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Abstract

Many meta-analysis models contain multiple parameters, for example due to multiple outcomes, multiple treatments or

multiple regression coefficients. In particular, meta-regression models may contain multiple study-level covariates, and

one-stage individual participant data meta-analysis models may contain multiple patient-level covariates and interactions.

Here, we propose how to derive percentage study weights for such situations, in order to reveal the (otherwise hidden)

contribution of each study toward the parameter estimates of interest. We assume that studies are independent, and

utilise a decomposition of Fisher’s information matrix to decompose the total variance matrix of parameter estimates

into study-specific contributions, from which percentage weights are derived. This approach generalises how percentage

weights are calculated in a traditional, single parameter meta-analysis model. Application is made to one- and two-stage

individual participant data meta-analyses, meta-regression and network (multivariate) meta-analysis of multiple

treatments. These reveal percentage study weights toward clinically important estimates, such as summary treatment

effects and treatment-covariate interactions, and are especially useful when some studies are potential outliers or at high

risk of bias. We also derive percentage study weights toward methodologically interesting measures, such as the

magnitude of ecological bias (difference between within-study and across-study associations) and the amount of

inconsistency (difference between direct and indirect evidence in a network meta-analysis).
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1 Introduction

Meta-analysis is the synthesis of quantitative information from related studies to produce summary (pooled)
results to help answer clinically relevant questions, such as whether a treatment is effective. Statistical models
for meta-analysis often use aggregate data (such as a treatment effect estimate and its variance) from each study,
but increasingly they utilise individual participant data (IPD).1,2 Regardless of the approach taken, forest plots are
an important way to disseminate results to a clinical audience as they quickly summarise the size and spread of
individual study results alongside the summary meta-analysis result. In relation to forest plots, the PRISMA
Statement recommends that ‘. . . it is preferable also to include, for each study, the numerical group-specific
summary data, the effect size and confidence interval, and the percentage weight’.3 Percentage study weights
aim to break down the summary meta-analysis result into the relative contribution of each individual study,
and are easily interpretable by non-statisticians.
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In this article, we propose a general approach to deriving percentage study weights in meta-analysis models with
multiple parameters, including meta-regression, network (multivariate) meta-analysis and IPD models with
interactions. Our approach includes, as a special case, the simpler, traditional situation where just a single
parameter (such as a treatment effect) is to be synthesised. However, most meta-analysis models contain
multiple parameters, for example due to multiple outcomes, multiple treatments or multiple regression
coefficients. In particular, meta-regression models may contain multiple study-level covariates,4 and one-stage
IPD meta-analysis models may contain multiple patient-level covariates and interactions.5,6

Our aim is to allow researchers to produce percentage study weights for each parameter of interest within a
multi-parameter meta-analysis model. Our motivation is to increase transparency of each study’s contribution,
which is especially important when some studies are potential outliers or at high risk of bias, to reveal how much
their data contributed to the overall meta-analysis result. Similarly, if clinical decision makers are concerned that a
meta-analysis result may be unreliable for translation to practice due to the inclusion of a study from a different
clinical population or setting, then knowing the study’s contribution is important. Percentage study weights are
also helpful for methodological purposes, for example to: (a) help understand and explain differences between one-
and two-stage IPD meta-analysis results, for which there is much interest;7–11 (b) help understand differences
between results from IPD meta-analyses and those based on aggregate data obtained from published studies,
which may include different studies and/or patients;12–14 (c) to ascertain the contribution of IPD studies in meta-
analyses that combine IPD and non-IPD (aggregate data) studies;15,16 (d) understand the contribution of small
studies in meta-analyses with funnel plot asymmetry (i.e. with potential publication or availability bias)17 or (e) to
understand which studies are contributing most toward potential bias or inconsistency terms, for example within a
network meta-analysis.18

The article is structured as follows. Section 2 recaps percentage study weights in a traditional meta-analysis of
a single parameter, and reveals how they can be expressed on the variance scale using a decomposition of
Fisher’s information. In Section 3, we extend this concept to multiple parameter models expressed within a
general or generalised linear mixed model framework. These include one-stage IPD models, meta-regression
and multivariate (network) meta-analysis. Section 4 provides three applied examples, covering IPD
meta-analysis, meta-regression and network meta-analysis, for the estimation of treatment effects and
treatment-covariate interactions. Special consideration of weights toward bias and inconsistency terms is also
given. Section 5 concludes with discussion.

2 Derivation of percentage study weights in a traditional, single-parameter
meta-analysis

We begin by outlining percentage study weights within a traditional meta-analysis that uses a two-stage approach
to summarise a single parameter. We focus on summarising a treatment effect from multiple randomised
controlled trials, but the concepts are immediately applicable to a different parameter of interest, such as a
treatment-covariate interaction.

2.1 First stage

Let us assume that there are i¼ 1 to K randomised trials for meta-analysis, each comparing a particular treatment
to control, and that the treatment effect is of interest. In the two-stage approach, the first stage involves obtaining
(e.g. from study publications or by using IPD) the K treatment effect estimates (�̂i) and their within-study variances
(varð�̂iÞ). Let us assume IPD are available for all trials, so that we can analyse the raw data for each trial separately.
The choice of analysis model depends on the outcome data type.5 For example, for continuous outcome responses,
such as blood pressure, a linear regression model might be fitted,19 potentially adjusting for baseline values
(analysis of covariance, ANCOVA),20

yFij ¼ �i þ liyBij þ �ixij þ eij

eij � Nð0, �2i Þ
ð1Þ

where yFij and yBij denote the final (F) and baseline (B) value, respectively, for patient j in trial i, and xij is 0/1 for
participants in the control/treatment group, and eij is the residual variance, assumed normally distributed with
mean zero and variance �2i . Thus, �i is the intercept, li is the effect of a one-unit increase in baseline blood pressure
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and �i is the treatment effect. Estimation of model (1) gives b̂i¼ (�̂i, l̂i �̂i) and also �̂2i . Taking the latter as known,
we can invert Fisher’s observed information matrix for b̂i (i.e. invert the variance of the score for b̂i) to estimate the
variance matrix for b̂i:

var b̂i
� �
¼

varð�̂iÞ covð�̂i, l̂iÞ covð�̂i, �̂iÞ

covð�̂i, l̂iÞ varðl̂iÞ covðl̂i, �̂iÞ

covð�̂i, �̂iÞ covðl̂i, �̂iÞ varð�̂iÞ

0
B@

1
CA

2.2 Second stage

In the second stage, traditionally only a single parameter estimate from each study is of interest, such that a
univariate meta-analysis is needed. In the above example, the treatment effect estimates (�̂i) are the focus, and so a
meta-analysis model is needed to combine these across trials. A fixed effect model assumes that the underlying
treatment effect is the same in all studies, and thus the �̂i values are all estimates of a common treatment effect, �.
The model can be written as:

�̂i ¼ � þ "i

"i � Nð0, varð�̂iÞÞ
ð2Þ

In model (2), the var(�̂i) estimates are usually assumed known,21 and the model can be fitted using maximum
likelihood to give the summary estimate, �̂, of the common treatment effect. A random effects meta-analysis model
allows for between-study heterogeneity in the true treatment effect, and can be written as,

�̂i ¼ �i þ "i

�i ¼ � þ ui

ui � Nð0, �2Þ

"i � Nð0, varð�̂iÞÞ

ð3Þ

where the var(�̂i) estimates are again typically assumed known, and ui denotes a random effect that indicates the
treatment effect in the ith trial, �i, is assumed normally distributed about an average treatment effect, �, with
between-study variance, �2. Model (3) can be estimated using, for example, method of moments22 or restricted
maximum likelihood, to give the summary estimate, �̂, of the average treatment effect across trials. Extension of
model (3) to a meta-regression within study-level covariates will be considered in Section 3.

