Mixed individuals (pardos) are predominantly classified as Europeans.
• The insertion of Brazilian metric data into the AncesTrees database would produce better results.
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Introduction

Anthropological methods are used to study and estimate
the biological profiles of unknown specimens, often in a
skeletonized state, by analysing their species and estimating
their sex, ancestry, age, and stature, as well as character-
istics with individualizing potential [1]. This set of general
assets aids the identification process by significantly reducing
the universe of suspects for a given unknown skeleton or
individual [1, 2].

Ancestry estimation is considered the most difficult step
of biological profile construction [3]. Historically, metric and
non-metric methods have been used to correlate the findings
with the ancestry estimation of humans [4, 5]. When metric
methods are employed for ancestry investigation, the skele-
tal structures are measured and statistically analysed under

the premise that such dimensions follow locally geographic
craniometric variations [6]. These variations allow the use
of linear discriminant analysis to interpret the data obtained
and separate them into distinct classes, such as different
ancestries [7].

The craniometric databases compiled by Howells [8–10]
provide the main basis for many subsequent studies [11].
More recently, there has been considerable discussion of the
Random Forest machine learning technique, which is based
on the construction of multiple “decision trees” with results
based on the modal class or mean prediction (regression) of
the “individual trees”[12]. This novel statistical tool produced
satisfactory results in ancestry studies conducted by Hefner
et al. [13, 14] based on non-metric skull traits, with an
accuracy of 89% obtained in the ancestral prediction of North

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

 7757 22667 a 7757 22667 a
 
mailto:ricardohenrique@usp.br
mailto:ricardohenrique@usp.br
mailto:ricardohenrique@usp.br
mailto:ricardohenrique@usp.br
mailto:ricardohenrique@usp.br
mailto:ricardohenrique@usp.br
mailto:ricardohenrique@usp.br
mailto:ricardohenrique@usp.br
mailto:ricardohenrique@usp.br


FORENSIC SCIENCES RESEARCH 203

American samples (American Caucasians, American Blacks,
and Southwest Hispanics).

Navega et al. [15] developed the AncesTrees software fol-
lowing similar methods to those cited above. The Random
Forest algorithm is used to estimate ancestry, albeit with met-
ric data including skull measurements. As the model training
dataset, the Howells craniometric database (among others) is
used. After proper training of the algorithm, testing on an
independent sample composed of skeletons of African and
European origin produced high accuracy values. However,
this new method has not yet been widely tested and globally
validated for different populations. The optimal functioning
of this method can only be achieved by increasing the size and
scope of its database, which in turn is achieved through the
inclusion of individuals from more diverse demographics.

Scientific advances, as well as new techniques and tech-
nologies, have enhanced the quality of forensic studies and
their results. Nonetheless, a heated debate has emerged regard-
ing ancestry estimation, especially in the USA [16]. Several
biological and forensic anthropologists have criticized certain
ancestry estimation approaches as a biased reinforcement of
biological races, wrongly tying racial hierarchies to typo-
logical features. They also reject the notion that ethnicities
are discrete variables, which is a prevalent assumption in
older approaches that are still carried out to this day [17].
These approaches, along with the traditional three-group
method of ancestry classification (African, European, Asian),
are being debunked as inappropriate for the current state of
humankind.

In Brazil, ancestry has historically lacked objectivity. Ances-
try is mostly noted in civil register documents and is, by
law, a self-declared characteristic. Most public institutions
use and provide inadequate and simplistic terms to refer
to ancestry—whites, blacks, pardos (used for nearly every
mixed individual), and yellows (used for Asians). This inher-
itance of antiquated times still impacts forensic sciences in
Brazil. Combined with the high admixture load of Brazilians,
this renders ancestry as a poorly defined trait nationwide.
The above-mentioned ancestry trifecta neither suit nor affect
Latin American samples, and studies that employ population-
specific structure models, embracing human and historical
variation, must be developed and considered [18].

