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Abstract: Although the human lifespan has increased in the past century owing to advances in
medicine and lifestyle, the human healthspan has not kept up the same pace, especially in brain
aging. Consequently, the role of preventive health interventions has become a crucial strategy, in
particular, the identification of nutritional compounds that could alleviate the deleterious effects
of aging. Among nutrients to cope with aging in special cognitive decline, the long-chain omega-3
polyunsaturated fatty acids (ω-3 LCPUFAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid
(EPA), have emerged as very promising ones. Due to their neuroinflammatory resolving effects,
an increased status of DHA and EPA in the elderly has been linked to better cognitive function
and a lower risk of dementia. However, the results from clinical studies do not show consistent
evidence and intake recommendations for old adults are lacking. Recently, supplementation with
structured forms of EPA and DHA, which can be derived natural forms or targeted structures, have
proven enhanced bioavailability and powerful benefits. This review summarizes present and future
perspectives of new structures of ω-3 LCPUFAs and the role of “omic” technologies combined
with the use of high-throughput in vivo models to shed light on the relationships and underlying
mechanisms betweenω-3 LCPUFAs and healthy aging.

Keywords: structured lipids; omega-3 PUFAs; cognitive function; cell senescence; DHA; EPA;
omic technologies

1. Introduction

After the last hundred years of medical and life science technology progress and
advances, people now live longer than ever before. Currently both preventive and thera-
peutic approaches are failing to reduce non-communicable diseases (NCDs), but they have
succeeded in increasing our life-expectancy. Consequently, although human lifespan has
significantly increased, our healthspan has not kept up the pace [1].

Demographically, society is getting older and the aging process includes progressive
and irreversible biological changes, resulting in a growing risk of suffering from chronic
diseases, cognitive impairments, physical disfunctions, and an increased probability of
dying [1]. In fact, the loss of cognitive function is considered the most critical change during
aging and it is projected that the patients with dementia—considered as significant loss
of cognitive function which should be distinguished from neurodevelopmental disorders,
such as intellectual disability [2]—will reach up to 115.4 million in 2050 [3].

The aging process is conditioned by the interactions between our genetic inheritance
and environmental influences. While aging, our cells are submitted to a wide range of
intrinsic and extrinsic insults, including oncogenic activation, oxidative and genotoxic
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stress, mitochondrial dysfunction, irradiation, and mutagenic agents [4]. In response to
these disturbances, a stable state of cell cycle arrest happens and the cellular ability to
proliferate decreases entering into a phase of senescence [4].

Senescent cells undergo morphology changes, chromatin remodelling, metabolic re-
programming and secrete a complex mix of mostly proinflammatory factors, like IL-1
and TNF-α. As senescent cells are more abundant, it leads to a potentially chronic in-
flammatory state independent from the activation of immune cells, which may impair
tissue homeostasis [5]. This phenomenon of chronic low-grade systemic inflammation
is called “inflammaging” and is considered to play a central role in the pace of aging,
in the impairment of cognitive and physical functions and lastly, in the development of
age-related disease.

In addition, many intrinsic and environmental factors generate oxidative stress which
is a common phenomenon caused by an imbalance between production and detoxification
of free radicals. Free radicals, mainly reactive oxygen and nitrogen species (RONS), can
damage cells and tissues leading to the activation of proinflammatory pathways which
contribute to the above mentioned “inflammaging” [6] leading to a higher degree of
cellular senescence.

To improve the healthspan and the quality of life in the elderly, it is crucial to consider
the role of preventive health interventions. Preventing disease, not only has positive health
and well-being outcomes, which is the most important impact, but also wider economic
significance, since the healthcare system is not prepared to handle the pressure of an aged
society. Consequently, the goal of the scientific community is to find non-pharmacological
therapies to prevent the most common age-related disfunctions and especially, those related
with the loss of cognitive function, thus extending the well-being and optimal health of
aging people for the longest possible time [7].

Following this approach, two powerful and recent strategies, functional foods and
exercise, have been shown to decrease the risk of aging-related diseases. As nutrition
is closely linked with health status, there is a growing demand for appropriate dietary
patterns that include food supplements and functional foods to address healthy aging.
Bioactive compounds with proven anti-inflammatory and antioxidant effects are suitable
as anti-aging ingredients, but few of them like vitamin E, vitamin B12 and B6 or tea
polyphenols have shown consistently improved cognitive effects [8–11].

Among nutrients assessed for brain health, the omega-3 polyunsaturated fatty acids
(ω-3 PUFAs) must be highlighted, specifically theω-3 LCPUFAs: DHA and EPA. Increased
intake of ω-3 LCPUFAs, which are mainly found in fish and other seafood, have been
associated with better cognitive function, slower rates of cognitive decline and an overall
lower risk of developing dementia [12,13]. Furthermore, DHA and EPA are promising
bioactive ingredients in the treatment of more severe neurological age-related disease like
Alzheimer’s or Parkinson’s disease [14,15]. However, some clinical studies with healthy
subjects have failed to prove a direct effect between cognitive function improvement and
ω-3 LCPUFAs supplementation during aging [15].

