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A B S T R A C T   

Visceral Leishmaniasis (VL) is a neglected tropical disease of public health importance in the 
Indian subcontinent. Despite consistent elimination initiatives, the disease has not yet been 
eliminated and there is an increased risk of resurgence from active VL reservoirs including 
asymptomatic, post kala azar dermatitis leishmaniasis (PKDL) and HIV-VL co-infected in-
dividuals. To achieve complete elimination and sustain it in the long term, a prophylactic vaccine, 
which can elicit long lasting immunity, is desirable. In this study, we employed immu-
noinformatic tools to design a multi-subunit epitope vaccine for the Indian population by tar-
geting antigenic secretory proteins screened from the Leishmania donovani proteome. Out of 8014 
proteins, 277 secretory proteins were screened for their cellular location and proteomic evidence. 
Through NCBI BlastP, unique fragments of the proteins were cropped, and their antigenicity was 
evaluated. B-cell, HTL and CTL epitopes as well as IFN-ɣ, IL-17, and IL-10 inducers were pre-
dicted, manually mapped to the fragments and common regions were tabulated forming a peptide 
ensemble. The ensemble was evaluated for Class I MHC immunogenicity and toxicity. Further, 
immunogenic peptides were randomly selected and used to design vaccine constructs. Eight 
vaccine constructs were generated by linking random peptides with GS linkers. Synthetic TLR-4 
agonist, RS09 was used as an adjuvant and linked with the constructs using EAAK linkers. The 
predicted population coverage of the constructs was ~99.8 % in the Indian as well as South Asian 
populations. The most antigenic, nontoxic, non-allergic construct was chosen for the prediction of 
secondary and tertiary structures. The 3D structures were refined and analyzed using Ram-
achandran plot and Z-scores. The construct was docked with TLR-4 receptor. Molecular dynamic 
simulation was performed to check for the stability of the docked complex. Comparative in silico 
immune simulation studies showed that the predicted construct elicited humoral and cell- 
mediated immunity in human host comparable to that elicited by Leish-F3, which is a prom-
ising vaccine candidate for human VL.  
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1. Introduction 

Visceral leishmaniasis (VL) is a severe clinical form of leishmaniasis and is fatal in most cases if untreated. It is a protozoal, vector- 
borne disease caused by two closely related species of Leishmania, L. donovani and L. infantum. An estimated 50,000 to 700,000 new 
human VL cases are reported with more than 50 % global burden from South Asia [1,2]. In India, the disease is endemic in Bihar, 
Jharkhand and West Bengal where it affects people from low socio-economic strata and rural communities [3]. Joint VL elimination 
initiative, launched in 2005, by the World Health Organization (WHO) and governments of India, Bangladesh and Nepal reduced the 
disease incidence, but complete elimination threshold (one case per 10,000 population) in Indian subcontinent is yet to be achieved 
[3]. The Possibility of transmission still exists due to asymptomatic infections, PKDL and human immunodeficiency virus (HIV)-VL 
coinfections. These can act as potential reservoirs of Leishmania and could be a possible cause of future epidemics. Further, the 
development of parasite resistance to common chemotherapeutic drugs: antimonials, miltefosine and ambisome has been reported in 
India [4]. In such a scenario, prevention remains the key to sustainable elimination and vaccines can complement leishmaniasis 
elimination campaigns. Even though several vaccine development strategies have been tested in animal models including live 
attenuated vaccines, DNA vaccines and recombinant vaccines, there are no prophylactic or therapeutic vaccines available against 
human VL (hVL). LEISH-F1 (formerly called Leish-111f), LEISH-F3, ChAd63-KHd and genetically modified live attenuated parasites 
(LdCen− /− ) created through CRISPR-Cas9 genome editing tools are some promising candidates under different stages of preclinical and 
clinical trials [5]. 

Since the traditional methods to design a vaccine are costly and time consuming, focus has now shifted to reverse vaccinology (RV) 
based computational approaches which rely on screening antigenic peptides from the genome and proteomes of pathogens. The in silico 
tools can reduce the list of potential epitope candidates for experimental testing and hence save time and cost. The predicted epitopes 
from different target proteins can then be combined to construct multi-epitope vaccines (MEVs), capable of eliciting potent immune 
responses in the host and are safer alternatives to classical vaccines [6]. Many computational studies have been performed to design 
MEVs for VL [7–10], however, most studies have focused on individual epitopes from parasite proteins rather than unique immu-
nogenic regions which may possess overlapping epitopes thus enhancing epitope promiscuity. Epitope promiscuity enables the use of a 
minimal set of peptides to construct a vaccine that can target multiple HLA alleles and increases population coverage [11]. Since 
Leishmania is known to evade defense mechanism by inhibiting antigen cross priming [12], inclusion of peptides with promiscuous 
epitopes, capable of binding multiple HLA alleles, becomes important. 

The present study employs an immunoinformatics approach to predict an epitope ensemble from L. donovani, which was further 
used to create a vaccine construct targeting the Indian subcontinent population. Then entire L. donovani proteome was filtered using in 
silico tools to find the most antigenic and immunogenic regions of the proteins, which are non-homologous to humans and contain T& B 
cell epitopes and cytokine inducers, unlike most studies that have attempted to predict either epitope [10,13,14]. Finally, peptides 
with promiscuous epitopes were selected to design a nontoxic, non-allergic vaccine construct that can elicit efficient immune response 
in silico against the South Asian population (specifically the Indian population). 