Following the above discussion, and motivated by the high
degree of miscegenation of the Brazilian population, with
its complex demography and considerable variability within
regions, which complicates ancestry estimation [19], this study
examines the AncesTrees program developed by Navega et al.
[15]. Specifically, we evaluate its accuracy in estimating the
ancestry of a Brazilian osteological sample. Additionally, we
explore ways of increasing the database of AncesTrees to
make it more applicable and adequate as a forensic tool for
use in Brazil.

Materials and methods

The sample discussed in this paper consists of a Brazilian oste-
ological collection of 138 identified skulls from the state of
São Paulo, Brazil [20] (sex, skin colour, and age at death). This
is a contemporary collection including skulls that belonged
to individuals who died from 1930 to 1970. The elements
required to identify each of these individuals were handwrit-
ten in a coroner’s register book.

The sole source of information regarding their ancestry
was skin colour or tone, also noted by the medical examiner,
probably by checking their personal documents or by clinical
post-mortem observation (no further detailing was available).
These annotations were then used to cluster the samples into
three large groups: European, African, and pardos (Brazilian
term for mixed individuals). No Asians were present in the
sample.

Exclusion criteria included excessively fragmented or com-
minuted skulls, skulls with severe pathological and congenital
changes of cranial dimensions, and juvenile/newborn crania,
which have a higher risk of bias in the measurements. All indi-
viduals aged 18 years or older were included in the analysis.
Thus, 114 skulls were eligible for the analysis. The sample
contained 73 male individuals, with a mean age of 46.40 years
(standard deviation of 12.9 years) and 41 females with a
mean age of 37.85 years (standard deviation of 16.64 years).
Regarding real ancestry, there were 59 European individuals,
35 African individuals, and 20 pardos. Descriptive statistics
of the sample are presented in Table 1.

Measurements were made according to the descriptions
supplied by Howells [12], using an analogue calliper (OXD
330-7080X, Oxford Precision Components™, UK), sliding
digital calliper (Sliding Caliper 300 mm, DIGIMESS™,
Brazil), 30-cm metal ruler (FLEX-30, Trident™, Brazil), and a
regular pencil (Max Ecolapis Blue Hb/n2 with rubber, Faber
Castell™, Bad Schwartau, Schleswig-Holstein, Germany).

The 23 measurements described by Navega et al. [15] were
made by a single examiner, under indirect light and using
proper equipment for each measurement. The examiner was
blinded to the data of each subject (sex, age, and ancestry).
All measurements were made twice using the craniometric
landmarks indicated. The examiner then noted the data in a
spreadsheet.

In this study, only the intra-examiner error is assessed, as
only one examiner was available for data collection. The
relative technical error of measurement (TEM) test was used,
following the methodology recommended by Perini et al. [21].
This method obtains the systematic error index produced
by the evaluator for each measure. The measurements were
reevaluated in 17 skulls following a time interval of ∼30 days.

The AncesTrees programme was used to generate an esti-
mate of ancestry. AncesTrees consists of a spreadsheet and a
script that functions through a website (http://osteomics.com/
AncesTrees/). Measurements were entered into the worksheet,
and then ancestral groups were chosen for the decision tree
model. The detailed mathematical functioning is complex;
details can be found in Ross et al. [18].

We used the two algorithms that AncesTrees makes avail-
able for data analysis, called “ancestralForest” and “tourna-
mentForest”. The ancestralForest algorithm was used with
512 generated trees; 32 sub-forests; and 63.2% bootstrap,

Table 1. Sample descriptive statistics.

Item n Age

Mean SDa Range

Male 73 46.40 12.90 21–72
Female 41 37.85 16.64 18–87
Total 114 43.31 14.90 18–87

aStandard deviation.

http://osteomics.com/AncesTrees/


204 Jacometti et al.

without reallocation and balanced, with parallel computing.
In tournamentForest only the number of trees can be adjusted.
This option was set to 512, as for ancestralForest. The choice
of parameters was made with the intention of changing as little
as possible in comparison with the original study. However,
the numbers of trees and sub-forests were reduced to avoid
over-adjustment of the model, which may be caused by a
high number of generated decision trees [15]. In other words,
an over-adjusted model captures too much residual variation
(or noise) in the validation set (in this case, our sample) and
integrates this into the model. The result would be a reduced
ability to generalize or predict unseen data [22], making the
tool less effective for forensic scenarios.