Thanks to the research of bioactive compounds for healthy aging, new structured
forms ofω-3 LCPUFAs have emerged as promising ingredients with more powerful effects
than simpler forms of DHA and EPA. This group of structured PUFAs comprises a wide
range of larger structures, like triglycerides, phospholipids or derived lipid mediators of
ω-3 LCPUFAs, and they have been proven to have greater bioavailability and stronger
anti-inflammatory and antioxidant effect than conventionalω-3 PUFAs [16,17] according
to the findings from in vitro and preclinical studies.

This review summarizes the current perspectives ofω-3 LCPUFAs on the improvement
of cognitive function during aging and compares their potential with new structures of
ω-3 LCPUFAs. In addition, high-throughput technologies and new biological models for
elucidating unknown mechanisms and as screening platforms for novel structures ω-3
LCPUFAs will be explored.
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2. Senescence, Aging and Bioactive Compounds

When the phenomenon of senescence starts to grow in the nervous system, brain
function impairment occurs. To understand the relationship between senescence onset and
its negative implications on the nervous system and brain function, and how nutrition can
modulate this relationship, the biological mechanisms of senescence should be updated.

2.1. Nutrients and Anti-Cellular Senescence Targets

As stated above, senescence is a physiological stress response of mammalian cells that
results in the development of senescent cells (SC) with distinct physical, molecular, and
metabolic signatures. Based on the type of induction, three broad categories of cellular
senescence are defined: replicative senescence (telomere attrition), oncogene-induced
senescence (activation of oncogenes), and genotoxic or oxidative stress-induced senescence.

Regardless of the different triggers of cellular senescence, SC are invariably accompa-
nied by impaired mitochondrial functions, increased intracellular RONS and production
and activation of the DNA damage response. Late SC, exhibit characteristic secretion of a
milieu of cytokines and growth factors causing a chronic inflammation state independent
from the activation of immune cells which may impair tissue homeostasis, a phenomenon
known as inflammaging as mentioned above [18]. As a strategy to fight against tissue
homeostasis impairment, three nutrition-mediated anti-cellular senescence targets may be
established, according to the current literature.

2.1.1. Redox Homeostasis

Increased oxidative stress can directly accelerate the development of cellular stress
and establish a senescence program in different cells. Nutritional status can be of par-
ticular importance in this context as several studies have shown that consumption of
antioxidant compounds like the green tea component epigallocatechin gallate (EGCG) [19],
resveratrol [20], quercetin [21], vitamin C [22], and minerals such as zinc [23], have proven
anti-cellular senescence attributes through improved redox homeostasis in both in vitro
and in vivo studies [24].

2.1.2. Cell-Cycle Regulation

The prolonged persistence of SC in tissues is a consequence of their ability to resist the
triggering of apoptotic cell death due to deregulation of anti-apoptotic and pro-apoptotic
pathways. It has been demonstrated that targeted apoptosis of SC can attenuate age-
related dysfunctions, therefore applying strategies that can selectively remove SC are
of considerable interest in reducing SC burden with age [25]. Natural compounds, like
resveratrol [26], EGCG [27] and probiotic bacterial metabolites [28], have been identified as
“senolytics” or “senomorphics” which can specifically ablate SC by inhibiting anti-apoptotic
pathways (i.e., Bcl-2) or alter their phenotype by interfering with inflammatory pathways
controlling deleterious paracrine effects of cellular senescence [18]. Emerging early clinical
trials are showing promising results of senolytics and senomporhics such as improvments
in age-related morbidity and mortality [29].

2.1.3. Nutrient Sensors

Various evolutionarily conserved nutrient signalling pathways are strongly implicated
in organismal aging and longevity [30]. Examples of these nutrient-sensing longevity
pathways include the mechanistic target of rapamycin (mTOR) pathway, the sirtuin en-
zyme family, and the insulin/IGF-1 signalling pathway. Various bioactive substances such
as resveratrol [31,32], berberine [33,34], curcumin [35,36], and probiotic bacterial metabo-
lites [28], have shown the dual capacity to activate or inhibit these pathways. Although the
underlying relationship between these nutrient-sensing pathways and aging are yet un-
clear; it has been established that these pathways are impaired by aging and their molecular
targeting can positively increase healthspan and lifespan.
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However, the specific reason behind the age-related accumulation of SC is not yet
clear and seems to be related to the immune system. As age increases, the immune system
undergoes characteristic age-related dysfunctions collectively called immunosenescence,
which may compromise the ability of immune cells to effectively clear SC. Consequently,
targeting immune cells for promoting efficient clearance of SC is rapidly emerging as a
novel anti-aging strategy [18,37].

2.2. Omega-3 LCPUFAs to Cope with Senescence

Blood levels of EPA and DHA are in the low range for most of the world population [38]
despite them being promising bioactive nutrients contributing to healthy aging. Bothω-3
LCPUFAs modify cellular function through overlapping and distinct mechanisms of action.
An increased intake of EPA and DHA exerts an enhanced appearance of those fatty acids in
the membrane phospholipids of cells, and they potentially cope with cellular senescence
through the mechanisms outlined below [15,39].