2. Methodology 

2.1. Sequence retrieval and classification of proteins 

The complete sequences of all proteins of L. donovani BPK282A1 strain were accessed from the NCBI database (https://www.ncbi. 
nlm.nih.gov/) and further evaluated for the presence of N-terminal signal sequence, which is a hallmark of classically secreted pro-
teins. SignalP-5.0 server (https://services.healthtech.dtu.dk/service.php?SignalP-5.0) was used to predict the secreted proteins. The 
server uses deep convolutional and recurrent neural network approaches to predict the presence of signal peptides and cleavage sites in 
archaea, bacteria and eukarya proteins [15]. To identify the subcellular location of secreted proteins, DeepLoc 1.0 server (https:// 
services. healthtech.dtu.dk/service.php?DeepLoc-1.0) was used and predictions were made by choosing “profiles”. This server is 
also based on deep neural network approach and predicts subcellular localization of eukaryotic protein in 10 different categories with 
good accuracy (78 % for 10 categories; 92 % for membrane-bound or soluble) [16]. Of all 10 localizations, proteins belonging to the 
cell membrane and extracellular locations were selected for subsequent analysis. The selected proteins were verified for their location 
based on the presence of either GPI anchor or transmembrane helix (none or no more than 1) or both through Pred-GPI (http://gpcr2. 
biocomp.unibo.it/predgpi/index.htm) and TOPCONS (https://topcons.%20net/pred/) respectively. TOPCONS is a consensus-based 
membrane protein topology prediction tool with an average performance of 80 % [17]. Pred-GPI, on the other hand, predicts the 
GPI anchor positions and omega cleavage sites using Support Vector Machine (SVM) and Hidden Markov Model (HMM) algorithms, 
with a low false positive prediction rate [18]. Completion status of the protein sequences was evaluated through Uniprot database 
(https://www.uniprot.org/) and proteomic evidence of proteins with completed sequences was manually searched in TriTrypDb 
database (https://tritrypdb.%20org/tritrypdb/app/). 

2.2. Selection of antigenic protein fragments 

Since an antigenic protein should be unique and foreign to the host, the homology of proteins was tested using NCBI BlastP tool 
(https://blast.ncbi.%20nlm.nih.gov/Blastp) against non-redundant human protein sequences. All proteins were analyzed and unique, 
non-homologous fragments ≥15 amino acids from each protein sequence were selected. Antigenicity of these protein fragments was 
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evaluated through VaxiJen 2.0 (http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.%20html) under the category of “Parasite” 
at a threshold of 0.5. VaxiJen is an alignment independent antigenicity prediction server that classifies antigens based on physico-
chemical properties. The classification made is based on the auto cross-covariance (ACC) transformation of protein sequences into 
uniform vectors of amino acid properties [19]. 

2.3. Prediction of the HTL, CTL and B cell epitopes 

Before evaluation of immunogenicity, presence of MHC I binders, MHC II binders and B cell epitope in the selected fragments were 
assessed. Firstly, most common HLA alleles belonging to the South Asian region were obtained from the Allele Frequency Net Database 
(AFND) (https://academic.oup.com/nar/article/48/D1/D783/5624967). The choice of region selection was based on the target 
population for the present study. AFND is a freely available database containing frequency data of several immune system related gene 
polymorphisms [20]. MHC I binder prediction was made through NetMHCpan4.1 server (https://services.healthtech.dtu.dk/service. 
php?NetMHCpan-4.1). All predicted 9mers with percentile rank less than 2 restricted against the 30 Class I HLA alleles were selected. 
For HTL epitope prediction, all 15mers restricted against 11 HLA-DRB1 alleles with a percentile rank less than 10 were obtained 
through NetMHCIIpan 4.0 server (https://services.healthtech.dtu.dk/service.php?NetMHCIIpan-4.0). Both these evaluations were 
conducted before October 2020. For linear B cell epitope prediction, all antigenic sequences were subjected to IEDB Antibody Epitope 
Prediction tool (http://tools.iedb.org/bcell/). Bepipred Linear Epitope Prediction 2.0 was chosen as the prediction method and all 
peptides ≥5 amino acids at the default threshold (0.5) were considered B cell epitopes. 

2.4. Prediction of the peptide ensemble 

To evaluate immunogenic regions in the fragments, epitopes capable of inducing IFN-γ, IL-17 and IL-10 responses were searched. 
For this, the sequences were scanned in IFNepitope (https://webs.iiitd.edu.in/raghava/ifnepitope/index.php), IL-17escan (http:// 
metagenomics.iiserb.ac.in/IL17eScan/index.html), and IL-10pred (http://crdd.osdd.net/raghava/IL-10pred/) servers to find respec-
tive inducers at default thresholds. The servers allow users to choose from different methods of prediction. While a hybrid approach 
was selected for IFN epitope, Dipeptide Composition (DPC) and SVM based methods, which also were the preset defaults, were selected 
for IL-17escan and IL-10pred servers, respectively. IFN epitope and IL-10 pred predictions are based on three approaches, SVM based, 
motif based and hybrid (SVM + Motif based) [21,22]. IL-17escan, on the other hand, is trained on composition-based models and 
machine learning methods [23]. All the epitopes obtained so far were mapped to antigenic fragments by using different color schemes 
for each. Since IL-10 is documented to play a role in disease progression [24], IL-10 non-inducing regions were focussed. Thus, 
overlapping regions of all epitopes and IL-10 non-inducers which were ≥5aa were highlighted and tabulated as peptide ensemble. 

2.5. Refining of the peptide ensemble 

The peptides obtained could be of different lengths, even lower than the minimum length required for an HTL epitope which is 
15aa. Therefore, the shorter peptides were lengthened to reach at least 15aa by addition of few neighbouring amino acids. Finally, 
modified peptides were once again checked through IL-10pred and Class I Immunogenicity tool (http://tools.iedb.org/ 
immunogenicity/) of IEDB to make sure all of them were IL-10 non-inducers and had MHC I immunogenicity, respectively. All the 
peptides lacking immunogenic MHC I binders were removed, and a final immunogenic peptide ensemble was obtained. Those were 
then evaluated for toxicity through ToxinPred (http://crdd.osdd.net/raghava/toxinpred/) under default parameters. ToxinPred is an 
in-silico tool to predict toxicity of peptides and proteins based on dipeptide composition and hybrid models (dipeptide composition +
motif composition), with 94.5 % accuracy of the former model [25]. 

2.6. Prediction of vaccine construct 

The construction of multi epitope subunit vaccines requires suitable linkers for joining immunogenic peptides along with an 
adjuvant to enhance the immunogenicity. In this study, TLR4 agonist RS09, which is a lipopolysaccharide (LPS)-mimotope, was 
selected [26]. To conjugate an adjuvant with peptides, EAAK linker was used and for peptide-peptide conjugation Glycine-Serine (GS) 
linkers were used. The N- and C-terminal were also defined by GS linkers. The placement of the agonist and the order of peptides 
significantly affects the overall performance of the fusion constructs. Therefore, the peptides were placed randomly, and maximum 
possible conformations were tried to achieve the best model. 