The ancestral groups involved in each analysis were also
tested in different configurations. In the ancestralForest algo-
rithm, three models were tested: one with the nine available
ancestral groups inserted in the analysis; a second with only
groups coming from Africa, Asia, and Europe; and a third
with only the ancestral groups from Africa and Europe incor-
porated. The tournamentForest algorithm was executed with
all nine ancestral groups in the model because this is recom-
mended by the developer as a more robust configuration for
cases where there is little to no knowledge of the origin of the
studied specimens (i.e. forensic scenarios).

After the measures had been analysed by AncesTrees, we
considered the predicted ancestry to be that indicated as
the most probable ancestry by ancestralForest or the one
that came first in the tournament in tournamentForest. The
estimated ancestry was then compared with the real ancestry
of the individual.

To assess the accuracy of the software, the following out-
comes were considered to be correct predictions: European
individual estimated as European; African individual esti-
mated as one of the African groups; Asian individual esti-
mated as any of the Asian groups. We analyse the individuals
classified as pardos separately, as they are not sufficiently
represented in any major ancestral group.

Descriptive statistics including the mean, standard devia-
tion, and range of sample characteristics and cranial mea-
surements were tabulated. The accuracy of each algorithm
was assessed as described above and presented in absolute
and relative terms. One-way analysis of variance was used
to compare the measurement means between groups and
Tukey’s post hoc test was further used, if necessary, for

pairwise comparisons when the differences were significant.
The significance level was set to α = 5%.

Results

The relative TEM of each measure is described in Figure 1.
TEM reflects the magnitude of the error relative to the size of
the measurements. Higher TEM values correspond to greater
variability of non-systematic errors by the examiner, i.e. lower
agreement among repeated measurements. The highest dis-
agreement values of around 2.5% occur in the measures that
involve the orbits (OBB, OBH, and DKB) and in the NPH and
NLH measurements.

Descriptive statistics of the cranial measurements are pre-
sented in Table 2. On average, the male measurements have
higher values than the female measurements. Structures more
likely to have deteriorated, such as the alveolar ridge, were
less able to be measured because such damage often hindered
the process. In Table 3, descriptive statistics of the cranial
measurements per ancestry group are listed. No clear pattern
of measurement size can be observed between ancestries, but
when the means are significantly different (P < 0.05), pairwise
tests indicate that the differences are mostly between white
and black individuals. Admixed or pardo individuals present
intermediate values.

Table 4 presents data on the performance of the different
arrangements of algorithms and parameters used on the stud-
ied sample. The accuracy of the algorithm was calculated
for each ancestral group within each algorithm and in total.
Figure 2 illustrates the performance of the various algorithms
on European and African individuals. The tournamentForest
algorithm gives poor results, with a combined accuracy of
48%. The accuracy of ancestralForest varies from 54% to
70% depending on which ancestral groups were inserted into
the algorithm during the analysis. In general, the software
performs better on European individuals, although tourna-
mentForest has a slightly better accuracy for Africans (nearly
2% ahead of that for Europeans).

The individuals classified as admixed present high levels of
inconsistency and variability in their ancestry classification.
Thus, we opted to perform an observational analysis, i.e.
to observe the prevalence of different ancestral classification
outputs for these individuals. The results of this analysis are

Figure 1 Relative technical error of measurement; higher percentages correspond to larger variance of non-systematic errors by the examiner, i.e. lower
agreement among repeated measures. TEM: technical error of measurement.



FORENSIC SCIENCES RESEARCH 205

Table 2. Descriptive statistics: cranial measurements.