2.2.1. Specialized Pro-Resolving Mediators and Anti-Inflammatory Effects

Many of the biological actions ofω-3 LCPUFAs are driven via derived-lipid mediators.
These bioactive lipids are a varied group of enzyme-derived oxygenated forms mainly with
anti-inflammatory roles, of which the specialized pro-resolving mediators (SPMs) must be
highlighted. The SPMs derived from the C20 PUFAs, such as EPA, are called eicosanoids,
whereas those that come from C22 PUFAs, as DHA, are called docosanoids. Biosynthesis of
these SPMs are catalysed by three enzyme systems: cyclooxygenase (COX), lipoxygenase
(LOX), and cytochrome P450 (CYP450), and their biological effect its triggered via a series
of different cell-type specific receptors. EPA produces E-series resolvins (RvE), whereas
DHA produces protectins, D-series resolvins (RvD) and maresins (MaR) [14,40]. Some of
these SPMs were proven to reduce chronic inflammation states characteristic of elderly in
preclinical and clinical studies [40,41] through their inflammatory revolving effects acting
as senomorphic agents [42–44].

In addition to the effect of SPMs, DHA and EPA also produce anti-inflammatory
effects by changing the cell membrane composition. On one hand, they partially replace
the ω-6 PUFAs of the membrane which are precursors of pro-inflammatory lipid medi-
ators, specifically arachidonic acid (ARA), thus reducing pro-inflammatory substrates
and allowing less systemic inflammation risk [45]. On the other hand, theω-3 LCPUFAs
make the cell membranes more fluid by replacing saturated fatty acids, which affects the
behaviour of several membrane proteins and signalling platforms (lipid rafts) [46]. As
a consequence, the transmission of inflammatory signals within cells becomes blunted,
resulting in a reduced activation of proinflammatory transcription factors like nuclear factor
kappa-light-chain-enhancer of activated B cells (NFκB) [47], and probably also showing a
senomorphic effect.

Furthermore, DHA and EPA can be released from the membrane and transported
to the nucleus where they can modify the gene expression through interaction with tran-
scription factors, such as peroxisome proliferator activated receptors (PPARs) [47], thus
modulating fat metabolism and anti-inflammatory pathways and theoretically affecting
nutrient-sensing longevity pathways.

2.2.2. Antioxidant Pathway

Omega-3 LCPUFAs also have a well described antioxidant capacity which could
alleviate oxidative stress. Interestingly, despiteω-3 LCPUFAs being very prone to oxidation
by accepting electrons and becoming oxidized lipids that might be harmful for the cells, they
have the ability—particularly DHA—to enhance the activity of the antioxidant enzymes,
improving detoxification and counteracting oxidative stress [48,49].

This phenomenon happens, hypothetically, because an increment of DHA in the
cellular membrane phospholipids slightly increases ROS production through derived
oxidated forms ofω-3 LCPUFAs, which induces antioxidant signalling and prepares the
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cell to be more resilient against oxidative stress. In fact, like a hormetic phenomenon,ω-3
LCPUFAs induces damage in a primary stage, but once the moderate oxidative stress is
resolved, adaptation occurs [17,50].

DHA is able to activate antioxidant defences and prepares the cell to counteract future
ROS threats through several pathways: (1) by regulating the nuclear factor erythroid 2
like 2 (NFE2L2) and its downstream target protein, heme-oxygenase-1 (HO-1), that con-
trols the gene expression of a large variety of antioxidant, cytoprotective and detoxifying
enzymes [17,51]; (2) by enhancing the activity of antioxidant enzymes like superoxide dis-
mutase (SOD), catalase (CAT) [50,52], G-glutamyl-cysteinyl ligase and glutathione reductase
(GR) [53], and their synthesis through activation of transcription factors such PPARα [50]
or NFE2L2 [52]; and (3) by significantly increasing reduced glutathione production (GSH),
which decreases oxidative damage in cellular stress models, with or without stimulation
of glutathione metabolism enzymes [51–53]. Quite detailed experimental studies have
provided some lines of evidence of these interrelationships, however, the exact mechanism
has still to be elucidated.

3. Bioactive Compounds and Improvement in Cognitive Function

A progressive decline in memory, language, problem-solving and other cognitive
skills that affects a person’s ability to perform everyday activities, leads to mild cognitive
impairment and may progress to dementia [54].

As mentioned previously, late senescent cells and changes in microglial function
(immunosenescence) cause neuroinflammation and oxidative stress due to an enhanced pro-
inflammatory cytokine production and weak redox homeostasis. Inflammation and ROS
drive a progressive impairment of brain cell processes, such as neural membrane fluidity
reduction, less synaptic plasticity and low neurogenesis [55]. These impaired functions
may lead to irreversible neural changes like loss of grey and white matter volume, and
significant alterations in memory, learning abilities and spatial recognition which have been
described in both humans and animals [55,56] driving the age-related cognitive decline.

