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A B S T R A C T

Human coronaviruses SARS-CoV-2 appeared at the end of 2019 and led to a pandemic with high morbidity and
mortality. As there are currently no effective drugs targeting this virus, drug repurposing represents a short-term
strategy to treat millions of infected patients at low costs. Hydroxychloroquine showed an antiviral effect in vitro.
In vivo it showed efficacy, especially when combined with azithromycin in a preliminary clinical trial. Here we
demonstrate that the combination of hydroxychloroquine and azithromycin has a synergistic effect in vitro on
SARS-CoV-2 at concentrations compatible with that obtained in human lung.

1. Introduction

Since the end of 2019, the world has encountered pandemic con-
ditions attributable to a novel Coronavirus SARS-CoV 2 [1–3]. This is
the 7th Coronavirus identified to infect the human population [1,4,5]
and the first one that had pandemic potential in non-immune popula-
tions in the 21st century [6]. Finding therapeutics is thus crucial, and it
is proposed to do so by repurposing existing drugs [7–9]. This strategy
presents the advantages that safety profiles of such drugs are known
and that they could be easily produced at relatively low cost, thus being
quicker to deploy than new drugs or a vaccine. Chloroquine, a decades-
old antimalarial agent, an analog of quinine, was known to inhibit the
acidification of intracellular compartments [10] and has shown in vitro
and in vivo (mice models) activity against different subtypes of Cor-
onaviruses: SARS-CoV-1, MERS-CoV, HCoV-229E and HCoV-OC43
[11–16]. In 2004 it was tested in vitro against SARS-CoV [17] and
caused a 99% reduction of viral replication after 3 days at 16 μM.
Moreover, tests in vitro have shown inhibition of viral replication on
SARS-CoV 2 detected by PCR and by CCK-8 assay [18]. Hydroxy-
chloroquine (hydroxychloroquine sulfate; 7-Chloro-4-[4-(N-ethyl-N-b-
hydroxyethylamino)-1-methylbutylamino]quinoline sulfate) has shown
activity against SARS-CoV2 in vitro and exhibited a less toxic profile
[19]. This drug is well known and currently used mostly to treat au-
toimmune diseases and also by our team to treat Q fever disease [20,21]

and Whipple's disease [22,23]. In those clinical contexts, concentrations
obtained in serum are close to 0.4–1 μg/mL at the dose of 600 mg per
day over several months [24]. Clinical tests of chloroquine and hy-
droxychloroquine to treat COVID-19 are underway in China [25], with
such trials using hydroxychloroquine in progress in the US
(ClinicalTrials.gov Identifier: NCT04307693) and in Europe with the
Discovery Trial. In this drug repurposing effort, antibacterial compo-
nents have also been tested. Teicoplanin, a glycopeptide, was demon-
strated in vitro to inhibit cellular penetration of Ebola virus [26] and
SARS-CoV 2 [26,27]. Azithromycin (azithromycin dihydrate), a mac-
rolide, N-Methyl-11-aza-10-deoxo-10-dihydroerythromycin A, has
shown antiviral activity against Zika [28–30]. Azithromycin is a well-
known and safe drug, widely prescribed in the US, for example, with 12
million treatment courses in children under 19 years of age alone [31].
A recent study has identified these two compounds (azithromycin and
hydroxychloroquine) among 97 total potentially active agents as pos-
sible treatments for this disease [32].

In a preliminary clinical study, hydroxychloroquine and, with even
greater potency, the combination of hydroxychloroquine and azi-
thromycin were found effective in reducing the SARS-CoV-2 viral load
in COVID-19 patients [33]. Since the beginning of the epidemic in the
Marseille region we isolated numerous strains and we tested one of
them, the SARS-CoV-2 IHUMI-3, using different concentrations of hy-
droxychloroquine and azithromycin in combination, with Vero E6 cells.
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2. Materials and methods

2.1. Viral isolation procedure and viral stock

The procedure of viral isolation of our SARS-Cov 2 strain IHUMI-3
was detailed elsewhere [33]. The viral production was done in 75 cm2

cell culture flask containing Vero E6 cells (American type culture col-
lection ATCC® CRL-1586™) in Minimum Essential Media (Gibco,
ThermoFischer) (MEM) with 4% of fetal bovine serum and 1% gluta-
mine. Cytopathic effect was monitored daily under an inverted micro-
scope (Fig. 1). After nearly complete cell lysis (approximately 96 h),
viral supernatant was used for inoculation on 96-well plate. We de-
termined the TCID50 of the strain at 5.105 infectious particles per mL.