Measurement Male (n = 73) Female (n = 41)

n Mean SD Range n Mean SD Range

GOL 73 183.98 6.33 168.00–126.30 41 175.33 6.24 162.00–187.30
XCB 72 141.15 5.58 116.00–113.00 41 136.18 5.47 125.60–146.60
ZYB 71 130.81 5.90 92.20–83.60 39 122.62 4.68 134.70–111.50
BBH 72 133.35 6.47 45.00–98.00 41 128.85 5.45 112.30–139.50
BNL 72 101.72 4.15 110.00–60.00 41 96.23 4.09 105.70–89.00
BPL 63 98.32 6.86 101.00–87.60 40 95.01 5.25 86.00–110.00
MAB 67 61.36 5.88 46.60–20.60 41 60.25 4.20 48.70–70.00
ASB 57 111.98 5.28 36.00–33.00 40 107.82 5.18 98.50–121.00
AUB 72 122.53 5.91 89.00–15.50 41 116.45 4.55 105.00–125.30
NPH 64 68.49 4.61 104.20–76.00 40 63.84 5.22 53.40–77.60
XFB 72 120.60 5.36 84.00–199.00 41 115.57 5.15 105.00–126.60
WFB 57 96.83 4.83 155.70–145.00 40 92.82 4.43 85.60–103.00
NLH 72 53.48 4.33 147.80–110.45 41 49.19 3.35 55.60–40.00
NLB 73 25.26 2.13 110.60–76.00 41 25.06 2.15 19.00–30.00
OBB 73 41.04 1.96 125.00–139.00 41 39.53 1.66 35.70–43.00
OBH 73 37.13 1.83 82.50–132.00 41 36.02 1.99 32.00–41.40
EKB 73 98.36 3.82 109.00–74.70 41 94.67 3.56 86.60–101.40
DKB 73 21.86 2.77 29.60–45.40 41 20.67 2.57 15.00–26.00
FRC 73 112.20 4.68 41.00–107.70 41 107.23 4.67 95.40–116.60
PAC 73 113.55 7.56 30.00–124.00 41 108.43 6.46 95.00–125.30
OCC 72 97.09 5.67 125.85–110.00 41 95.45 5.97 81.90–106.70

SD: Standard deviation.

Table 3. Cranial measurements per ancestry.

Measurement Mean ± SD (range) P-value

European (n = 59) African (n = 35) Admixed (n = 20)