Although there is much to be clarified about the specific molecular mechanisms in
which dietary components influence cognitive function, a growing literature supports the
idea that certain dietary patterns and some bioactive compounds are able to modulate
brain structure and function, exerting their beneficial influence throughout the entire
lifespan [10,57].

Vitamins of the B group have been studied for their potential effect on cognitive
function because of their role in homocysteine metabolism, specially vitamins B6 (pyri-
doxine), B9 (folate) and B12 (cobalamin) [11]. Several clinical studies have found that
raised concentrations of homocysteine in plasma might be associated with increased risk of
dementia in people older than 65 years [58]. Supplementation, over 3 years, of 0.8 mg a
day of folate—higher than twice the recommended daily intake [59]—improved cognition
in participants aged 50–70 years, but the intervention was more effective in those with high
baseline homocysteine concentrations [60]. In general, most clinical trials of B vitamins
have found no association with cognitive function. Only individuals with high baseline
homocysteine, low baseline vitamin B concentrations, or established cardiovascular and
cerebrovascular disease may benefit most from vitamin B supplementation [10].

As the brain is highly susceptible to oxidative damage, it has been suggested that
inadequate antioxidant defences might mediate the pathogenesis and progression of demen-
tia [61]. Many antioxidant nutrients such as vitamin C, vitamin E [62], zinc [63] (cofactor
for enzymes with antioxidative activity) and carotenoids [64], and non-nutrient food ingre-
dients like polyphenols [65], anthocyanins [66], lignans [67] or allicin [68] have been proven
to be beneficial for age-related cognitive impairment. But, as far as there is not a deficit of
the mentioned nutrients or a pathological situation, clinical trials with supplementation of
these mentioned antioxidant compounds have not demonstrated a beneficial effect on any
cognitive outcome in healthy patients [10].
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Despite this, among nutrients addressed for brain health, ω-3 PUFAs, specifically
ω-3 LCPUFAs must be highlighted [9]. Aging is associated with decreased cerebral ω-3
LCPUFAs levels due to reduced absorption, lowerω-3 PUFA capacity to cross the blood-
brain barrier [12], and decreased capacity to convert PUFAs into LCPUFAs in the brain. As
a major neuronal membrane component, DHA regulates neurogenesis, synaptogenesis,
and neural membrane fluidity, which in turn modulates the speed of cell signalling and
neurotransmission. In comparison with DHA, EPA constitutes a minimal proportion of
total brain LCPUFA, but EPA inhibits proinflammatory metabolism and promotes adequate
cerebral blood flow [69]. Altogether, a large amount of evidence demonstrates that poorω-3
LCPUFA status in brain and plasma is associated with age-related cognitive decline [70].

4. Omega-3 LCPUFAs against Age-Related Cognitive Impairment

Although DHA has a structural role as a major component neuronal membrane fatty
acid, it is endogenously transformed in the nervous system to an endocannabinoid-like
metabolite called N-Docosahexaenoylethanolamine (synaptamide). Mainly through the
specific target receptor GPR110, a G-protein coupled receptor, synaptamide promotes neu-
rogenesis, neurite outgrowth and synaptogenesis in developing neurons. GPR110 induces
cAMP production and phosphorylation of protein kinase A (PKA) and the cAMP response
element binding protein (CREB) [71]. This signalling pathway leads to the expression of
neurogenic and synaptogenic genes and suppresses the expression of proinflammatory
genes. GPR110 is highly expressed in the brain during development but also during adult-
hood, emphasizing its relevance in the hippocampal region where neurogenesis is still
happening [72,73].

Once it was proven that the pharmacological inhibition of neuroinflammation im-
proved memory in aged murine models [74], the anti-inflammatory role ofω-3 LCPUFA
gained attention as a possible therapeutic nutrient for healthy aging. Recent studies with
aged rats [75] and mice [55] from a preventive point of view, show an improvement in
memory and cognitive skills after a reduction in microglial activation and neuroinflamma-
tion, following supplementation with EPA and/or DHA. Moreover, in animal models ω-3
LCPUFAs and SPMs also have proven neuroinflammatory resolving effects and cognition
improvements in age-related diseases, like Parkinson’s [40,76].

In preclinical data, human trials show a negative correlation between increased dietary
supply of ω-3 LCPUFAs and pro-inflammatory markers [41] but, a positive correlation
with verbal performance and learning ability in elderly people with high risk of early
cognitive decline [40]. In patients with coronary artery disease and potentially ischemic
risk, which reduces cerebral blood flow and contributes to the development of dementia,
a daily high-dose of 1.86 g of EPA and 1.5 g of DHA over a 30 months period enhanced
cognitive function significantly in comparison with control [77]. Also in middle-aged to
older adults with obesity, which accelerates cognitive decline by endothelial dysfunction
(impaired vasodilatation) in the peripheral and cerebral vasculature, greater processing
speed mediated by improvements in circulatory function was observed following fish-oil
supplementation (total dose of 0.4 g EPA and 2 g DHA) [78]. Furthermore, a study with old
adults, with no risk factors, who had self-perceived cognitive function impairment (bad
memory, learning difficulty, . . . ), reported lower levels of cognitive inefficiency in activities
of everyday life following 24 weeks treatment with fish oil (daily dose of 1.6 g EPA and
0.8 g DHA) [79].