2.2. Testing procedure for drugs

Briefly, we prepared 96-well plates with 5.105 cells/mL of Vero E6
(200 μL per well), using MEM with 4% of fetal bovine serum and 1% L-
glutamine. Plates were incubated overnight at 37 °C in a CO2 atmo-
sphere. Drug concentrations tested, expressed in micromoles per liter
(μM), were 1, 2 or 5 μM for hydroxychloroquine associated with 5 or
10 μM for azithromycin. Each test was done at least in triplicate and
repeated two times except conditions with 5 μM for hydroxy-
chloroquine associated with 5 or 10 μM for azithromycin that were
repeated a third time. Four hours before infection, cell culture super-
natant was removed and replaced by drugs diluted in the culture
medium. At t = 0, virus suspension in culture medium was added to all
wells except in negative controls where 50 μL of the medium was
added. Multiplicity of infection (MOI) was of 0.25. Then RT-PCR was
done 30 min post-infection in one plate and again at 60 h post-infection
on a second plate. For this, 100 μL from each well was collected and
added to 100 μL of the ready-use VXL buffer from QIAcube kit (Qiagen,
Germany). The extraction was done using the manual High Pure RNA
Isolation Kit (Roche Life Science), following the recommended proce-
dures. The RT-PCR was done using the Roche RealTime PCR Ready
RNA Virus Master Kit. The primers were designed against the E gene
using the protocol of Amrane et al. [34] in the Roche LightCycler® 480
Instrument II. Relative viral quantification was done compare to the
positive control (viruses without drugs) by the 2∧(–delta delta CT)
method [35]. We performed a statistical analysis using GraphPad Prism
v9.0.0 (GraphPad Software, La Jolla California USA). Distribution of
the data not followed a normal law. So, non parametric Kruskal-Wallis
test was used to compare each combinations against positive controls
using ΔCt between H0 and H60. Then, Dunn's test was used to correct
the multiple comparison. All test was used at p = 0,05 parameter and
were bilateral (two-sides) and significant P-value was indicated on

Fig. 2. All others conditions was not significant.

3. Results

No cytotoxicity was associated with drugs in combination in all 13
control wells (without viruses). We detected RNA viral production from
25 to 16 cycle-thresholds (Ct, inversely correlated with RNA copy
numbers) for the positive control that was associated with cell lyses. In
all cases, cell lyses at 60 h was correlated with viral production as
compared to control (Fig. 1). Combination of azithromycin and hy-
droxychloroquine led to significant inhibition of viral replication for
wells containing hydroxychloroquine at 5 μM in combination with
azithromycin at 10 and 5 μM (P-values at 0,0003 for A10H5 and at
0,0004 for A5H5) (Fig. 2A) with relative viral inhibition of 97.5% and
99.1% respectively (Fig. 2B). Others conditions were not significant. In
agreement with the relative viral RNA load reduction, a cytopathic
effect could be observed in 5/31 wells at 60 h post infection as com-
pared to 13/13 in positive controls.

4. Discussion

In the work we identified a strong synergistic effect of the combi-
nation of hydroxychloroquine and azithromycin. Hydroxychloroquine
has been demonstrated in vitro to inhibit replication of SARS-CoVs 1 and
2 [17,19]. Concentrations of drugs for our study were based on the
known cytotoxicity of the drugs (50% of cytotoxicity, CC 50) and their
effect on microorganisms (50% inhibitory concentration, IC50). With
Zika virus, azithromycin showed activity with an IC 50 range from 2.1
to 5.1 μM depending on MOI [28] without notable effect on EC 50 at
high concentration [29]. The observation of efficacy of azithromycin on
RNA viruses is probably shared by some other macrolides. Clari-
thromycin or the non antibiotic macrolide EM900 were observed as
effective on rhinovirus in vitro [36,37]. In vivo sulfate of hydroxy-
chloroquine could be imply in the modulation of the immune response
by reducing pro-inflammatory cytokines and by modification of the
lysosome acidification procedure [38]. Those aspects may play a key-
stone role in severe cases of SARS-coronaviruses. Indeed, in mouse
models from SARS-CoV pneumonia and lung affections was associated
with cytokines storm [39]. In parallel azithromycin was known as in-
hibit the viral replication of Zika virus in vitro [29]. And in enlarge viral
infection context, azithromycin was associated to up-regulate inter-
ferons I and III [30]. Concerning the respiratory syncytial virus, it was
also shown that Macrolides reduce the acidity of the lysosome and by
the down-regulation of the ICAM-1 protein (36). So, in the SARS-CoV 2
context, azithromycin could potentialize the effect of hydroxy-
chloroquine by similar mechanism.

Fig. 1. Observations of infected cells resistant or not to viral replication after inoculation of SARS-CoV 2 strain IHUMI-3 at MOI 0.25.
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On Vero E6 it was shown that for hydroxychloroquine, CC 50 is
close to 250 μM (249.50 μM), which is significantly above the con-
centrations we tested herein [19]. Against SARS-CoV 2, the IC 50 of
hydroxychloroquine was determined to be 4.51, 4.06, 17.31, and
12.96 μM with various MOI of 0.01, 0.02, 0.2, and 0.8, respectively.

One of the main criticisms of previously published data was that
drug concentrations for viral inhibition used in vitro are difficult to
translate clinically due to side effects that would occur at those con-
centrations. The synergy between hydroxychloroquine and azi-
thromycin that we observed herein is at concentrations achieved in vivo
and detected in serum [35] and pulmonary tissues (36–37) respectively.
Our data are thus in agreement with the clinical efficacy of the com-
bination of hydroxychloroquine and azithromycin observed by Gautret
et al. [33]. They support the clinical use of this drug combination,
especially at the early stage of the COVID-19 infection before the pa-
tients develop respiratory distress syndrome with associated cytokine
storm and become less treatable by any antiviral treatment.
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