2.7. Analysis of primary structure 

2.7.1. Homology, physicochemical properties and population coverage 
To check if the constructs formed were non-homologous to humans and homologous to Leishmania species, homology was tested 

against non-redundant databases of Homo sapiens and Leishmania sp. using the NCBI BlastP tool (https://blast.ncbi.nlm.nih.gov/ 
Blastp). Physicochemical properties of the constructs were checked through Expasy ProtParam tool (https://web.expasy.org/ 
protparam/). Finally, population coverage of each construct was assessed for the Indian and South Asian populations through IEDB 
population coverage tool (http://tools.iedb.org/population/). 
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2.7.2. Toxicity, allergenicity and antigenicity 
The toxicity and allergenicity of the constructs were estimated through ToxinPred (http://crdd.osdd.net/raghava/toxinpred/) and 

AlgPred2.0 (https://webs.iiitd.edu.in/raghava/algpred2/index.html) respectively. AlgPred2.0, an updated version of AlgPred server, 
is trained on large dataset of allergens, non-allergens and IgE epitope database, and displays highest accuracy in a hybrid model 
(Machine Learning + BLAST + MERCI) [27]. Files were submitted in the recommended format and results were obtained with default 
parameter settings. Antigenicity was assessed through VaxiJen (http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html) and 
Secret-AAR (http://microbiomics.ibt.unam.mx/tools/aar/index.php) tools. Secret-AAR tool allows assessment of the antigenic density 
of a protein and hence, evaluation of their antigenic potential [28]. Following construct submission, abundance of antigenic region 
(AAR) was calculated. 

2.8. Prediction of secondary structure 

Secondary structure of the protein constructs was predicted using Raptor-X Property online server (http://raptorx.uchicago.edu/ 
StructurePropertyPred/predict/). The tool serves best especially for the proteins without close homologs in the Protein Data Bank 
(PDB) or with very sparse sequence profile. The server predicts based on machine learning model called Deep Convolutional Neural 
Fields and can predict solvent accessibility, secondary structure and disordered regions. The analysis was done to predict solvent 
accessible regions and 3-state secondary structure (SS3) elements: helices, globular regions, beta-turn regions, all of which are 
necessary features for protein stability [29]. 

2.9. Prediction of tertiary structure and its validation 

To predict tertiary structure Raptor X Contact (http://raptorx.uchicago.edu/ContactMap/) was used. The server predicts distance- 
based protein folding which is based on deep convolutional neural network model [30]. The predicted models were refined using the 
GalaxyRefine (https://galaxy.seoklab.org/cgi-bin/submit. cgi?type = REFINE) web server [31]. The refined tertiary structures pre-
dicted were validated, based on Ramachandran plot analysis, through PROCHECK server (https://saves.mbi.ucla.edu/) and Swiss 
Structure Assessment tool (https://swissmodel.expasy.org/assess). Another validation web server, PRO-SA (https://prosa. services. 
came.sbg.ac.at/prosa.php) was also used to check the overall model quality in terms of Z-score and residue scores. Z-score describes 
the overall model quality by checking whether the score of the submitted protein falls within the range of scores found for native 
proteins of similar size. Residue scores depict the plotting energies as a function of amino acid at specific position such that positive 
scores correspond to flawed parts of the submitted protein [32]. 

Fig. 1. Schematic representation of the workflow.  
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2.10. In silico validation of predicted vaccine construct 

2.10.1. Molecular docking and molecular dynamic (MD) simulation 
Activation of the antigen presenting cells (APCs) via Toll Like Receptors (TLRs) primes the innate immune system for efficient 

antigen processing and presentation. To this end, TLR ligands are widely exploited to enhance the efficacy of vaccine constructs. To 
analyze the interaction of the designed construct with TLR4, molecular docking was performed using Cluspro2.0 (https://cluspro.bu. 
edu/login.php). The tertiary structure of TLR4 (PDB id: 3FXI) was downloaded from Protein Data Bank (PDB) and submitted as 
“Receptor” file. The finalized vaccine construct was submitted as “Ligand” file. Cluspro2.0 performs rigid body docking based on Fast 
Fourier Transform (FFT) correlation approach, root mean square deviation (RMSD) based clustering of 1000 lowest energy models 
followed by the energy minimization refining of selected models [33,34]. The resulting models were ranked according to decreasing 
cluster size. The selected models were visualized using Pymol software (http://www.pymol.Org). Molecular docking was followed by 
molecular dynamic (MD) simulation to check for flexibility and stability of the complex. The simulation was carried out by GROMACS 
version 5.0 software and force field GROMOS96a. The stability of the complex was calculated in terms of temperature, pressure, RMSD 
and root mean square fluctuation (RMSF) of the complex. 

2.10.2. In silico immune response simulation 
To simulate the immune response generated by the vaccine construct in human host, C-ImmSimm (https://kraken.iac.rm.cnr.it/C- 

IMMSIM/) server was used. The predictions are based on the Position Specific Scoring Matrix (PSSM) in terms of T &B cell epitopes 
generated, and their interaction with the immune system [35,36]. For the simulations, default parameters and single injection was 
used with population specific HLA alleles. The primary amino acid sequence of Leish F3 and the predicted vaccine constructs were 
submitted to the server. The primary sequence of Leish-F3 was obtained from Ref. [37] (Supplementary File 3). A schematic repre-
sentation of the workflow is given in Fig. 1. 