2.3 Decomposing Fisher’s information for ĥ

The maximum likelihood solution for the summary meta-analysis estimate (�̂) is

�̂ ¼

PK
i¼1

wi�̂i

PK
i¼1

wi

ð4Þ

where wi ¼ ðvarð�̂iÞÞ
�1 in the fixed effect model, and wi ¼ ðvarð�̂iÞ þ �̂

2Þ
�1 in the random effects model. The

summary estimate, �̂, is thus a weighted average of the �̂i, with the study weights (wi) depending on the
‘known’ sampling error (var(�̂i)) and, in the random effects setting, also the estimated between-study variance (�̂2).

The variance of �̂ is varð�̂Þ ¼ 1/
PK

i¼1 wi. This is obtained by the inverse of Fisher’s observed information matrix
which, as models (2) and (3) contain only one main parameter (�), is just a scalar (i.e. a 1 by 1 matrix) equal toPK

i¼1 wi. The total observed information (Itotalð�̂Þ, say) toward �̂ can be written as,

Itotalð�̂Þ ¼ varð�̂Þ
� ��1

¼
XK
i¼1

wi ¼
XK
i¼1

Iið�̂Þ ð5Þ
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where Iið�̂Þ is used to denote the information attributed to study i. As studies are independent, the total
information is simply the sum of the Iið�̂Þ. This decomposition will be utilised again in Section 3, as it
generalises to more complex meta-analysis models. The Iið�̂Þ can be computed by re-fitting the meta-analysis
model but with just study i included, whilst holding remaining variance estimates at their values from the full
analysis (i.e. hold varð�̂iÞ and, in the random effects model, also �̂).

Interestingly, we can now re-express the variance of �̂ into a linear sum of independent study terms by utilising
the decomposition of Fisher’s information matrix, as follows:

varð�̂Þ ¼ varð�̂Þ � Itotalð�̂Þ � varð�̂Þ

¼ varð�̂Þ �
XK
i¼1

Iið�̂Þ � varð�̂Þ

¼ varð�̂Þ �
XK
i¼1

wi � varð�̂Þ

¼
XK
i¼1

varð�̂Þ � wi � varð�̂Þ

¼
XK
i¼1

Wi

ð6Þ

Thus, we have Wi ¼ varð�̂Þ � wi � varð�̂Þ ¼ varð�̂Þ � Iið�̂Þ � varð�̂Þ, and these Wi allow us to derive study
weights on the variance scale, as now described.

2.4 Derivation of percentage study weights

Given the meta-analysis solution of (4), it is well-known that the corresponding percentage study weights are
obtained by:

% weight of study i ¼ 100%�
wiPK
i¼1 wi

Thus, those studies with the largest wi values will have the largest weight. Following equation (6), we can
equivalently consider percentage weights in terms of Wi by:

% weight of study i ¼ 100%�
WiPK
i¼1 Wi

¼ 100%�
Wi

varð�̂Þ
ð7Þ

Therefore, the well-known percentage weights for a single parameter meta-analysis are equivalent to a

decomposition of the variance, varð�̂Þ, into the sum of independent Wi terms. This concept is utilised in Section
3 to extend percentage study weights to more complex, multi-parameter meta-analysis models. Indeed, the

traditional use of 100%� wi=
PK

i¼1 wi to define percentage weights actually works on the precision scale, which

does not generalise to a multi-parameter meta-analysis model. However, the use of the variance scale does
generalise, and so use of Wi will become increasingly important.

3 Derivation of percentage study weights in multi-parameter meta-analysis and
meta-regression models

We now use the concept of decomposing the variance of parameter estimates to derive percentage study
weights in more complex, multi-parameter models. We begin with one-stage IPD models with continuous
outcomes via linear mixed models, before then extending to meta-regression, multivariate meta-analysis and
generalised linear mixed models. We focus on random effects models, as fixed effect models are merely a
simplified case.
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3.1 One-stage meta-analysis using linear mixed models

3.1.1 Model specification and estimation

A one-stage IPD meta-analysis model for continuous outcomes can be expressed within a linear mixed model in
matrix form, using a design matrix, X, for the fixed effects, b, and a design matrix, Z, for the random effects, u:23,24

Y ¼ Xbþ Zuþ e ð8Þ

Here Y is a column vector containing all the continuous response values from all the participants from all
studies, with length therefore equal to the total number of participants across studies. b is a column vector
containing all the unknown fixed (mean) effects in the model, u contains the study-level random effects
(typically assumed to follow a multivariate normal distribution with mean vector 0 and variance matrix G),
and e contains the participant-level residuals (typically assumed to follow a multivariate normal distribution
with mean vector 0 and variance matrix R). A detailed example is given in the supplementary material 1(a), for
a one-stage ANCOVA meta-analysis model with a random treatment effect.20

Let V be the variance of Y conditional on X, which can be expressed as:23

V ¼ varðYÞ ¼ varðXbþ Zuþ eÞ ¼ ZGZT
þ R ð9Þ

The supplementary material 1(a) gives the specification of V for a one-stage ANCOVA model (also see the
example in Section 4.1). The generalised least squares procedure minimises Y� Xbð Þ

TV�1 Y� Xbð Þ with respect to
b by differentiating with respect to b and setting the first derivative to zero; this gives the well-known solution of
b̂ ¼ XTV�1X

� ��1
XTV�1Y.23,24 Note that Vmust also be estimated simultaneously alongside b, through an iterative

procedure until convergence is achieved. However, here we assume V is considered ‘known’ when used within the
solution for b̂, and thus V is usually replaced with its estimate.

The estimated variance matrix of b̂ can be obtained as the inverse of Fisher’s observed information matrix by
varðb̂Þ ¼ XTV�1X

� ��1
, where again V is usually replaced with its estimate and assumed known. Each diagonal

element of XTV�1X
� ��1

gives the estimated variance of one of the parameter estimates in the model. For instance,
for the ANCOVA example in the supplementary material 1(a), XTV�1X

� ��1
is a 7 by 7 matrix, and the element

(7,7) of the matrix gives varð�̂Þ, the variance of the treatment effect, �̂.

3.1.2 Decomposing Fisher’s information matrix

Let varðb̂Þ ¼ ðXTV�1XÞ�1 be the estimated variance matrix of b̂ after a one-stage IPD meta-analysis including all
participants from all trials, with the diagonal elements for this matrix giving the corresponding variance of each
parameter estimate (e.g. varð�̂Þ). Fisher’s observed information matrix for b̂ is Itotalðb̂Þ ¼ ðvarðb̂ÞÞ

�1
¼ XTV�1X
� �

.
We now generalise the decomposition outlined in Section 2.3. That is, we decompose Fisher’s information

matrix for b̂ into the sum of study-specific information matrices, using Itotalðb̂Þ ¼
PK

i¼1 Iiðb̂Þ. This assumes the meta-
analysis contains independent studies, and thus, although we give the general form of model (8) above, we are only
focusing on meta-analysis with independent studies.