GOL 182.85 ± 7.26 (166.7–199)a 178.02 ± 6.69 (166.7–193)b 180.36 ± 8.11 (162–195.75)ab 0.009
XCB 140.51 ± 5.97 (125.6–155.7)a 137.12 ± 5.39 (125.6–147.8)b 139.86 ± 6.40 (128.5–154.5)ab 0.028
ZYB 128.79 ± 6.63 (111.5–145) 126 ± 6.47 (116.5–139.7) 128.83 ± 7.17 (116–142.6) 0.127
BBH 133.4 ± 8.69 (116.5–178.8) 129.9 ± 6.53 (113–147.4) 132.25 ± 6.42 (112.3–141.4) 0.059
BNL 100.52 ± 4.63 (91.4–110.45)a 97.98 ± 4.95 (89–107.7)b 100.52 ± 4.98 (91–107.55)ab 0.037
BPL 94.94 ± 6.20 (83.6–109)a 99.60 ± 6.03 (90–110.6)b 98.51 ± 6.20 (86–108.4)ab 0.002
MAB 58.8 ± 4.97 (45–68.3)a 63.19 ± 3.92 (59.7–72.7)b 63.34 ± 6.21 (48–76)b <0.001
ASB 111.44 ± 5.18 (98–120) 108.75 ± 5.87 (100–125) 109.87 ± 5.82 (98.5–121.4) 0.090
AUB 121.27 ± 6.42 (105–139) 118.58 ± 5.23 (111.6–132.3) 120.67 ± 6.60 (109.5–133) 0.120
NPH 66.69 ± 4.88 (54.6–75.7) 66.30 ± 5.79 (56–82.5) 67.56 ± 6.05 (53.4–76) 0.700
XFB 119.74 ± 5.92 (101–132)a 116.51 ± 5.29 (105–128)b 119.95 ± 5.41 (111–130)ab 0.010
WFB 95.71 ± 4.87 (87–109) 94.08 ± 4.89 (86–106) 95.95 ± 5.92 (85.6–105.6) 0.290
FMB 103.73 ± 5.06 (91.4–116.5) 103.20 ± 5.40 (94–116.8) 103.97 ± 5.49 (94–113) 0.840
NLH 52.76 ± 4.24 (40–74.7)a 50.14 ± 4.79 (41–68)b 52.61 ± 3.92 (47–61)ab 0.017
NLB 24.77 ± 2.23 (19–30) 25.83 ± 1.79 (20. –29) 25.32 ± 2.18 (21–29.5) 0.060
OBB 40.55 ± 2.01 (35.7–45.4) 40.16 ± 1.80 (37–44.6) 40.93 ± 2.23 (37.8–45) 0.360
OBH 36.71 ± 2.07 (32–41.4) 36.42 ± 1.81 (32.2–41) 37.31 ± 1.79 (34.3–40) 0.270
EKB 96.79 ± 4.10 (86.6–107.7) 96.92 ± 4.21 (90.5–107) 97.97 ± 4.09 (90.6–104.4) 0.530
DKB 21.29 ± 2.68 (15.5–27.6) 21.78 ± 3.07 (15–30) 21.23 ± 2.42 (16.6–27.4) 0.660
FRC 111.52 ± 5.31 (95.4–124)a 108.22 ± 4.94 (100.5–122)b 110.99 ± 4.53 (104.75–119.35)ab 0.009
PAC 113.01 ± 7.59 (76–125)a 108.05 ± 6.96 (92–120)b 114.25 ± 6.45 (101.4–125.85)a 0.001
OCC 96.96 ± 6.21 (81.9–110.3) 97.05 ± 5.29 (89.2–108) 94.15 ± 5.12 (85–101.6) 0.130

The bold P-values indicate significant differences in means (analysis of variance). Different superscript lower case letters (a, b) indicate significant differences
in a row. SD: standard deviation.

presented in Table 5. There is significant variability in the clas-
sification distribution of these individuals, but they are mostly
classified as European, except for the instance with only two
groups included in the algorithm (European and African), in
which case they are more often classified as African.

Discussion

When examining skeletal pieces of unknown origin for human
identification, one of the main tasks of forensic anthropology

is to establish a biological profile, which is a listing of
four fundamental, but somewhat generic, features: sex,
age, ancestry, and probable stature of that individual [23–
25]. Sex and ancestry occupy a prominent place in these
estimates and should be studied first, because age and stature
estimations usually rely on these parameters [6, 26]. In a
forensic context, this task is often performed in scenarios
of incomplete skeletons and other fragmented remains.
Thus, the skull is often a remaining piece available for
analysis [27].
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Table 4. AncesTrees analysis results and accuracy of its different algorithms (correct classifications), per ethnic group and in total.

Algorithm Real ancestry Estimated ancestry Accuracy (%)

TournamentForest (six groups) African (n = 35) African, 17 (49%) 48
European, 4 (11%)
Asian, 3 (9%)
Australian, 3 (9%)
American, 5 (14%)
Polinesia, 3 (9%)

European (n = 59) African, 20 (34%)
European, 28 (47%)
Asian, 3 (5%)
Australian, 2 (3%)
American, 2 (3%)
Polinesia, 4 (7%)

AncestralForest (six groups) African (n = 35) African, 8 (23%) 54
European, 5 (14%)
Asian, 3 (9%)
Australian, 11 (31%)
American, 4 (11%)
Polinesia, 4 (11%)

European (n = 59) African, 4 (7%)
European, 43 (73%)
Asian, 5 (8%)
Australian, 5 (8%)
American, 0 (0%)
Polinesia, 2 (3%)

AncestralForest (three groups) African (n = 35) African, 23 (66%) 65
European, 8 (23%)
Asian, 4 (11%)

European (n = 59) African, 15 (25%)
European, 38 (64%)
Asian, 6 (10%)

AncestralForest (two groups) African (n = 35) African, 23 (66%) 70
European, 12 (34%)

European (n = 59) African, 16 (27%)
European, 43 (73%)

The bold values correspond to the number of correct estimates within the ethnic group, in relative and absolute numbers. aPecentages may not add up to
100% due to rounding.