3. Results 

3.1. Classification of proteins 

Reference proteome sequence of Leishmania donovani BPK282A1 was obtained from NCBI on June 2, 2020. A total of 8014 protein 
sequences were retrieved in FASTA file format and submitted to SignalP5.0 for classification. The secretome of a pathogen consists of 
all the secreted proteins. These proteins are vital for carrying out diverse biological processes including cell migration, cell adhesion, 
proliferation, differentiation and virulence , and facilitate interaction of the pathogen with the host cells. Due to the fact that the 
parasite secretome exhibits direct interaction with the host cells, these proteins in principle should make good candidates as immu-
nogenic targets [38]. Using this rationale, in the present study, secretory proteins were chosen for further evaluation. 277 classically 
secreted proteins were obtained from the server, which were further subjected to DeepLoc 1.0 for classification based on their cellular 
location. Of 10 predicted localizations, 67 cell membrane proteins and 69 extracellularly located proteins were identified, which were 
further validated for the presence or absence of transmembrane helices (TMH) and GPI-anchors, the two differentiating characteristics 
of membrane associated and cleavable (soluble) proteins. Presence of either 1 TMH or GPI- anchor or both was used as a criterion for 
classifying membrane proteins. Proteins with >1 TMH in addition to a GPI anchor were excluded from the prioritized list due to 
potential difficulties perceived with their in vitro synthesis and purification [39]. Absence of both was a prerequisite for a protein to be 
classified as a soluble protein. 47 cell membrane proteins with one TMH and 52 extracellular proteins with no TMH were obtained from 
TOPCONS. Pred-GPI found 7 cell membrane proteins with GPI anchor and 62 extracellular proteins without GPI anchor. A total of 47 
cell membrane proteins (with either one TMH or GPI anchor or both) and 48 soluble proteins (with neither TMH nor GPI anchor) were 
obtained. 

Complete sequence information for L. donovani proteins was accessed from two of the most regularly updated databases, Uniprot 
and TriTrypDb. Complete sequence reads were obtained for 46 cell membrane and 37 extracellular proteins from Uniprot. However, 
two extracellular proteins identifiers, XP_003864652.1 and XP_024329258.1 shared same sequence and information, and hence were 
clubbed and used as XP_003864652.1, resulting in 36 soluble proteins. Of these, proteomic evidence was found for only 23 cell 
membrane and 12 extracellular proteins through TriTrypDb, listed in Supplementary Tables S1 and S2 and hence, were taken up for 
further analysis. 

3.2. Selection of the antigenic protein fragments 

After classification and validation of proteins for the mentioned class-associated features, homology with human proteins, was 
evaluated. NCBI BlastP server was used to find unique, ≥15 amino acids long L. donovani sequences, lacking similarity to identified hits 
at default threshold values against the non-redundant protein database of Homo sapiens. The length of unique regions was based on the 
HTL epitope length considered in this study, which is 15aa. The corresponding non-homologous sequences of proteins were cropped 
and saved. Proteins, for which no significant similarity was found, were included as such without any modification to the native 
sequence. Except for XP_003858308.1, all 22 cell membrane proteins presented >15aa non-homologous segments that were cropped 
and saved as 41 fragments. Similarly, 13 fragments were obtained from all 11 extracellular proteins, except XP_003858320.1. Further, 
VaxiJen server was used to check the antigenicity of the fragments obtained. Of all fragments, 27 cell membrane and 12 extracellular 
antigenic fragments were obtained with probability of antigenicity greater than 0.5. 
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3.3. Prediction of the immunogenic peptide ensemble 

3.3.1. Prediction of HTL, CTL and B cell epitopes 
To search for fragments containing epitopes restricted by both MHC classes, most frequent MHC alleles of South Asian population 

were extracted from AFND. A total of 30 HLA Class I alleles (10 each from HLA-A, HLA-B, HLA-C subset) and 11 HLA-DRB1 alleles, 
based on literature as well as AFND, were analyzed for epitope restriction (Table 1). The fragments were evaluated for presence of MHC 
Class I & II epitopes through NetMHCpan 4.1 and NetMHCIIpan 4.0 server respectively, against listed MHC alleles. All fragments had 
MHC epitopes except XP_003864707.1_1 extracellular protein fragment which lacked HTL epitope and hence was not considered for 
further analysis. The objective next in line was to identify fragments containing B cell epitope. Since the present study dealt with 
protein fragments, prediction of linear epitopes instead of conformational epitopes was considered owing to the fact that the latter 
might lie in the homologous regions which have been eliminated. Therefore, IEDB antibody epitope prediction tool was used for linear 
B cell epitope prediction, selecting all epitopes ≥5aa at the default threshold. All fragments contained B cell epitopes, except for 
XP_003865497.1_1 extracellular fragment, which was dropped for subsequent analysis. All the B-cell and T-cell epitopes of respective 
cell membrane and extracellular fragments were tabulated and saved for further evaluations. 

3.3.2. Prediction of immunogenic peptides and epitope mapping 
To check whether selected fragments can elicit immune response downstream of binding to MHC Class II, IFN-γ, IL-17 and IL-10 

inducers were scanned in the fragments through IFNepitope, IL-17escan and IL-10pred servers respectively. IFN-γ inducers were found 
in all fragments, IL-10 inducers were found in all except XP_003862129.1_1 cell membrane fragment and IL-17 inducers were found in 
only one fragment (XP_003863771.1_1 cell membrane fragment). All inducers and B &T cell epitopes were mapped onto antigenic 
peptide fragments and regions ≥5 amino acids, having all the epitopes, inducers and IL-10 non-inducer were highlighted. Because IL- 
10 is known to facilitate disease progression and enhanced IFN-γ is known to promote anti-parasitic responses, the present study 
focused on regions that induced inflammatory IFN-γ response but not anti-inflammatory IL-10 response. All highlighted peptide se-
quences were tabulated to achieve a peptide ensemble, which consisted of 71 cell membrane and 22 extracellular peptides (Supple-
mentary File S3). 