However, when the effect of ω-3 LCPUFAs are assayed in healthy older adults the
results are controversial [69]. Despite reported meta-analyses highlighting the potential
of ω-3 PUFA to improve memory [13] and cognitive decline [70], some interventional
studies have changed the perspective of the actual benefits of ω-3 LCPUFA [80,81]. As
an example, Van de Rest et al. did not find significant changes in any of the cognitive
domains for either low-dose (0.4 g/day EPA-DHA) or high-dose (1.8 g/day EPA-DHA) fish
oil supplementation groups compared with placebo in a cohort of healthy individuals aged
65 years or older [82]. More recently, Baleztena et al. reported that daily supplementation
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with 0.75 g of DHA and 0.12 g of EPA did not show an improvement in the global cognitive
function in adults over 75 years of age. They just found an apparent improvement in
memory loss when the study subjects were well nourished [83].

According to the literature, two main issues justify the divergences [15]. Firstly, the
effect of DHA and EPA depends on the stage of cognitive health assessed. This is supported
by Canhada et al. in a recent systematic review where they conclude that the most beneficial
effect of EPA and DHA supplementation in Alzheimer’s patients can only be expected
in the early stage of the disease [84]. Secondly, there were several weaknesses in the trial
protocols designed to assess the effect of EPA and DHA, such as the variability of doses of
DHA and EPA, the type of placebo used, the combination of treatments [85], the duration
of treatment, the sample size, theω-3 LCPUFA status of the participants and the cognitive
outcomes/tests measured as primary and secondary variables [15].

Therefore, since clinical trials are performed with a wide range of target population
and low consistency of biomarkers measured in the nutritional interventions, the results
from clinical studies with ω-3 LCPUFA do not allow a consensus about how traditional
forms ofω-3 LCPUFAs affect cognitive function and aging [86].

5. Structured Lipids: Innovative Omega-3 LCPUFAs Molecules for Healthy Aging

Structured lipids can be defined as chemically or enzymatically modified lipids that
change the fatty acid composition and/or the positional distribution [87]. They are created
to be applied in functional food and clinical nutrition because of their characteristics or
bioactive properties [88,89]. These structures can be a replica of natural forms of lipids
with special structures designed to have a specific function. Most of the studies mentioned
above use ethyl ester (EE) forms of DHA and EPA, or oils rich in DHA and EPA-EE for
supplementation. However, in natural matrixes containing DHA and EPA, like in blue
fish or breastmilk, they can be found in more complex structures as phospholipids (PL) or
triglycerides (TG), or in derived forms, like SPMs, synaptamide and precursors.

Studies comparing the effect of supplementation with structured TGs and PLs ω-3
LCPUFAs against EE have proven enhanced bioavailability and powerful benefits of the
structured forms in comparison with EE [90–92]. Similar intestinal absorption capacity and
bioavailability between TG and PL have been described in studies analysing the responses
of blood biomarkers [93,94], however, a greater brain absorption has been observed when
DHA is esterified to PL [95]. In contrast, supplemented diets with a source of PL-DHA,
TG-DHA or a mixture of both, resulted in similar increases in brain DHA compared to a
lowω-3 PUFA diet [96].

Positional distribution is also important in structured lipids. For example, depending
on the position of the fatty acid in the glycerol backbone of the TG (three positions, sn-1,
sn-2 and sn-3), higher or lower absorption of the fatty acids can be observed. After intake,
hydrolysis of TGs is performed by lipases, which are typically enantioselective. In the
digestive tract, fatty acids in the sn-1 and sn-3 positions of the glycerol backbone are cleaved
while the fatty acids of the sn-2 position are mainly absorbed [87] as represented in Figure 1.
In this sense, preclinical results show differences in bioavailability when dietary TGs had
DHA in the sn-1, sn-2 or sn-3 position, explained by less secretion of fecal DHA when this
was at the sn-2 position. However, the same study shows no difference in DHA content of
the fasting plasma, probably because the 5-day intervention in rats was not long enough to
modify the fatty acid profile of phospholipids [97].
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on the cells despite structured ω-3 LCPUFAs share common mechanisms with EE forms 
as schematically represented in Figure 2. In vitro studies using DHA-TG showed powerful 
antioxidant responses in comparison with EE-DHA in experiments with human 
fibroblasts and human retinal pigment epithelium cells through enhancing GSH synthesis 
significantly [17]. As mentioned before, some experimental studies have provided 
evidence about the interrelationship between DHA and GSH mainly through the 
regulation of nuclear factors like NFE2L2 [50,53], however TG-DHA seems to stimulate 
this reported pathway stronger than EE-DHA [17,48]. Moreover, a recent clinical trial 
proven significant anti-inflammatory properties after supplementation with TG-DHA 
through reduction of proinflammatory cytokines levels in patients with recurrent uveitis, 
one of the major causes of vision loss [88]. 