To obtain Iiðb̂Þ, we suggest re-computing Fisher’s information for b̂ after removing the participants in all but the
ith study, whilst keeping the remaining elements of X and V exactly as specified/estimated in the full meta-analysis
of all studies. This extends the observation noted under equation (5) that Iið�̂Þ can be computed by re-fitting the
meta-analysis model but with just study i included, whilst holding remaining variance estimates at their values
from the full analysis. Therefore, the user must specify and derive,

Iiðb̂Þ ¼ XT
i V
�1
i Xi

� �
ð10aÞ

where XT
i is the reduced design matrix containing rows just for participants in study i, and Vi is the corresponding

reduced variance matrix with entries as estimated in the full analysis.
An alternative approach is to derive Iiðb̂Þ using,

Iiðb̂Þ ¼ XTV�1ri X
� �

ð10bÞ

where X is as specified in the full analysis and VrðiÞ is held to be the same as V in the full analysis, but for
those patients not in study i the associated diagonal elements of V are replaced with a very large number
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(e.g. 1000000000) and all associated covariance terms set to zero (thus, the ‘ri’ notation denotes the elements of V
have changed for all participants except those in study i). This data augmentation approach ensures that
participants external to study i have negligible contribution toward Iiðb̂Þ. Appendix 1 shows how SAS Proc
Mixed can be used for this purpose, capitalising on the ‘parms’ statement;24 it also conveniently invokes the
fast SAS estimation procedure to derive Iiðb̂Þ, and thus the user avoids needing to specify design and variance
matrices themselves.

3.1.3 Derivation of percentage study weights

We now propose how to derive percentage study weights in one-stage, multi-parameter IPD models by
generalising the approach outlined in equations (6) and (7) for single parameter meta-analysis models. Recall
that in equations (6) and (7), we decomposed the total variance of a parameter estimate into the sum of
independent Wi terms (Wi ¼ varð�̂Þ � Iið�̂Þ � varð�̂Þ), and used this to derive percentage weights by comparing
each Wi with the total variance. For one-stage models, we now have a multi-parameter situation, and so aim to
decompose the variance matrix (varðb̂Þ) into the sum of independent weight matrices, Wiðb̂Þ say. This can be
achieved by generalising equation (6) by utilising the decomposition of Fisher’s information matrix, as follows:

varðb̂Þ ¼ varðb̂Þ � Itotalðb̂Þ � varðb̂Þ

¼ varðb̂Þ �
XK
i¼1

Iiðb̂Þ � varðb̂Þ

¼
XK
i¼1

Wiðb̂Þ

ð11Þ

Equation (11) uses the variance scale (left-hand side), whilst utilising (within the right-hand side) the property
that the total information matrix can be decomposed into the sum of the Iiðb̂Þ. This is consistent with the
framework for weights in the simpler, single-parameter meta-analysis model (as derived in equation (6)), and
follows the same decomposition of the variance as shown for multivariate meta-analysis by Jackson et al.25 It
therefore forms the basis of our proposal for deriving percentage study weights in all meta-analysis models
containing independent studies. It provides study-specific weight matrices (Wiðb̂Þ ¼ varðb̂Þ � Iiðb̂Þ � varðb̂Þ), and
these sum to give the total variance matrix for b̂.

For each parameter estimate within b̂, percentage study weights can now be derived by comparing the
corresponding diagonal entries of Wiðb̂Þ and varðb̂Þ. So, if the parameter corresponding to row r of b̂ is of
interest, we can derive

% weight of study i ¼ 100%�
Wiðb̂Þr,rPK
i¼1 Wiðb̂Þr,r

¼ 100%�
Wiðb̂Þr,r

varðb̂Þr,r
ð12Þ

where the ‘r,r’ notation refers to the element (r,r) of the corresponding matrix. For the ANCOVA example in the
supplementary material 1(a), there are seven parameter estimates and so each Wiðb̂Þ is a 7 by 7 matrix; the
treatment effect parameter (y) is the seventh, and so the values of Wiðb̂Þ7,7 and varðb̂Þ7,7 are needed to derive
the percentage study weight toward the treatment effect estimate, �̂.

It is important to note that the diagonal elements of each Wiðb̂Þ can be different. Therefore, the percentage
weight of study i may differ for each parameter in the model, and so should be reported separately.

3.2 Meta-regression models

Meta-regression models extend model (3) by including study-level covariates, and could be applied in the second
stage of a two-stage approach. Such models are themselves general linear models containing multiple parameters,
and so percentage study weights toward a parameter can be derived akin to the approach described above. That is,
one needs to:

. fit the meta-regression and obtain varðb̂Þ,

. derive Iiðb̂Þ using either equation (10a) or (10b), which corresponds to Fisher’s information matrix from a ‘meta-
regression’ of just study i, with within and between-study variances held fixed at their values from the full
analysis,
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. derive Wiðb̂Þ ¼ varðb̂Þ � Iiðb̂Þ � varðb̂Þ,

. calculate percentage study weights for each parameter using equation (12).

An example is given in Section 4.2.

3.3 Multivariate meta-analysis and network meta-analysis models

A multivariate meta-analysis or multivariate meta-regression model jointly synthesises multiple correlated effects
simultaneously (e.g. for multiple outcomes), whilst accounting for their correlation.26 Typically, they assume a
multivariate normal distribution within and between studies, and thus are a multiple outcome extension of
univariate models (2) and (3). As such, they also fall within the linear mixed model framework of equation
(8),27 and so percentage study weights in multivariate models can also be derived using our proposal based on
equations (11) and (12). Indeed, these will produce percentage weights that correspond exactly to those proposed
by Jackson et al. for multivariate meta-analysis and implemented within the ‘mvmeta’ module of Stata.28 Jackson
et al. derive their percentage weights by utilising a decomposition of the score statistic, but this reduces to the same
proposal as in equation (12).

Multivariate meta-analysis is illustrated further in Section 4.3, in the context of a network meta-analysis of
multiple treatment comparisons. Like an IPD meta-analysis, a network meta-analysis can be conducted as either a
two- or a one-stage approach. The two-stage approach first derives treatment effect estimates (contrasts) between
pairs of treatments in each study (together with their variances and correlations), and then synthesises them in a
multivariate meta-analysis model.18 This can be implemented in, for example, the Stata module ‘network’,29 and
provides percentage weights according to the approach of Jackson et al.25 An alternative one-stage approach is
possible,30,31 and rather fits the framework in Section 3.1 for a continuous outcome or Section 3.4 for a binary
outcome.