3.3.3. Refining of the peptide ensemble 
Since the ensemble has the MHC II binding regions capable of inducing cytokines downstream, they could be called as Class II 

immunogenic regions. The peptides in the ensemble ranged from 5aa to 52aa in length. The peptides smaller than 15aa in length were 
modified by addition of a few neighbouring amino acids to reach a length of at least 15aa such that they contain epitopes and inducers. 
While adding the neighbouring regions, it was also checked that MHC Class I epitopes in that region remain immunogenic. This 
evaluation was conducted using Class I Immunogenicity tool of IEDB. After modification, several peptides were found either to be 
closely present in the main protein sequence or overlapping; such peptides were clustered to form a single peptide, resulting in a total 
of 66 cell membrane peptides and 20 extracellular peptides. Finally, the modified ensemble was once again evaluated through IL- 
10pred server and Class I Immunogenicity tool to reconfirm their IL-10 non-inducing capacity as well as Class I immunogenicity. 
All peptides were IL-10 non-inducers, however, the ones lacking immunogenic epitopes were removed from the ensemble, thus, 
restricting the final number to a total of 43 cell membrane and 17 extracellular peptides in the ensemble. Finally, toxicity of each of 
these was evaluated through ToxinPred. Only Ex15 peptide derived from protein XP_003865232. 1 peptide was found to be toxic and 
hence was removed for further analysis. At last, a total of 43 cell membrane and 16 extracellular peptides, derived from 17 cell 
membrane and 6 extracellular proteins were obtained. The peptides along with their toxicity status are listed in Supplementary File S3. 
Fig. 2 shows a schematic diagram summarizing the screening of protein fragments for the non-toxic immunogenic protein ensemble. 

3.4. Prediction of vaccine constructs 

3.4.1. Core properties and structure of the vaccine constructs 
Eight constructs were developed (Supplementary File S3), each comprising of different set of randomly arranged peptides linked 

with GSGGSG linkers. The TLR4 agonist RS09 was used as an adjuvant. Addition of adjuvant increases the vaccine efficacy and 
protection against variable pathogens by broadening the immune response [40]. The agonist was placed at N- terminal following GSG 
sequence and EAAK linker was used to link adjuvant with peptides. A schematic representation of vaccine construct design is given in 
Fig. 3A. 

Table 1 
List of HLA alleles selected for epitope restriction.  

MHC Class I MHC Class II 

HLA-A HLA-B HLA-C HLA-DRB1 

01:01, 02:01, 02:11, 02:24, 03:01, 
11:01, 24:02, 31:08, 33:01, 68:01 

14:05, 18:07, 35:03, 40:06, 44:04, 
44:06, 51:01, 51:10, 52:01, 57:01 

03:02, 04:01, 05:09, 06:03, 07:01, 
06:02, 07:02, 12:02, 14:02, 15:02 

0301, 0101, 0701, 0403, 1001, 1101, 
1301, 1404, 1501, 1502, 1504  
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Fig. 2. Schematic representation of extracting non-toxic immunogenic peptide ensemble from whole proteome sequence of LDBPK282A.1. TMH- 
Trans membrane helix; GPI-a- Glycophostidyl anchored; non-GPI-a- non-glycophostidyl anchored. 
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3.4.2. Analysis of vaccine constructs 

3.4.2.1. Homology, physicochemical properties and population coverage. Vaccine sequence construction was followed by homology 
analysis using PSI-BLAST against non-redundant databases of Homo sapiens and Leishmania. On submitting the query sequence, no 
significant similarity was obtained with the human proteome, however, there was significant similarity with different leishmania 
species (including L. infantum, L. major, L. braziliensis) in addition to L. donovani. Next, physicochemical properties of all the constructs 
were listed using ProtParam server. The molecular weight of all the constructs was more than 30 kDa, indicating a higher probability of 
their immunogenicity. However, varied theoretical PI was obtained for VaCo3 and VaCo5 and therefore these were not considered for 
further evaluation. An instability index of less than 40 indicates a stable protein, which was not observed for VaCo6, therefore it was 
excluded. A higher aliphatic index (AI) indicates thermostability [41]; hence, Vaco2 and VaCo8 with low AI were also removed. 
GRAVY scores of all the constructs indicated their hydrophilic nature. Based on the results, only three vaccine constructs VaCo1, 
VaCo4, and VaCo7 were selected for further analysis. 

3.4.2.2. Toxicity, allergenicity and antigenicity. Toxicity of the constructs was scanned using ToxiPred server and all three constructs 
were found to be non-toxic. AlgPred2 was used for allergenicity evaluation and VaCo7 was found to be an allergen, hence removed 
from further analysis. VaxiJen and Secret-AAR tools were used to estimate antigenicity of the constructs. Both VaCo1 and VaCo4 were 
found to be antigenic, however, VaCo4 was found to be more antigenic in both prediction tools, having higher probability and number 
of antigenic regions compared to VaCo1. Therefore, VaCo4 was taken up for further analysis. Analysis of all vaccine constructs has 
been tabulated in Table 2. 

3.4.3. Prediction of secondary structure 
To predict the secondary structure of the vaccine constructs, Raptor-X Property server was used. The VaCo4 construct consisted of 

10 % helix, 21 % beta sheets, 68 % coils. The server also predicted the solvent accessible and buried sequence percentages which were 
57 %, and 26 % for VaCo4 respectively. Interestingly, the server predicted 6 of total 7 amino acids in agonist sequence of VaCo4 
exposed to the solvent, indicating a higher probability of agonist interactions (Fig. 3B). 

3.4.4. Prediction of tertiary structure and its validation 
Prediction of tertiary structure was done through RaptorX server (Fig. 4A) which predicted five different models. They were refined 

using GalaxyRefine server (Fig. 4B). For each model, the first refined model predicted was saved. It is because according to the server, 
in model 1 structural changes are applied only to side-chain clusters, compared to the rest of the models where additional changes are 

Fig. 3. (A) Representation of vaccine construct design; P1-Peptide1, P2- Peptide2, P14or 15-Peptide14 or15. (B) Secondary structure prediction of 
vaccine construct VaCo4. For SS3 predictions, H, E, and C represent alpha-helix, beta-sheet and coil, respectively. For solvent accessibility pre-
dictions, B, M and E represent Buried, Medium and Exposed respectively. 
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Table 2 
Analysis of all eight designed vaccine constructs based on their properties.  