Figure 2 The accuracy of each AncesTrees algorithm type used, within black and white individuals; accuracy is understood as the relative number
(percentages) of correct ancestral classifications for blacks (African group assignments) and whites (Caucasian group assignments).
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Table 5. Ancestry estimation for mixed individuals (n = 20).

Ancestry TournamentForest
(6 groups)

AncestralForest
(6 groups)

AncestralForest
(3 groups)

AncestralForest
(2 groups)

European 8 10 10 9
African 7 4 6 11
Asian 2 2 4 NA
Australian 2 2 NA NA
American 1 2 NA NA

NA: not applicable.

To ensure the reliability and reproducibility of the results,
it is crucial to assess the measurement errors [28]. Acceptable
levels of intra-examiner relative TEM are not easy to stipulate
because they depend on several reports in the literature that set
this threshold. In other words, larger error margins are more
likely to be observed for some measures than others. A higher
relative TEM value corresponds to a greater intra-observer
error variability [21]. Fancourt and Stephan [29] considered
the TEM as the best scale/index for evaluating the error
between cranial measurements. Using 2 000 simulated cra-
nial measurements (Glabella–Opisthocranion distance), the
authors reported maximum TEM values of 2.2%, similar to
the value obtained in this study. Some measurements made
in our study obtained a higher relative TEM because of the
subjectivity of the reference points, particularly those at the
orbital margins (OBB and OBH measurements), and areas
more susceptible to wear, damage, and ridge resorption (NPH,
NLH, and DKB).

To take measurements, one must know the cranial land-
mark placings and how they are affected by the diversity
of forms and shapes that a skull can present. Additionally,
it is imperative that appropriate osteometric techniques are
used during the measurement process. The software used in
this study has a user-friendly interface, allowing easy inter-
pretation of the results. Thus, a detailed understanding of
the complex algorithm behind the statistical operations is not
necessary, although basic statistical knowledge is desirable for
any researcher. The software has an interesting feature that
alerts the examiner if the measure is atypical and excessively
far from the mean values in the database. In this case, a
repeated measurement is suggested to avoid systematic errors.

Among the evaluated ancestries, AncesTrees performed best
with European individuals and the ancestralForest algorithm,
with only the European and African ancestry groups included.
This finding is in good agreement with that reported by
Navega et al. [15], who applied AncesTrees to osteological
collections from Portugal. However, Navega et al. obtained
higher accuracy values. In our study, the maximum correct
classification rates were 66% for Africans and 73% for
Europeans, whereas Navega et al. obtained an accuracy of
93% for Africans and 94% for Europeans using the same
algorithm configuration. This is likely to be directly related
to the sample’s background characteristics. While the former
study analysed skulls from a fairly homogeneous ancestry
background (including those of African descent, which were
removed from a collection composed of African slaves), our
work dealt with the opposite.

Our values are not acceptable for forensic purposes and
validate our previous assumption: only after the inclusion
of numerous Brazilian populational data in AncesTrees will
it be possible to achieve better results. The databases must

include individuals with Brazilian variability for compari-
son. Otherwise, the pattern of variables found will often be
considered atypical (as no one in the database will have similar
features). A better and more detailed understanding of Brazil’s
craniometric patterns is essential, as not all measures seem to
have statistically significant differences. Nonetheless, a well-
adjusted random forest model such as AncesTrees could suc-
cessfully identify cut-off values between different ancestries, if
sufficiently discrepant.