3.4 One-stage meta-analysis using generalised linear mixed models

We now extend the principles above to generalised linear mixed models, for example to derive percentage study
weights in a multi-parameter one-stage IPD meta-analysis of binary outcomes. This is especially important when
events are rare, as models utilising a more exact (e.g. binomial) within-study likelihood are then preferred.32

Further, network meta-analysis of binary outcomes typically uses a one-stage approach.33

3.4.1 Model specification

The generalised linear mixed model can be expressed as,23

Y ¼ E Y½ � þ e

where gðE Y½ �Þ ¼ Xbþ Zu
ð13Þ

and Y is the vector of patient responses, b is a column vector containing all the unknown fixed parameter effects in
the model, X and Z the design matrices, E Y½ � is the expected value of Y (conditional on X, Z and u), u contains the
study-level random effects and e contains the participant-level residuals. As in the linear mixed model (8), u are
typically assumed to follow a multivariate normal distribution with mean vector 0 and variance matrix G. We can
write V ¼ varðYÞ ¼ varðE Y½ �Þ þ R, where R is the residual variance matrix, var(e). However, unlike the linear
mixed model, V is not easily specified; the random effects and residuals are on different scales, and therefore V is
no longer a simple linear addition of the residual variance matrix plus random effects variance matrix. Brown and
Prescott note that a first-order approximation to V is,23

V � BZGZTBþ R ð14Þ

where B is a matrix of variance terms, relating to the underlying distribution of data Y. For example, for
independent responses from the Bernoulli and binomial distributions, B would be a diagonal matrix with
diagonal entries of pijð1 � pijÞ, where post-estimation pij would be replaced by p̂ij, the best linear unbiased
predictor (BLUP) of Yij from the model (otherwise known as the empirical Bayes estimates). These are usually
available post-estimation in statistical software. For independent responses from a Poisson distribution, the
diagonal terms in B would simply be the number of predicted events (counts). For further explanation about

Riley et al. 2891



V, we refer to supplementary material 1(b). If residuals are uncorrelated then R¼AB,23 where A is typically a
matrix of numerical constants that again depends on the distribution of the data. For Bernoulli data and Poisson
data with no offset term, A is the identity matrix. For binomial data, A is a diagonal matrix with diagonal entries
1=nij, where nij is the total number of attempts.

3.4.2 Decomposing Fisher’s information matrix

To acquire a decomposition of Fisher’s observed information matrix for b̂, we propose using the solution for
Itotalðb̂Þ based on maximising the pseudo-likelihood for a linearised pseudo-variable, Y*, as proposed by Wolfinger
and O-Connell.34 This transforms the response variable Y to an approximately linear scale, Y*, and allows the
generalised least squares solution for Itotalðb̂Þ to be used. Therefore, our use of the pseudo-likelihood approach is a
convenient way to provide a tractable solution for Itotalðb̂Þ in order to decompose it using Itotalðb̂Þ ¼

PK
i¼1 Iiðb̂Þ, and

then proceed to derive percentage study weights as outlined for general linear mixed models. The process is as
follows.

First, the user should calculate varðb̂Þ based on the pseudo-likelihood estimation solution, which is given by
Brown and Prescott as,23

varðb̂Þ ¼ Itotalðb̂Þ
� ��1

¼ XTðVY�Þ
�1X

� ��1
ð15Þ

where

VY� ¼ varðY�Þ ¼ ZGZT
þ B�1RB�1 ð16Þ

and all matrices are as defined previously. The elements of G, B and R are forced to have their estimated values
from the full meta-analysis, as obtained from the model estimation of choice (for example, Gauss-Hermite
quadrature). For B, this requires the user to specify (functions of) BLUP values (such as p̂ijð1 � p̂ijÞ for
Bernoulli or binomial responses).

As Itotalðb̂Þ ¼ XTðVY�Þ
�1X, the Iiðb̂Þ can be obtained using,

Iiðb̂Þ ¼ XT
i V
�1
Y�iXi

� �

where VY�i ¼ ZiGiZ
T
i þ B�1i RiB

�1
i

ð17aÞ

and ‘i’ again refers to the matrix as specified in the full analysis, except with the removal of participants except
those in study i. As previously noted for equation (10b), a potentially simpler way of deriving Iiðb̂Þ is to compute

Iiðb̂Þ ¼ XTV�1riY�X
� ��1

ð17bÞ

where X is as specified in the full analysis, and VriY� is the same as VY� in the full analysis, except that all those
participants external to study i have corresponding diagonal elements of V replaced with a very large number (e.g.
1000000000), and all covariance terms set to zero. This data augmentation approach ensures that all participants,
except those in study i, have negligible contribution.

3.4.4 Deriving percentage study weights

By obtaining varðb̂Þ and Iiðb̂Þ using equations (15) and (17a/17b), respectively, we can now use equation (11) to
derive a weight matrix (Wiðb̂Þ) for each study, and then derive percentage study weights for each parameter using
equation (12). An example is given in Section 4.3 for network meta-analysis.

3.5 Study information is not only based on the number of participants

Kontopantelis and Reeves35 developed a Stata module for generating forest plots from a one-stage, multi-
parameter IPD meta-analysis, and state that ‘Patient weights are uniform and therefore each study’s weight is
the ratio of its participants over the total number of participants across all studies’. However, this will not usually
be correct as the contribution of each study toward Fisher’s total information of a parameter estimate depends on
their patients’ elements within XTV�1X

� �
, and these are not necessarily the same. For example, in a one-stage

ANCOVA meta-analysis model (see Section 4.1 below), a study’s contribution to V will depend on the proportion
of patients in the treatment group and its residual variance (�2i ). Even if all studies were of the same total sample
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size, those studies with large residual variances and a small proportion of treated patients are likely to have less
information relative to other studies with small residual variances and an equal proportion of treated and control
patients. This is illustrated further in Section 4.1.

4 Applied examples

We now illustrate the proposed methods with some examples.

4.1 IPD meta-analysis models to estimate a summary treatment effect for
a continuous outcome

Wang et al.36 investigated whether active anti-hypertensive treatments lower systolic blood pressure (SBP)
compared to placebo or no treatment. Ten trials were ultimately included, providing IPD for a total of 28,581
patients as detailed elsewhere.15,20 Table 1 provides the treatment effects in each trial for SBP at the end of follow-
up, with the treatment effect defined as the mean difference in treated and control groups after adjusting for
baseline SBP. Of interest is using meta-analysis to give a summary treatment effect.

Figure 1 and Table 1 show the study-specific estimates, the summary meta-analysis results and the percentage
study weights from a one- and a two-stage IPD meta-analysis. The two-stage approach used an ANCOVA model
(1) in each study separately to obtain treatment effect estimates, which were then pooled using random effects
model (3). The alternative one-stage approach also used an ANCOVA model with separate intercepts (�i) and
baseline adjustments (�i) per trial and a random treatment effect:

yFij ¼ �i þ liyBij þ �ixij þ eij

�i ¼ � þ ui

ui � N 0, �2
� �

eij � Nð0, �2i Þ

ð18Þ

Parameters for model (18) are as defined previously; the supplementary material 1(a) also gives the
matrix expression for the model. The key parameter of interest is the summary treatment effect, �, defined as
the mean difference in SBP at follow-up for the treatment minus the control group, after adjusting for baseline
values.

A step-by-step guide to the analyses is given in Appendix 1, alongside SAS Proc Mixed code. REML was used
to estimate both models. After fitting each model, varðb̂Þ was obtained directly from the software package, and
then Iiðb̂Þ was derived using equation (10b) with variance components held fixed to those in the full meta-analysis.
A weight matrix Wiðb̂Þ was then derived for each study using equation (11), and percentage study weights derived
using equation (12).

The summary treatment effect estimate and 95% CI are almost identical for the one- and two-stage models
(Figure 1). This is unsurprising as all trials are large, and one- and two-stage approaches are considered to be
very similar in such situations.7 This is reinforced further by examining the percentage study weights (Figure 1,
Table 1). These too are almost identical, reflecting that the studies have the same contribution regardless of
whether a one- or two-stage approach is used.