Vaccine 
Construct 

BLAST Physicochemical properties Population 
Coverage 

Toxicity Allergenicity Antigenicity 

Human Leishmania No. of 
amino 
acids 

Molecular 
Weight 

Theoretical 
PI 

Instability 
Index 

Aliphatic 
Index 

GRAVY India South 
Asia   

Antigenicity 
(VaxiJen) 

Antigenic 
Regions (AAR) 

VaCo1 No SS SS 371 35109.96 6.78 36.36 60.65 − 0.128 99.74 99.8 Nt NAlg 0.9047 12 (31) 
VaCo2 No SS SS 372 35499.38 7.34 31.53 56.52 − 0.183 99.74 99.8 / / / / 
VaCo3 No SS SS 362 34408.2 9.58 34.48 57.49 − 0.319 99.74 99.8 / / / / 
VaCo4 No SS SS 369 35202.57 7.2 28.61 73.04 ¡0.052 99.74 99.8 Nt NAlg 0.955 14 (26.43) 
VaCo5 No SS SS 376 36152.24 5.18 36.63 61.04 − 0.129 99.74 99.8 / / / / 
VaCo6 No SS SS 372 36031.79 8.03 40.65 49.62 − 0.367 99.74 99.8 / / / / 
VaCo7 No SS SS 361 34275.36 8.81 37.19 65.68 − 0.125 99.74 99.8 Nt Alg / / 
VaCo8 No SS SS 374 36038.66 6.43 29.69 56.71 − 0.389 99.74 99.8 / / / / 

No SS–No Significant Similarity; SS- Significant Similarity; Nt- Non-toxic; NAlg- Non- Allergen; Bold-Properties of the vaccine construct chosen for the study. 
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made to secondary structures and elements [31]. For validation, Ramachandran’s score was calculated through ProCheck server and 
Swiss Structure Assessment tool. Model_2ref and Model_5ref were the best predicted models according to Procheck (Fig. 5C). However, 
according to Swiss Structure Assessment tool, the best models were Model_1ref and Model_4ref, although rest of the models also had 
comparable scores indicating all models were of good quality (Fig. 5C). According to ProSA web server, all models had Z-scores within 
permissible limits. However, Model_2ref obtained a Z-score of − 7.72 which was in range of experimentally validated proteins through 
both sources (X-ray and NMR) (Fig. 5 A&C). Also, the local model quality graph also suggested this to be the best model (Fig. 5B). 
Therefore Model_2ref was selected for further analysis. Comparison of Ramachandran plot of Model_2ref obtained from Swiss 

Fig. 4. Prediction of tertiary structures of VaCo4 and their refinement. (A) Tertiary structures generated for VaCo4 using RaptorX. (B) Each tertiary 
model obtained in previous step was refined using GalaxyRefine for VaCo4. 

Fig. 5. Comparison of all refined models. Comparison of (A) Z-scores and (B) local model quality of all refined models using PRO-SA web server, 
respectively.(C) Comparison of Ramachandran Plot and Z-scores of all refined models. (D) Ramachandran Plot analysis of the selected refined 
model, which was VaCo4_Model_2ref, using PROCHECK and Swiss structure Assessment tool, respectively. 
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Structure Assessment tool and PROCHECK is shown in Fig. 5D. 

3.5. In silico validation of predicted vaccine construct 

3.5.1. Molecular Docking and Molecular Dynamic Simulation 
Predictions were followed by molecular docking of the models with TLR4 to demonstrate how well the vaccine constructs inter-

acted with TLR4. Murray and coworkers [42] reported that triggering TLR4 signaling upregulates macrophage antileishmanial ac-
tivity, strengthened resistance and promotes effect of chemotherapy in the livers of L. donovani infected C57BL/6 mice. Hence, to this 
end, the tertiary structures of VaCo4 were docked against the tertiary structure of TLR4 using ClusPro2.0 server. On submitting the 
tertiary structure of the VaCo4 construct and TLR4, 29 docked complexes were obtained. The model with largest cluster size was 
ranked first by the server and hence was selected for further simulation. The complex structure had 42 members in the cluster, with the 
lowest binding energy of − 718.3 and center energy of − 641, suggesting good binding affinity. A clear interaction between the 

Fig. 6. Molecular Docking and Molecular Dynamic Simulation. (A) Molecular Docking of proposed vaccine construct VaCo4_Model_2ref (red) and 
TLR (green, cyan, yellow and magenta). Inset image depicts interaction of TLR chains A&C (MD2) (green and magenta) and N-terminal region of 
proposed vaccine construct. Few random residues from position 1–113 and C-terminal have been labeled in vaccine construct to ease visualization. 
(B) MD Simulation of VaCo4-TLR4 complex indicated through temperature, pressure, RMSF and RMSD plots respectively. RMSD plot shows protein 
stability. RMSF plot indicates great variation indicating flexible protein. (For interpretation of the references to color in this figure legend, the reader 
is referred to the Web version of this article.) 
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Fig. 7. Comparison of immune response elicited in response to predicted vaccine constructs Leish F3 (positive control) and VaCo4. Plots in (a) 
depicts comparison of antibody titres, (b) depicts comparison of B cell count; (c) depicts comparison of cytokine titre, (d) depicts comparison of 
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N-terminal region of VaCo4 was visualized with TLR4 chains A and C (MD2) (Fig. 6A). 
The next step was to look at the stability and flexibility profile of the complex, for which molecular dynamic simulation was 

performed for 10 ns (nanoseconds) on Groningen Machine for chemical simulations GROMACS version 5.0 The constancy, flexibility, 
and folding was determined through temperature, pressure, RMSD, and RMSF plots generated in the software. The RMSD indicated 
protein stability after 5 ns for VaCo4 whereas RMSF graph suggested a flexible and thermostable complex. The fluctuations of the 
amino acids ranged from 0.25 to 0.75 nm for VaCo4 (Fig. 6B), and got stable after 350 residues. Moreover, at constant temperature and 
pressure, the complex was stable. 

3.5.2. In silico immune response simulation 
C-ImmSimm server was used to check the immune response generated by the vaccine constructs. Comparative analysis was run 

with Leish-F3 and single injection was placed with no adjuvant. Immune response was generated against homozygous HLA alleles 
(HLA-A*1101, HLA-B*4006 and HLA-DRB1*0701). Activation of humoral immunity in response to the predicted construct was 
evident by the rise of antibody titers and B cell count (Fig. 7 a&b). It was found that in response to the positive control Leish- F3 the 
IgM + IgG, IgM and IgG1 titers were raised whereas for the predicted construct, in addition to the mentioned classes, IgG1+ IgG2 and 
IgG2 were also found to be raised. For VaCo4, IgM, IgM + IgG titers (7000 and 9000 on arbitrary scale respectively) were maximally 
recorded. Further, higher numbers of B cells were found to be activated in response to the predicted construct as compared to Leish-F3, 
with major rise in memory B cells up to 200–250 cells/mm3 as compared to 160 cells/mm3 in case of the positive control. The up- 
regulated memory B cell numbers lasted for 35 days which also was the entire simulation period (Fig. 7 a&b). 