 
Figure 2. Schematic representation of the hypothetic mechanisms through which ω-3 LCPUFAs 
reduce neuroinflammation and improve cognitive function by modulating inflammation and 
oxidative stress in brain cells. Thick arrows express the enhanced effect of the structured forms of 
DHA and EPA (TFs, transcription factors). 

Concerning neuroinflammation and cognitive decline, in vitro and pre-clinical 
studies show improved efficacy when structured ω-3 LCPUFAs are used in comparison 
with EE [95] as detailed in Figure 2. One study where the effect of TG-DHA on microglial 
activation was assessed and compared with EE-DHA, proved that TG-DHA treatment 
protected microglia cells from oxidative stress toxicity by attenuating nitric oxide (NO) 
production and suppressing the induction of inflammatory cytokines [98]. Furthermore, 
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backbone are cleaved while the fatty acids of the sn-2 position remains. Image courtesy of Brudylab®.

In addition to differences in the absorption, there are also divergences in the effect on
the cells despite structured ω-3 LCPUFAs share common mechanisms with EE forms as
schematically represented in Figure 2. In vitro studies using DHA-TG showed powerful
antioxidant responses in comparison with EE-DHA in experiments with human fibroblasts
and human retinal pigment epithelium cells through enhancing GSH synthesis signifi-
cantly [17]. As mentioned before, some experimental studies have provided evidence
about the interrelationship between DHA and GSH mainly through the regulation of
nuclear factors like NFE2L2 [50,53], however TG-DHA seems to stimulate this reported
pathway stronger than EE-DHA [17,48]. Moreover, a recent clinical trial proven significant
anti-inflammatory properties after supplementation with TG-DHA through reduction of
proinflammatory cytokines levels in patients with recurrent uveitis, one of the major causes
of vision loss [88].

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 8 of 24 
 

 

 
Figure 1. A triglyceride of DHA digested by lipases. The sn-1 and sn-3 positions of the glycerol 
backbone are cleaved while the fatty acids of the sn-2 position remains. Image courtesy of 
Brudylab®. 

In addition to differences in the absorption, there are also divergences in the effect 
on the cells despite structured ω-3 LCPUFAs share common mechanisms with EE forms 
as schematically represented in Figure 2. In vitro studies using DHA-TG showed powerful 
antioxidant responses in comparison with EE-DHA in experiments with human 
fibroblasts and human retinal pigment epithelium cells through enhancing GSH synthesis 
significantly [17]. As mentioned before, some experimental studies have provided 
evidence about the interrelationship between DHA and GSH mainly through the 
regulation of nuclear factors like NFE2L2 [50,53], however TG-DHA seems to stimulate 
this reported pathway stronger than EE-DHA [17,48]. Moreover, a recent clinical trial 
proven significant anti-inflammatory properties after supplementation with TG-DHA 
through reduction of proinflammatory cytokines levels in patients with recurrent uveitis, 
one of the major causes of vision loss [88]. 

 
Figure 2. Schematic representation of the hypothetic mechanisms through which ω-3 LCPUFAs 
reduce neuroinflammation and improve cognitive function by modulating inflammation and 
oxidative stress in brain cells. Thick arrows express the enhanced effect of the structured forms of 
DHA and EPA (TFs, transcription factors). 

Concerning neuroinflammation and cognitive decline, in vitro and pre-clinical 
studies show improved efficacy when structured ω-3 LCPUFAs are used in comparison 
with EE [95] as detailed in Figure 2. One study where the effect of TG-DHA on microglial 
activation was assessed and compared with EE-DHA, proved that TG-DHA treatment 
protected microglia cells from oxidative stress toxicity by attenuating nitric oxide (NO) 
production and suppressing the induction of inflammatory cytokines [98]. Furthermore, 
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Concerning neuroinflammation and cognitive decline, in vitro and pre-clinical studies
show improved efficacy when structured ω-3 LCPUFAs are used in comparison with
EE [95] as detailed in Figure 2. One study where the effect of TG-DHA on microglial
activation was assessed and compared with EE-DHA, proved that TG-DHA treatment
protected microglia cells from oxidative stress toxicity by attenuating nitric oxide (NO)
production and suppressing the induction of inflammatory cytokines [98]. Furthermore,
in the same study, when 50 or 250 mg/kg of TG-DHA was given orally to mice with
autoimmune encephalomyelitis for a total of 56 days, a significant amelioration of the course
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and severity of the disease as compared to untreated animals was observed, concluding
that TG-DHA is a promising nutritional immunomodulating agent in neuroinflammatory
processes [98]. Supporting this data, another study using a Parkinsonism murine model,
which constitutes a powerful neurotoxic model, indicated that 250 mg/kg of TG-DHA
for 22 consecutive days acted as a neuroprotective agent and may constitute a promising
therapeutic adjuvant [99].