In Table 1, we also present percentage study weights based on the proportion of participants, as suggested by
Kontopantelis and Reeves.35 Clearly, these are somewhat different to those percentage values from the one- and
two-stage models, as they ignore differences in residual variances and proportions of participants in the treatment
group. For example, for study 3, the contribution based on Kontopantelis and Reeves is 0.60%, whilst in the one-
and two-stage analyses, it is 4.99%.

4.2 IPD and meta-regression models to evaluate a treatment-covariate interaction

We now extend the hypertension example to compare percentage study weights in three IPD meta-analysis models
that are commonly used for estimating treatment-covariate interactions. Interest is in whether age is a treatment
effect modifier, and thus whether older patients are more (or less) likely to respond well to hypertension treatment
than younger patients.
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Let zij define the age of patient j in study i, and let �zi be the mean age of all patients in study i. To estimate
treatment-covariate interactions, an often used two-stage approach (which is also possible without IPD) is to fit
model (1) in the first stage and then a meta-regression in the second stage such as:

�̂i ¼ �i þ "i

�i ¼ � þ �A �zi þ ui

ui � Nð0, �2Þ

"i � Nð0, varð�̂iÞÞ

ð19Þ

This performs a weighted regression of the overall treatment effect estimates (�̂i) against the mean age in each
study, with the across-study (‘A’) interaction of �A denoting how a one-unit in mean age increases (or decreases)
the overall treatment effect in a study.

A better approach is a two-stage analysis of within-study (‘W’) interactions.6,15 Here, model (1) is extended to
include an adjustment term for age and an interaction term between age and treatment effect (�Wizijxij). This model
is estimated in each study separately to give �̂Wi and varð�̂WiÞ, which are pooled, for example in a fixed effect meta-
analysis akin to model (2):

�̂Wi ¼ �W þ "i

"i � Nð0, varð�̂WiÞÞ
ð20Þ

This leads to the summary within-study interaction, �̂W, which estimates the change in treatment effect for a
one-unit increase in age.

Figure 1. Forest plot for the hypertension meta-analysis comparing the percentage study weights and summary treatment effect

results for the two- and one-stage IPD meta-analyses estimated using REML*.

*�̂2 was 7.13 in the one-stage analysis and 7.18 in the two-stage analysis.
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Some researchers suggest one-stage models that amalgamate within-trial and across-trial interactions.37,38 This
extends model (18) by including an adjustment term for age and an interaction term between age and treatment
effect (�WAzijxij), as follows:

yFij ¼ �i þ liyBij þ �izij þ �ixij þ �WAzijxij þ eij

�i ¼ � þ ui

ui � N 0, �2
� �

eij � Nð0, �2i Þ

ð21Þ

This leads to �̂WA, the amalgamated interaction estimate (a weighted average of both within-trial and across-
trial associations). This may be prone to ecological bias: that is, the difference between the summary within-trial
interaction and the across-trial interaction may be non-zero. The ecological bias can be estimated by re-
parameterising as follows,39

yFij ¼ �i þ liyBij þ �izij þ �ixij þ �Wzijxij þ eij

�i ¼ � þ �E �zi þ ui

ui � N 0, �2
� �

eij � Nð0, �2i Þ

ð22Þ

where �E is the ecological bias (�W-�A) and other terms are as defined previously.
REML was used to fit each of the four models, and then percentage weights were obtained in the same manner

as described in Appendix 1. The summary results and percentage study weights are very different for �̂A, �̂WA and
�̂W (Table 2). The �̂A from meta-regression model (19) is the largest and statistically significant at the 5% level.
Model (21) also produces a significant �̂WA, but the �̂W from model (20) is closer to zero and non-significant. The
differences arise due to the discrepant use of within-trial and across-trial associations in each analysis,
as mentioned. These leads to differences in the percentage study weights for each of �̂A, �̂WA and �̂W. For
example, study 1 has a 21.3% contribution toward �̂A in the meta-regression, a 8.9% contribution toward �̂WA

in model (21), and an even lower 4.5% contribution toward �̂W in model (20).

Table 2. Percentage study weights for the examination of a treatment-age interaction in one- and two-stage IPD random effects

meta-analyses of 10 randomised trials of anti-hypertensive treatment versus control on systolic blood pressure.

Percentage study weights using equation (12)

Trial

ID (i)

Mean

age (�zi)

Model (19):

Meta-regression

to estimate �A

(across-trial

interaction)

Model (20):

Two-stage

approach to

estimate �W

(within-trial

interaction)

Model (21):

One-stage

approach to

estimate �WA

(amalgamated

interaction)

Model (22):

One-stage

approach to

estimate �E

(ecological bias)

1 42.27 21.26 4.52 8.88 17.33

2 69.63 2.91 0.66 1.24 2.36

3 73.34 3.64 0.81 1.56 3.13

4 41.56 24.90 11.64 15.13 21.72

5 45.27 16.68 28.78 25.62 19.63

6 70.42 6.15 1.45 2.70 4.93

7 71.59 8.16 17.13 14.81 10.21

8 75.95 7.56 0.29 2.15 5.87

9 66.58 2.35 8.35 6.79 3.74

10 70.23 6.40 26.36 21.11 11.09

Meta-analysis

result (95% CI)

�̂A¼�0.132

(�0.246, �0.018)

�̂W ¼�0.050

(�0.116, 0.016)

�̂WA¼�0.072

(�0.128, �0.0149)

�̂E¼�0.086

(�0.220, 0.048)
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Using model (22) to quantify the ecological bias gives �̂E¼�0.086, highlighting that the across-trial interaction
estimate is more negative in magnitude than the within-trial interaction. The percentage study weights (Table 2)
show that studies 1, 4 and 5 have the most contribution toward this bias with weights of 17.3%, 21.7% and 19.6%,
respectively. These studies have substantially lower mean ages (close to 40 years) compared to other studies (close
to 70 years) and were also the most dominant in the meta-regression.

4.3 One- and two-stage network (multivariate) meta-analysis of multiple treatments

Our final example is a network meta-analysis of 28 trials to compare eight thrombolytic treatments after acute
myocardial infarction30; for brevity, we refer to these treatments as A to H. Of interest is a comparison of the odds
of mortality by 30–35 days for each pair of treatments. Table 3 provides the raw data in terms of rij (the number of
deaths) and nij (the total patients) for each treatment group, in each study. It is also provided as a Stata dataset in
supplementary material 2. As there are eight treatments, there are 28 comparisons of interest overall; however,
only 13 of these comparisons are directly reported in at least one trial. Further, the maximum number of trials
providing direct evidence for a particular comparison is only eight (C versus A). Thus, there is potentially large
opportunity to borrow strength in this example; in other words, each treatment comparison can utilise correlated
and indirect information from other pairs of treatments (contrasts) in the network, alongside any direct evidence.

There are many possible models to perform a network meta-analysis of this data. In particular, either a two-
stage ‘contrast-based’ approach, or a one-stage ‘arm-based’ approach can be used, as defined by Salanti et al.33

For the two-stage approach, first the data (such as in Table 3) are used to calculate log odds ratio estimates, and

Table 3. Raw data in terms of r (no. of events) and n (total patients) for eight treatment groups (A-H) in the thrombolytic network

meta-analysis.