In addition to humoral immune responses, activation of cell-mediated immunity was also evaluated. It was found that roughly 
equal levels of IFN-ɣ were produced against both vaccines (between 4.0x105-4.5x105 ng/ml), however, IL-2 and anti-inflammatory 
TGF-β were produced in higher titers in response to the predicted constructs as compared to the positive control (IL-2: 2.5x105- 
3.0x105 ng/ml as compared to 1.6x105 ng/ml and TGF-β: 0.5x105- 1.0x105 ng/ml as compared to 0–0.5x105 ng/ml respectively). 
Besides, IL-10 and IL-12 were produced sub-optimally below 0.5x105 ng/ml in both tested vaccines (Fig. 7c). Similarly, for helper T 
cells, relatively higher population was activated in response to the predicted constructs (5000–5500 cells/mm3) as compared to Leish- 
F3 (4000–4500 cells/mm3), of which 80 % population comprised of Th1 cells (Fig. 7d). Nevertheless, no major difference was observed 
with respect to the cytotoxic T cell population in both the tested constructs (1150–1160 cells/mm3). The peak values mentioned above 
were all observed at 10 days post injection, however none of them dropped to nil even by the end of the simulation period (Fig. 7e). 

The results observed indicated generation of a robust immune response against the in silico designed vaccine constructs. 

4. Discussion 

The conventional methods of vaccine development are time-consuming and can take up to a decade [43]. Reverse Vaccinology (RV) 
is a widely used approach to identify potential vaccine candidates (PVCs) by screening the genome or proteome of a pathogen through 
computational analyses [44]. One of the earliest reports on the application of immunoinformatics to develop an anti-leishmanial 
vaccine made use of a T cell predictive algorithm (AMPHI) with parasite protein gp63 as the candidate [45]. Since then, there has 
been a consistent improvement in the accuracy and thereby, reliability of these algorithms, enabling prediction of proteome-wide 
peptide epitopes [46,47]. The present study aimed to find the most immunogenic regions across the L. donovani proteome using 
immunoinformatic tools and to design vaccine constructs using a combination of those epitopes. 

The L. donovani BPK282.A1 proteome was classified and secretory proteins were selected for candidate analysis. The Leishmania 
parasite, which undergoes morphological transitions in the two hosts, releases a set of secretory proteins in a temporal or life cycle 
stage-specific manner; this facilitates adaptation to the changing surroundings and thereby the survival of the parasite. Exploring such 
proteins and understanding the metabolic pathways they are involved in could help identify better candidates for the development of 
prophylactic vaccines [48]. Additionally, several Leishmania proteins which are located at the plasma membrane undergo processing 
and are shed subsequently. A few of these are also involved in facilitating the interaction of the parasite with the host and modulation 
of host’s immune responses [38]. Several published reports on vaccine constructs have focused on previously characterized secretory 
proteins of Leishmania [7,13,37,49], but in the present study, the whole L. donovani proteome was classified based on their sub-cellular 
location; the proteins found to be localized in the extracellular region or cell membrane were selected as initial pool for analysis. The 
selected subcellular locations were further verified by the presence or absence of a GPI- anchor or TM-helix. Further, in contrast to 
Singh et al [9] who presented an epitope ensemble by screening epitopes from 4 antigenic L. donovani proteins, the present study 
investigated whether the reported protein sequence is complete and if any protein expression data is available for the selected proteins, 
using Uniprot and TriTrypDb databases respectively. This approach was in line with a similar study by Khan et al [13] which used mass 
spectrometry (MS)-derived data on comparative abundance of proteins in promastigotes and amastigotes for epitope prediction. 

Non-homology or foreignness of an antigen increases its immunogenicity and prevents the generation of autoimmune responses 
[50–52]. However, instead of outrightly rejecting the homologous proteins, as demonstrated in several past reports [53–57], the 
current approach was to carefully read along protein’s full length and crop unique regions, which presented no homology to 
non-redundant human protein sequences using NCBI BLASTp. The rationale for the application of this approach lies in the fact that any 
foreign protein is processed into shorter peptides before being presented for binding to a B- or T-cell receptor, and therefore any 

helper T Cell population and (e) depicts comparison of cytotoxic T cell population elicited in response to control and predicted vaccine constructs, 
respectively. 
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resulting peptide showing non-homology to human proteins may in principle be antigenic. These short antigenic peptides are called 
epitopes [58,59]. In addition to the proteins with “no significant similarity”, non-homologous fragments ≥15 aa in length were also 
selected from each protein. All such peptides were termed as fragments and evaluated for antigenicity using VaxiJen 2.0. 

NetMHCpan-4.1 and NetMHCIIpan-4.0 were used for predicting MHC I & II binders (T cell epitopes) respectively. These were 
preferred over other prediction servers such as NetMHC, NetMHCpan, SYFPEITHI, as NetMHCpan-4.1 and NetMHCIIpan-4.0 are 
trained by integrating binding affinity (BA) and eluted ligand (EL) data derived from mass spectrometry (MS) experiments, allowing 
the capability of annotating sequences to single MHC restrictions, and thereby offering more accurate and reliable predictions [60,61]. 
B cell epitopes were predicted using Antibody Prediction tool of IEDB server. Although several RV based in silico studies prefer 
conformational B cell epitopes [62–65], the current study sought linear epitopes only. As mentioned before, one obvious reason was 
the expected loss of conformational epitopes in the cropped sequences [66] and the fact that the predictive accuracy of conformational 
epitopes for shorter peptides is not great. The predicted epitopes were manually mapped to the fragments. 