Brazil is known for its wide and heterogeneous distribution
of three major ancestral contributions, namely Americans
(Natives/Indians), Europeans, and Africans, giving birth
to a highly mixed and multiethnic population [20, 30].
Colonization by Europeans and Africans generally began
on the coast and progressed inland, and this progression
occurred in various manners in different regions of the
territory [31]. This multi-layered process, combined with
a continental-sized country, has drastically influenced the
variation of the genetic ancestral composition of the current
population [32, 33].

Considering such a high miscegenation load as a major con-
founding factor, the authors separately analysed individuals
whose real ancestry was assigned as pardo (mixed). This term
is generally attributed to people of hybrid European/African
ancestry, but may also refer to the mixture between Native
(Indian) and European [34].

We conducted an observational analysis of these individuals
to determine the distribution of estimated ancestry classifica-
tions given by AncesTrees. The results show that the predicted
ancestry for these subjects is well distributed in most of the
algorithms, with a slight tendency to the European estimate,
except with the algorithm that only considers two groups
(European and African). In this last case, the majority of
the sample was classified as African. We believe that this
might be the result of similarities between some of the groups
omitted in this two-group algorithm and the morphometric
characteristics of the African skulls.

The distribution of pardo data, which was mainly allocated
to European ancestry, followed the AncesTrees classification
pattern and tendency in the rest of the sample. As stated
by several Brazilian genetic studies [30, 35], including a
meta-analysis by Moura et al. [36], European ancestry is the
major contributor to the ancestral genetic background of
the Brazilian population. This is more pronounced in urban
populations [35] and in the Southeast region [36], as observed
in our work, which links our results with the findings of
forensic DNA studies.

Even though European ancestry is the predominant contrib-
utor to the ancestral mosaic of the current Brazilian popula-
tion, it does not overshadow its high miscegenation. There are
specific regions in Brazil that have a high rate of variation
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in genomic ancestry, despite being inhabited hegemonically
by populations of European descent [37]. This adds to the
previous hurdles faced by Brazilian ancestry estimation, as
evidence shows that genetic variations related to ancestry are
directly linked to the phenotype variations of the human skull
(morphological shapes) [38].

In this study, the skin colour determined in the medical
examiner’s identification records, gathered in civil documents
(self-reported), or stated during posthumous examination was
used as the reference register for evaluating the accuracy of
the AncesTrees algorithm, as this was the only “real” ancestry
information available. However, this criterion is definitively
not the best determinant of an individual’s ancestry. Other
studies that attempted to correlate skin tone with genetic
ancestry in Brazil reported divergent results, some finding a
positive correlation [39–41], while others found the opposite
[42, 43]. The longer the miscegenation process lasts, the
more the genetic ancestral pattern becomes dissociated from
the individual’s skin colour [42]. Therefore, if we consider
over 500 years of miscegenation that shaped Brazil’s current
population, we have quite a problematic background, which
imposes a clear limitation on this study.

The best overall performance across the entire combined
sample (Europeans and Africans) was achieved by the ances-
tralForest algorithm with only the African and European
groups selected, for which the accuracy reached 70%. In
Brazil, few studies have assessed the ancestry of the population
based on craniometric data. Urbanová et al. [34] and Jurda &
Urbanová [44] carried out such analyses, but used other soft-
ware (FORDISC and 3D-ID in the former study and FIDEN-
TIS Analyst, which analyses graphics meshes, in the latter).

Urbanová et al. [34] used FORDISC 3 in conjunc-
tion with the Howells craniometric database (as used by
AncesTrees). They reported that 40% of individuals were
correctly allocated to their respective ancestral group. In
the same configuration, mixed individuals were mostly
allocated to the African ancestral group, different from our
results. However, by switching to the Federal Bureau of
Investigation dataset, known as Forensic Data Bank, the
classification predominance of the mixed group changed to
European, in agreement with our results. This highlights the
unpredictability of estimating the ancestry of the Brazilian
population by metric variables. Urbanová et al. [34] found
that the 3D-ID software provided a more accurate estimate
of ancestry, although this was still not as accurate as our
results.