Study

Treatments

evaluated

(design)a rA nA rB nB rC nC rD nD rE nE rF nF rG nG rH nH

1 A B D 1472 20173 652 10344 723 10328

2 A C H 1455 13780 1418 13746 1448 13773

3 A C 9 130 6 123

4 A C 5 63 2 59

5 A C 3 65 3 64

6 A C 887 10396 929 10372

7 A C 7 85 4 86

8 A C 12 147 7 143

9 A C 10 135 5 135

10 A D 4 107 6 109

11 A F 285 2992 270 2994

12 A G 10 203 7 198

13 A H 3 58 2 52

14 A H 3 86 6 89

15 A H 3 58 2 58

16 A H 13 182 11 188

17 B E 522 8488 523 8461

18 B F 356 4921 757 10138

19 B F 13 155 7 169

20 B G 2 26 7 54

21 B G 12 268 16 350

22 B H 5 210 17 211

23 B H 3 138 13 147

24 C G 8 132 4 66

25 C G 10 164 6 166

26 C G 6 124 5 121

27 C H 13 164 10 161

28 C H 7 93 5 90

aA¼ SK; B¼AtPA; C¼ t � PA; D¼ SKþ tPA; E¼Ten; F¼Ret; G¼UK; H¼ASPAC as referred to in Lu and Ades.30
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their within-study variances and correlations, for each pair of treatments in each study. Second, a multivariate
meta-analysis model can be written to synthesise all the effect estimates jointly, whilst accounting for their within
and between-study correlations, which enables the incorporation of both direct and indirect evidence toward each
summary treatment effect. A common reference group is needed and a design matrix used to express all available
treatment comparison estimates (contrasts) in relation to this reference group. For example, with treatment A as
the reference group, the log odds ratio estimate for C versus B can be expressed in terms of the log odds ratio
estimate for C versus A and the log odds ratio for B versus A (as logOR(C,B)¼ logOR(C,A) � logOR(B,A)). Under an
assumption of consistency in the direct and indirect evidence, the general form of this network meta-analysis
model can be written as a linear mixed model,18,29

ĥi � NðXib,Si þGÞ ð23Þ

where ĥi is a vector of treatment effect estimates from study i, which has ‘known’ within-study variance matrix Si; b
is a column vector containing the basic parameters, which are the average treatment effects (for each treatment
compared to the chosen reference treatment); Xi is a design matrix linking the treatment effect estimates in study i
to the basic parameters; and G contains the variances and covariance of the random effects. Typically, G contains
diagonal entries of �2 and off-diagonal entries of 0.5�2, which ensures there is a common between-study variance of
�2 for all treatment contrasts in the network. Missing treatment effect estimates in some studies can be
accommodated easily, for example using data augmentation, and for further details on this model specification,
we refer to White et al.18,29 Our key focus in this article is that equation (23) is a linear mixed model, and so
percentage weights follow according to the description in Section 3.1. For the thrombolytics example, Stata code is
given in supplementary material 3 for this model, and b is a 7 by 1 column vector and G a 7 by 7 matrix, as there
are eight treatments and thus seven basic parameters. The two-stage approach assumes effects follow a
multivariate normal distribution both within and between studies. This is an approximation, and a more exact
approach is to model the raw data in Table 3 directly in a one-stage, arm-based model that includes a binomial
likelihood within studies. These data are essentially the IPD here (as no patient-level covariates are of interest),
and so this can be viewed as a one-stage IPD model that falls within the generalised linear mixed model framework
outlined in Section 3.4. The general specification of this model can be written as

rij � Binomial nij, pij
� �

logit pij
� �
¼ 	i þ Xibi

bi � Nðb,GÞ

where pij is the probability of death for patients in treatment group j of study i; nij and rij are the number of
participants and events, respectively, in study i for treatment group j; the 	i are separate study intercept terms,
which relate to a chosen reference group in that study; bi are the study-specific true treatment effects (in relation to
the reference group); and Xi, b and G are as defined above. For the thrombolytics example, this one-stage model
can be written as,

rij � Binomial nij, pij
� �

logit pij
� �
¼ 	i þ �1iBAij þ �2iCAij þ �3iDAij þ �4iEAij þ �5iFAij þ �6iGAij þ �7iHAij

�1i

..

.

�7i

0
BB@

1
CCA � Nðb,GÞ

ð24Þ

where 	i are separate study intercept terms that relate to the reference group in that study; the BAij to HAij terms
are either 1, 0 or �1 depending on the treatment group that corresponds to rij; b is a 7 by 1 column vector
containing the basic parameters, which are the seven summary treatment effects (for B compared to A, up to H
compared to A); and G is a 7 by 7 matrix with diagonal entries of �2 and off-diagonal entries of 0.5�2. The model is
explained in more detail elsewhere,18,31 but supplementary material 3 provides SAS code to fit the model and
details the coding of the BAij to HAij variables more explicitly, plus the subsequent derivation of percentage study
weights.

The seven summary treatment effect results are given in Table 4 for both the one- (24) and the two-stage
(multivariate) approach, with corresponding percentage study weights. The estimate of �2 was held at the same
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value in both models, to illustrate a comparison of summary estimates and percentage weights for one- and two-
stage network meta-analyses when �̂2 was the same. We chose a �̂2 of 0.00023, which was the REML estimate from
the two-stage approach. The ML estimate from the one-stage approach was zero and thus only slightly smaller.
The summary estimates and percentage study weights barely changed when using �̂2¼ 0, but for completeness,
these are shown in supplementary material 4.

Table 4 shows that the summary effects and percentage study weights are almost identical for both one- and
two-stage models. Thus, the multivariate normal approximation to the one-stage binomial approach performs
well, and the contribution of each study is barely changed. In other network meta-analysis applications, this may
not be the case, especially when there are rare events as then the one-stage approach is preferred.40

The described one- and two-stage models are known as ‘consistency’ models as they assume direct and
indirect evidence are consistent (in agreement). One can extend them to add inconsistency terms for each
treatment contrast, either by including them as additional random effects with mean zero,41–43 or by
including them as fixed effects.18,31 When the latter is done for this dataset, as described by White et al.,
there is generally strong support for the consistency model, as seven of the eight inconsistency parameters
are smaller than their standard errors. The only inconsistency parameter that is statistically significant
(p¼ 0.024) relates to the indirect evidence toward the H versus B treatment comparison. Though this may be
a chance finding, it is useful to examine it. Derivation of percentage study weights is helpful here to reveal which

Table 4. Percentage study weights (using equation (12)) and summary treatment effects for one- and two-stage network meta-

analysis models assuming consistency.a

Percentage weights from the two-stage

network (multivariate) meta-analysis

Percentage weights from the one-stage

network meta-analysis

B vs A C vs A D vs A E vs A F vs A G vs A H vs A B vs A C vs A D vs A E vs A F vs A G vs A H vs A

Study 1 81.14 0.01 97.70 26.67 18.44 0.53 0.01 80.62 0.01 97.65 26.44 18.24 0.56 0.03