Analysis of immunogenicity, which refers to the capability of a peptide to trigger downstream immune responses when presented to 
T cells and B cells, was done by prediction and mapping of IFN-ɣ, IL-17 and IL-10 cytokine inducing regions. Unlike most studies, which 
used online servers to predict the immunogenicity potential of selected epitopes or vaccine constructs [13,49,67–69], the present study 
sought for immunogenic regions in the fragments, which were manually mapped to fragment sequences. This approach avoided the 
loss of fragments due to sequential mapping and ensured inclusion of the maximum possible number of fragments which were 
immunogenic for Class I & Class II and qualified for inducers. Non-immunogenic fragments were removed, and toxicity evaluation was 
performed in silico to identify candidate peptides for the next steps. The pool of peptide fragments thus obtained was termed as 
immunogenic ensemble, comprising of peptides which were antigenic, immunogenic (positive for the presence of MHC Class I, Class II 
and B cell epitopes and could also induce T cell responses), non-toxic and non-homologous (unique) to the human proteome, indicating 
high probability of their success as vaccine candidates. 

Finally, peptides from the immunogenic ensemble were used to design MEV constructs against VL using a RV approach. These 
MEVs have certain advantages over the monovalent vaccines in terms of potency to cumulatively raise innate, humoral, and cellular 
immune responses [71]. Khatoon et al. [7], Vakili et al [8], Khatoon et al [70] and Singh et al. [65], have previously reported the 
theoretical potential of in silico designed vaccines for VL. While the studies by Khatoon et al [7] and Singh et al [65] largely utilized 
available genomic databases of L. donovani to select vaccine targets, Vakili et al [8] extracted epitopes from four antigenic Leishmania 
proteins and constructed a MEV. The chimeric construct was administered in mice and a robust Th1-type immune response was 
observed as shown by increased levels of IL-2, IFN-γ, TNF-α, and IgG2a, demonstrating the immunogenic potential of computationally 
identified candidates [8]. 

In this study, the predicted immunogenic fragments were linked through the most common flexible linker GSGGSG to allow 
appropriate flexibility [49]. To enhance the immunogenicity of the vaccine, TLR-4 agonist (RS09) was linked to the fragment com-
bination using EAAK linker. Eight different constructs were formed and subjected to homology analyses. Uniqueness of an antigen not 
only increases its immunogenicity but also prevents molecular mimicry which is a significant mechanism causing autoimmunity. While 
homology analyses of the shortlisted peptides against the human proteome revealed no significant similarity, rendering the autoim-
munity inducing potential of these fragments highly unlikely, the fragments exhibited significant similarity to the proteome from 
closely related species of the Leishmania parasite (L. infantum, L. major, L. braziliensis) in addition to L. donovani. However, in the 
background of extensive genetic diversity of L. donovani, experimental validation on the efficacy of the constructs remains to be 
demonstrated. Based on their physicochemical properties like molecular weight, GRAVY index, theoretical pI, instability index and 
aliphatic index, the construct VaCo4 was selected for further analysis. Computational analysis predicted the vaccine constructs to be 
thermostable, antigenic, non-toxic, and non-allergic. Furthermore, a population coverage of ~99.8 % was found in the Indian as well 
as South Asian region which was significantly better as compared to other reported studies. As next steps, tertiary structures of the 
constructs were predicted and refined; the models were validated based on the Ramachandran score, Z-score and the local model 
quality using a step wise approach to identify the models with the most favourable tertiary structure. Predictions were followed by 
molecular docking of the models with TLR4, which showed good binding energy values. MD simulation predicted good protein sta-
bility and a flexible and thermostable complex. Finally, a comparative in silico immune simulation was carried out and the constructs 
showed promising results in terms of their capacity of eliciting humoral and cell mediated immunity as well as memory cell response in 
the human host as compared to that elicited by Leish-F3 (control), a promising vaccine candidate for human VL. 

Despite the inclusion of multiple important parameters for design, testing and careful considerations around additional aspects 
such as toxicity and allergenicity, experimental validation data will be required to prove the efficacy of the proposed constructs. 
Beyond the design of the recombinant constructs, additional components, e.g., TLR ligands, adjuvants and the overall formulation may 
also be of critical importance to reach the desired efficacy range and the optimal safety profile. At the level of construct design, the 
present approach has accounted for induction of autoimmunity due to molecular mimicry. However, multiple instances of autoim-
mune syndrome induced by adjuvants (ASIA) are reported [72], which should be seriously considered during in vivo validation. Even in 
the absence of an established causal relationship, adjuvants may contribute to autoimmunity with variably long latency periods and 
depending on factors like co-infection and the distinct immunological background of a vaccinated individual. There may be rarer or 
less frequently reported conditions of epitope spreading, or of polyclonal B-cell activation in response to non-protein antigens like 
bacterial lipopolysaccharide, leading to induction of autoimmunity [72,73]. Owing to multifactorial and at times idiopathic causation, 
it remains a major challenge to predict and account for such relatively rarer outcomes while computationally designing vaccine 
constructs. Notwithstanding, based on the outcomes received during the in vivo testing phase, one or several components in the 
formulation could be tweaked to obtain optimal safety and efficacy profile. 
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5. Conclusion 

The study proposes a multi-subunit vaccine based on a combination of select immunogenic sequences from the Leishmania pro-
teome. Unlike most of the previously reported studies targeting already characterized antigenic proteins, we have screened the entire 
Leishmania proteome to build a peptide ensemble for epitope selection, which is a major strength of the study. Another highlight of the 
study is the approach taken up to predict immunogenic ensemble. To the best of our knowledge, it is novel in finding unique non- 
homologous segments followed by prediction of epitopes and inducers, and their manual mapping to the protein fragments. The 
predicted peptides were combined to construct a potential vaccine candidate for hVL, which is non-toxic, non-allergic, antigenic as 
well as immunogenic, and has a stable and legitimate tertiary structure. Molecular docking and molecular dynamic simulation studies 
demonstrate good binding affinity with TLR-4 and formation of a stable complex for the vaccine constructs. Thus, it can be concluded 
that being a multi-peptide fusion construct with good predicted stability, existing standard protocols for protein expression and pu-
rification can be adopted for manufacturing the proposed vaccine construct and testing experimentally in vitro and in vivo settings. 
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