Looking for a greater bioactive and targeted effect, other types of structured ω-3
LCPUFA, in addition to PL and TG, have been tested in pre-clinical studies. This is the
case with ω-3 LCPUFAs esterified with lysophosphatidyl-choline (LPC). When LPC is
esterified with a saturated fatty acid it becomes a highly proinflammatory molecule, while
esterification with aω-3 PUFA, causes it to have the opposite role [100]. LPC has a great
affinity for the receptor MFSD2A (sodium-dependent LPC symporter 1), a transmembrane
transporter of long-chain fatty acids across the blood brain barrier (BBB) [101], located
exclusively on the luminal membrane of endothelial cells that line the blood vessels in the
brain [102]. Consequently, in vivo studies showed greater brain uptake of DHA and higher
DHA enrichment of cell membranes in neural tissue when LPC-DHA was supplemented
in comparison with PL and TG-DHA [103,104].

Another example of a special ω-3 LCPUFA is AceDoPC® [105]. It is a structured
DHA-PL acetylated at the sn-1 position—structurally similar to LPC-DHA—targeted to
improve brain DHA levels. In an experimental ischemic stroke rat model, the intravenous
injection of AceDoPC® proved to have more powerful anti-inflammatory effects, attenuat-
ing induced neuroinflammation by decreasing IL-6 production [95], in addition to exerting
more neuroprotective effects than DHA-EE in another study with a stroke rat model [106].
Moreover, a study with neural stem progenitor cells (NSPCs) derived from the adult mouse
brain showed enhanced neurogenesis with AceDoPC® over DHA-EE, especially under
hypoxigenic (ischemic) conditions in vitro [107].

Furthermore, supplementation with synaptamide, which is mentioned as a bioactive
form of DHA in the brain, has been assayed by Tyrtyshnaia et al. using synpatamide
extracted from squid and administered subcutaneously to rats as a water emulsion. Synap-
tamide treatment attenuated microglial activation, release of proinflammatory cytokines,
and decreased hippocampal neurogenesis in rats with a sciatic nerve chronic constriction
injury [108].

Studies supplementing isolated forms of SPMs, derived lipid mediators ofω-3 LCP-
UFA, have been performed. Although limited literature relates the anti-inflammatory effect
of SPMs with cognitive decline improvement [76], successful results have been observed
with the use of supplements with SPMs and precursors of SPMs. It has been proved that
supplementation with an oil enriched with SPMs and precursors, significantly increases
SPM concentration in peripheral blood in humans [109], and larger intervention studies
have been performed demonstrating that an orally administered SPM-enriched supplement
improved the quality of life and reduced pain in a sample of adults with chronic pain [110].

Considering all the favourable literature, research to test the effect on brain health of
new structures ofω-3 LCPUFA must go further to gain knowledge about the promising
effects of targeting the positional distribution ofω-3 LCPUFA, and to find new chemical
and enzymatic modification strategies to design special structures with targeted effects.

6. High-Throughput Techniques and Biological Models to Study Omega-3 LCPUFAs
and Cognitive Decline

To discover the real potential of the ω-3 LCPUFAs on healthy aging not all experimen-
tal procedures can be entirely focused on nutritional interventions. Specific mechanisms
must be elucidated, and fast screening methods for new structures of ω-3 LCPUFA are
needed. The following points suggest high-throughput techniques and models that provide
large information in a fast and cost-effective manner that might be very helpful in the study
ofω-3 LCPUFAs.
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6.1. “Omic” Technologies

Thanks to innovative breakthroughs in genome sequencing, bioinformatics, and an-
alytic tools such as liquid (LC) and gas (GC) chromatography, mass spectrometry (MS),
and nuclear magnetic resonance (NMR), “omics” technologies have appeared: genomics,
transcriptomics, proteomics, metabolomics, metagenomics and epigenomics [111]. They
are based on high-throughput identification and quantification of small and large molecules
in cells, tissues, and biofluids, and are a powerful tool for mapping global biochemical
changes and discovery of biomarkers [112]. Many omics disciplines are employed in
food and nutrition research, and it is a prevalent recognition among food scientist that
omics-based approaches are highly effective when they are exploited properly [113].

There are different motivations for conducting omic research, but commonly, they
are performed to obtain a comprehensive understanding of the biological system under
study, or to associate the omics-based molecular measurements with a clinical outcome of
interest [114]. Researchers now put the combination of multiple omics analyses (integrated
omics) into practice to exhaustively understand the functionality of food components
of which nuclear NMR and MS are major choices. Generally, NMR is easier to perform
and applicable to a wider range of compounds, although it is less sensitive compared to
MS-based techniques. In contrast, GC or LC are used depending on the property of the
target molecules [113].

The development of omic technologies brought about the expectation that an exhaus-
tive molecular description of aging-regulated processes should have been possible, thereby
shedding light on its mechanisms [115]. They would provide fast and precise information
of specific and early biomarkers of the onset of homeostatic disturbances while aging, and
this could help translational clinical research to describe quantitatively or qualitatively the
health status of an individual or underlying aging mechanism [116,117]. For example, mass
spectrometry-based omic technologies were used to reveal metabolic changes taking place
during normal brain aging: metabolomic and proteomic analyses of different regions of
mouse brain during the adult lifespan demonstrated an energy metabolic drift or significant
imbalance in core metabolite levels in the aged animals [118].