Study 2 0.02 58.05 0 0.01 0 0.23 90.34 0.03 57.88 0 0.01 0.01 0.22 89.78

Study 3 0 0.35 0 0 0 0 0.06 0 0.36 0 0 0 0 0.06

Study 4 0 0.14 0 0 0 0 0.02 0 0.17 0 0 0 0 0.03

Study 5 0 0.15 0 0 0 0 0.02 0 0.15 0 0 0 0 0.02

Study 6 0 39.18 0 0 0 0.15 6.33 0.01 39.14 0 0 0 0.15 6.39

Study 7 0 0.25 0 0 0 0 0.04 0 0.27 0 0 0 0 0.04

Study 8 0 0.43 0 0 0 0 0.07 0 0.46 0 0 0 0 0.07

Study 9 0 0.33 0 0 0 0 0.05 0 0.37 0 0 0 0 0.06

Study 10 0.05 0 0.55 0.02 0.01 0 0 0.05 0 0.57 0.02 0.01 0 0

Study 11 10.58 0 0.99 3.48 46.54 0.07 0 10.52 0 0.97 3.45 46.50 0.07 0

Study 12 0.13 0.07 0.01 0.04 0.03 19.36 0.01 0.13 0.07 0.01 0.04 0.03 19.28 0.01

Study 13 0 0.03 0 0 0 0 0.18 0 0.03 0 0 0 0 0.18

Study 14 0 0.05 0 0 0 0 0.29 0 0.05 0 0 0 0 0.33

Study 15 0 0.03 0 0 0 0 0.18 0 0.03 0 0 0 0 0.18

Study 16 0 0.14 0 0 0 0 0.86 0 0.14 0 0 0 0 0.86

Study 17 0 0 0 67.13 0 0 0 0 0 0 67.21 0 0 0

Study 18 5.82 0 0.54 1.91 33.80 0.04 0 5.78 0 0.53 1.90 33.86 0.04 0

Study 19 0.12 0 0.01 0.04 0.68 0 0 0.13 0 0.01 0.04 0.74 0 0

Study 20 0.11 0.03 0.01 0.04 0.03 6.72 0 0.13 0.03 0.01 0.04 0.03 8.17 0

Study 21 0.51 0.12 0.05 0.17 0.12 31.02 0.02 0.50 0.11 0.05 0.16 0.11 30.45 0.02

Study 22 0.77 0.09 0.07 0.25 0.17 0 0.56 1.05 0.12 0.10 0.35 0.24 0 0.76

Study 23 0.49 0.06 0.05 0.16 0.11 0 0.35 0.76 0.09 0.07 0.25 0.17 0 0.55

Study 24 0.08 0.09 0.01 0.03 0.02 12.07 0.01 0.08 0.08 0.01 0.02 0.02 11.04 0.01

Study 25 0.11 0.12 0.01 0.04 0.03 17.24 0.02 0.12 0.13 0.01 0.04 0.03 17.77 0.02

Study 26 0.08 0.09 0.01 0.03 0.02 12.55 0.01 0.08 0.09 0.01 0.03 0.02 12.23 0.01

Study 27 0 0.14 0 0 0 0 0.36 0 0.14 0 0 0 0 0.37

Study 28 0 0.07 0 0 0 0 0.19 0 0.07 0 0 0 0 0.19

Total 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Summary

log odds

ratio (s.e.)

�0.161

(0.046)

0.002

(0.032)

�0.044

(0.049)

�0.156

(0.080)

�0.113

(0.062)

�0.197

(0.222)

0.014

(0.039)

�0.166

(0.046)

0.003

(0.032)

�0.045

(0.049)

�0.160

(0.080)

�0.117

(0.062)

�0.197

(0.219)

0.017

(0.039)

aThe between-study variance was estimated at 0.000231 for the two-stage analysis, and kept at this value for the one-stage analysis; this was done to

illustrate a comparison of the summary results and percentage weights for one- and two-stage models when the between-study variance was the same.

Results for different between-study variance estimates are given in supplementary material 4.
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studies are contributing most toward the apparent inconsistency. Just four studies contribute: study 1 (17.1%),
study 2 (16.8%), study 22 (39.6%) and study 23 (26.5%). Studies 22 and 23 have about two thirds of the weight,
and they both compare H and B. They represent the direct evidence, which is discrepant from the indirect
evidence coming from studies 1 and 2, which compare A, B and D, and A, C and H, respectively. Therefore, the
inconsistency is arising from the indirect comparison through A (i.e. the loop involving A, B and H), and our
percentage weights reveal that studies 1 and 2 have a very similar contribution toward this indirect evidence. In
situations like this, it is helpful for analysts to compare studies that give indirect information with those that
give direct information, to see if there are any obvious differences that might explain the inconsistency. Nothing
was identified here and, as mentioned above, there is generally little evidence to support inconsistency in this
network meta-analysis overall.

5 Discussion

In this article, we proposed how to calculate percentage study weights in multi-parameter meta-analysis and meta-
regression models. Figure 2 summarises the four necessary steps. The approach generalises how percentage weights
are calculated in a traditional single parameter meta-analysis, and now allows percentage weights to be derived for
more complex models including meta-regression, one-stage IPD analyses and multivariate and network meta-
analysis. Though focus will usually be on deriving percentage study weights toward summary (treatment) effects
and (treatment-covariate) interactions, our approach is applicable for any parameter that is specified within a
meta-analysis model that can be expressed as a general or generalised linear mixed model. This was shown in our
second and third examples, where percentage study weights toward bias and inconsistency terms were examined,
which may be of more interest to methodologists than clinicians.

Our proposal assumes that studies are independent, and utilises a decomposition of Fisher’s observed
information matrix to decompose the total variance matrix of parameter estimates into study-specific
contributions, from which percentage weights are derived. The variance scale is a sensible one for quantifying
percentage weights, as the variance of a parameter estimate summarises the total information data toward
that estimate, which comprises both direct (from the parameter itself) and indirect information (from
other, correlated parameters in the model). Derivation of percentage study weights is simple for traditional
(single parameter) meta-analysis models, and is straightforward to extend for one-stage (multiple parameter)
general linear mixed models as the information matrix is not dependent on the parameter estimates themselves;
thus the study-specific information matrix (Iiðb̂Þ) can easily be derived by using any software that can re-fit the
one-stage model including just study i, whilst allowing variance terms to be fixed. However, for generalised
linear models, the residual variances are a function of the expected response values, and therefore it is harder
to re-fit models whilst fixing variances after taking out studies (or cases44,45). Supplementary material 1 illustrates
this with an example. Furthermore, the original scale of the analysis is non-linear and so identifying sums of
information matrices is not immediate. For this reason, we proposed utilising the pseudo-likelihood approach of
Wolfinger and O-Connell,34 which transforms the response data to a pseudo-linearised variable, so that the
maximum likelihood (generalised least squares) solution for Fisher’s information matrix can again be utilised
and decomposed.

In many situations, percentage study weights derived from a two-stage approach will be a close approximation
to those from a one-stage approach, as two- and one-stage analyses often give similar meta-analysis results, as seen
in examples 1 and 3.8 However, in our second example, there were substantial clinically and statistically important
differences in the one- and two-stage models, as they were making discrepant use of between-study information.
Similarly, when there are rare outcomes, then the percentage study weights for one- and two-stage models may
differ, as the former uses a more exact (e.g. binomial) within-study likelihood and so summary results often
differ.32,40 Recent evidence suggests one-stage models are increasingly being used.2

For time-to-event data, it has been shown how the Cox regression model can be fitted using a Poisson model
due to the shared form of the contribution to the partial log-likelihood, by splitting follow-up time into as many
intervals as there are events.46 Crowther et al. show how to perform a one-stage fixed or random effects IPD meta-
analysis of survival data in this manner,47 which additionally provides the baseline hazard, and may be useful for
prognostic modelling. Therefore, following this approach, meta-analysts can derive percentage study weights as
described above for generalised linear mixed models. However, as each patient now has multiple rows (one for
each interval), the approach for model estimation and subsequently derivation of percentage study weights may be
computationally intensive. To address this, one can rather use larger intervals, such as quarter year or half year, to
approximate the likelihood and improve computation time for derivation of percentage study weights.
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When analysing without the inclusion of continuous individual-level covariates, it may be possible to collapse the
IPD to just a few rows per study to make the computation easier. This approach was used in the network meta-
analysis example.