Jurda and Urbanová [44] applied an alternative method
that quantifies differences between models based on the clos-
est distance between specific points. In other words, using a
computerized comparison of scanned meshes of a given skull,
the programme establishes correspondences between “ver-
tices” of different skulls. After this analysis, poor results were
obtained, with an accuracy of 52.5% in ancestry estimation;
this is not much better than estimation by random chance.

Fernandes et al. [45] tested AncesTrees on a Brazilian
osteological collection from the city of Campinas, relatively
close to the city of São Paulo, from where our sample derived.
Across a sample of 244 skulls, they found similar numbers
to ours, although with lower accuracy (total accuracy of
56.77%). Black individuals had better correct classification
rates than white ones overall, whereas whites were classified
more accurately than blacks in our study. Their analysis of
admixed individuals produced similar ancestral allocations as

in our study. The authors did not disclose from which time
period or how old their sample was. However, their worse
results could possibly have been caused by a younger, more
recent, and therefore more miscegenated sample than ours.

The difficulty in determining the ancestry of unknown
Brazilians is mainly attributable to the factors identified
above. As stated by Urbanová et al. [34] and Fernandes
et al. [45], inconsistent results occur because these algorithms
and software do not incorporate an appropriate database.
This anomalous pattern, unique to Brazilian skulls because of
the high level of miscegenation, also influences the estimation
of other biological parameters, such as sex [34, 44], thus
impairing their accuracy as well.

Another confusing factor is introduced by the chronology
of Howells’ samples. Most of his population samples are
much older than the collection from which this work’s sample
was obtained [11–13]. His European samples, e.g. are either
medieval or from the 17th century. Our sample, as previously
stated, contains individuals who died from 1930 to 1970,
giving a much younger sample. This raises the question of
whether methods based on Howells’ dataset, or even the set
itself, are appropriate for estimating ancestry on such young
and newly formed populational patterns. However, the use
of AncesTrees in our study obtained the highest ancestry
estimation accuracy among craniometric-based methods or
software.

The lack of individuals with Brazilian ancestry in the Ances-
Trees software database restricts the precision and perfor-
mance of this software. Remarkably, in validating the input
data, AncesTrees analyses the metric values and provides a
report on whether they are typical or atypical. This “atypical”
label is output for a set of values that does not resemble
the original composition of the programme database [18].
In this study, many of the samples were labelled as atypical,
reinforcing previous statements and the results obtained.

Finally, our findings illustrate that, although AncesTrees
performed slightly better than other software tested in Brazil,
its application in the forensic context is still fragile. Cunha
et al. [20] documented an abundance of osteological and
cranial collections distributed throughout the Brazilian terri-
tory and emphasized that the documentation of metric and
qualitative data of identified samples, together with the valida-
tion of various anthropological methods, would provide great
assistance in solving the problems of forensic anthropology
in the Brazilian context. With the accomplishment of this
work, it is expected that new paths and horizons will open
for the continuity of the evaluation and validation of different
anthropological methods for estimating biological parameters
in most Brazilian collections, establishing a consistent, reli-
able, and representative database of our population.

Given the increment of the AncesTrees database with data
collected in this study, the performance of the software should
improve significantly. As soon as this database contains a
relevant number of Brazilian metric values and standards, the
correct classification probabilities will increase exponentially,
as has happened with other similar programmes [46]. This
will enable AncesTrees to be applied to forensic practice in
the Brazilian context.

Conclusions

Considering the findings of this study, the accuracy of
AncesTrees with the Brazilian sample analysed herein was
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48%–70%, depending on the configuration of the ancestral
groups within the algorithm. These results are not sufficient
for forensic quality standards. The software achieves superior
performance in the estimation of white individuals when using
the ancestralForest version, and when only the European and
African ancestral groups are included. Therefore, its applica-
bility in Brazil is still fragile and requires better comprehension
about Brazilian cranial metric patterns, a more consistent
database, and decision tree models that account for the high
miscegenation of the Brazilian population. By including a
sufficient number of Brazilian cranial patterns in the software
database, the correct classification rate is likely to increase,
possibly allowing its use in Brazilian forensic cases.
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