Our work complements the PRISMA-IPD reporting guidelines, which state that: ‘. . . the display of forest plots
for key outcomes is advocated, irrespective of the type of approach to statistical analysis’.48 Percentage study
weights should be routinely presented on forest plots, which in our experience, are rarely provided for IPD
meta-analyses. Most software packages link forest plots with a two-stage meta-analysis. To our knowledge, the
only exception is the ‘ipdforest’ module in Stata, which provides a forest plot with a one-stage summary result after
either a one-stage linear or logistic (mixed) model is fitted. However, this module computes percentage study
weights as the ratio of a study’s total participants over the total number of participants across all studies. Our first
example (Table 1) showed that this does not correspond closely to percentage values derived using our approach.
We therefore hope the ‘ipdforest’ module may be updated in the future.

Decompose

Obtain

study’sUse

where

Figure 2. Step-by-step guide to the derivation of percentage study weights in meta-analysis and meta-regression models.
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Our work should also be applicable to other types of datasets involving independent clusters, where the weight
of each cluster is of interest. This may include the analysis of a multi-centre randomised trial, or the analysis of an
observational study with clustering by hospital, practice or region.

Finally, our described approach utilises Fisher’s information matrix for b̂, but ignores Fisher’s information
matrix for any estimated variance parameters. In other words, our derivation of percentage study weights ignores
uncertainty in variance parameter estimates, and thus assumes that Fisher’s information matrix for b̂ is
independent from Fisher’s information matrix for estimated (residual and between-study) variances. We
consider this is sensible, as the most commonly used meta-analysis models either assume variance estimates are
‘known’ or, post-estimation, inflate confidence intervals for b̂ to account for uncertainty in variance estimates.49

For the latter situation, our approach should be valid as it focuses on decomposing the observed information
toward b̂ itself, which does not change when post-estimation correction factors (such as Hartung-Knapp and
robust variance estimators50–52) are applied in order to derive confidence intervals. Nevertheless, further
consideration of this issue is needed, and in particular, whether our approach should be modified to situations
where the uncertainty in variance estimates is propagated toward the estimation of b̂ itself.53 A further extension
might consider percentage weights toward variance estimates, but this should be considered in a standard (pair-
wise) meta-analysis first, before extension to multi-parameter (e.g. network) meta-analysis models.

In summary, we have proposed how to derive percentage study weights for multi-parameter meta-analysis and
meta-regression models, which extend those for single parameter models. We hope this encourages researchers to
reveal the contribution of each study toward meta-analysis results, and will be useful for methodologists aiming to
understand and explain differences or potential biases in meta-analysis models.
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Appendix 1

Example SAS Proc Mixed code to obtain percentage study weights toward one-stage
IPD meta-analysis model (18)

The method described below is a way of utilising existing software to obtain percentage study weights in a
convenient way for an IPD meta-analysis model with a continuous outcome. It avoids the user needing to
specify the entire X and V matrices by hand. It can also be applied to a meta-regression model, as this can also
be expressed within the general linear mixed model framework.

Step (i): Fit one-stage IPD meta-analysis model (18) to all studies
proc mixed cl method¼ reml data¼hypertension;
class idnr trial;
/* save the estimated variance matrix of the parameter estimates as a dataset ‘varbfull’ */
ods listing;
ods output covb¼ varbfull;
/* write down the model, where sbpl is final systolic blood pressure, idnr is the unique id number of the patient,

trial is the trial identifier, sbpi is the baseline systolic blood pressure, and treat is the treatment group identifier */
model sbpl¼ trial trial*sbpi treat / noint s cl covb;
/* place a random effect on the treatment effect to allow for between-trial heterogeneity */
random treat / type¼ un subject¼ trial;
/* the following ensures a separate residual variance per trial */
repeated / type¼ un subject¼ idnr(trial) group¼ trial;
run;
This provides the summary meta-analysis results, including b̂, the residual variances (one per study), the

between-study variance, and vartotalðb̂Þ ¼ XTV�1X
� ��1

, the latter which is saved as ‘varbfull’. There are 21
estimated parameters in the main equation, and parameter 21 is the treatment effect (�). Therefore, the (21,21)
entry of vartotalðb̂Þ ¼ var(�̂)¼ 0.868.

2904 Statistical Methods in Medical Research 27(10)



Step (ii): implement equation 10(b) to obtain Iiðb̂Þ. For example, for study 1 do the following. Re-fit model (18)
to all studies but for studies other than study 1, give the residual variances a large value (to ensure they have
negligible contribution); and for study 1, hold fixed residual and between-study variances at those values from the
full analysis.

proc mixed cl method¼ reml data¼hypertension;
class idnr trial;
ods listing;
ods output covb¼ varb;
model sbpl¼ trial trial*sbpi treat / noint s cl covb;
random treat / type¼un subject¼ trial;
repeated / type¼ un subject¼ trial(idnr) group¼ trial;
/* use the ‘parms’ statement to specify values for the residual variances and between-study variance */
parms
/* set the between-study variance at the value from the full analysis obtained from step (i) */
7.1295
/* fix the residual variance for study 1 at its value from the full analysis obtained from step (i) */
276.31
/* set the residual variances for study 2 to 10 at a large value */
100000000000
100000000000
100000000000
100000000000
100000000000
100000000000
100000000000
100000000000
100000000000
/* use ‘eqcons’ to ensure that SAS holds fixed the 11 specified variances */
/ eqcons¼ 1 to 11;
run;
We then simply need to invert the stored varðb̂Þ (named ‘varb’) to obtain I1ðb̂Þ
Step (iii): obtain a weight matrix (Wiðb̂Þ) for each study, by twice multiplying its own information matrix by the

variance matrix from the meta-analysis. Below is example code to do the matrix calculations for study 1:
proc iml;
/* convert the stored dataset ‘varb’ from the analysis of study 1 into a matrix /*
use varb;
read all var {Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8 Col9 Col10 Col11 Col12 Col13Col14 Col15 Col16
Col17 Col18 Col19 Col20 Col21} into varb;
/* invert this matrix to obtain Fisher’s information matrix for study 1 */
fish¼ inv(varb);
/* convert the stored dataset ‘varbfull’ into a matrix */
use varfull;
read all var {Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8 Col9 Col10 Col11 Col12 Col13Col14 Col15 Col16
Col17 Col18 Col19 Col20 Col21} into varfull;
/* obtain the weight matrix (W1) for study 1 */
weight¼ varfull*fish*varfull;
quit;
The element (21,21) of W1ðb̂Þ is 0.096
Step (iv): Apply equation (12) to obtain the percentage weights of interest. For example, the percentage weight

of study 1 toward the summary treatment effect estimate is:

% weight of study i ¼ 100%�
W1ðb̂Þ21,21

varðb̂Þ21,21
¼ 100%�

0:096

0:868
¼ 11:06%
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