Furthermore, omics technologies have already been applied in studies searching for
the potential metabolic pathways and integrative biomarkers that would help to under-
stand the link between nutrition, food patterns [119,120] and brain health [121]. A recent
preclinical study with mice, highlighted the roles of neuroinflammation induced by gut
dysbiosis and lipid metabolism disorders in Alzheimer’s progression, through an inte-
grated metabolomic approach, showing the potential of omics techniques to understand
complex mechanisms [122]. Also, in relation to the gut brain axis, another study found
that a 28-day intermittent fasting regimen improved cognitive deficits in diabetic mice.
They detected the microbiota-metabolites-brain axis alterations by multiple-omics analyses
(transcriptomics, 16S rRNA sequencing and metabolomics), and the multi-omics approach
found a correlation among gut microbiota, plasma metabolites, and hippocampal gene
expression [123].

However, there are few articles with multi-omics analyses to study a close effect of
ω-3 LC PUFAs orω-3 PUFAs in preventing cognitive decline. Chakraborty et al. showed
through the transcriptomic analysis of rodent hemibrain that a diet high in ω-3 PUFA
stimulates the PI3K-AKT-PKC network, thus enhancing neuritogenesis (formation of new
neurites) and reinforcing synapses [124], demonstrating a significant impact of a fish oil-
enriched diet on nervous system development and neurological diseases. On the other
hand, Kaliannan et al. using transgenic rodents and a multi-omics technologies approach,
uncovered a potential pathway for the development of modern chronic diseases and cancer
from the dietary imbalance between ω-6 and ω-3 PUFA. In this case, ω-3 PUFAs were
detected as a biomarker for a potential risk factor [125].

In humans, the omic technologies are very focused on aging biomarkers detection, and
already some reviews about promising biomarkers of human aging [116] or metabolomics of
brain aging [126] can be found. Recent, literature examined whetherω-3 PUFAs, Vitamin D,
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and homocysteine formed into a nutritional risk index can explain cognitive performance of
older non-demented adults. The study showed that executive skills were superior in those
older participants with plasma EPA + DHA wt%≥ 2.53, vitamin D (25-OH-D) ≥ 25 ng/mL,
and homocysteine < 11.57 µmol/L [127].

As we are focused on the effect of ω-3 LCPUFA, lipidomic profiling, which is the
metabolomic study of lipids in the tissues, cells and biological fluids, is essential. A recent
study comparing the plasma lipidomic responses of 30-day supplementations of krill-oil
versus fish-oil in healthy young women reported significant differences in the responses
between supplements: krill-oil had a more pronounced effect onω-3-containing PL species,
in contrast to the fish-oil, which had a more significant effect on ω-3-containing neutral
lipid species [128].

The most relevant study in relation to lipidomic profiling and cognitive decline,
published by Mapstone et al. describes a lipidomic approach for detecting preclinical
Alzheimer’s disease in a group of cognitively normal older adults. It was reported that a
validated set of ten lipids from peripheral blood predicted short-term conversion to mild
cognitive impairment or Alzheimer’s disease within a 2–3 year timeframe with over 90%
accuracy [129]. These lipids have essential structural and functional roles in cell membranes,
suggesting that their peripheral blood levels and lipid profiles could be used as an early
multivariate biomarker with a well correlated ratio of neurodegeneration. Moreover, this
specific lipid profile could be used as inclusion criteria in more well-designed human
clinical trials of nutritional interventions that assess lipid effects on the prevention of
cognitive decline [121].

Remarkably, novel concepts about the relation between the gut-brain axis and cog-
nitive decline have been established through the application of metagenomics, sinceω-3
LCPUFAs and its derived mediators have already proven the capacity to change the gut mi-
crobiota through their anti-inflammatory effects in preclinical models [130,131]. In humans,
recent studies determined a correlation between ω-3 LCPUFAs and the gut microbiota
thanks to their neuroinflammatory resolving effects [132]. Menni et al. found that the DHA
intake of 350 mg/day was positively correlated with friendly bacteria through the use
of next-generation DNA sequencing (Lachnospiraceae family) in middle aged and elderly
women [133]. Moreover, a multicentre clinical trial with patients diagnosed with type 2 dia-
betes showed a change in the gut microbiota with a decrease in the Firmicutes/Bacteroidetes
ratio and an increase in the Prevotella genus after a sardine-enriched diet [134]. Altogether,
the supporting literature make it clear that multi-omic approaches are essential to study
the relation between brain aging andω-3 LCPUFAs.

6.2. Fast and Cost-Effective Experimental Models

The place of animals in our modern societies, especially of mammals, is often debated,
particularly the right to use mammals to benefit human purposes when there is the possi-
bility that they will be harmed. Moreover, not all results obtained from animals, mainly
rodents, can be directly translated to humans, although there are remarkable anatomical
and physiological similarities [135]. Consequently, more researchers have started to use
alternative in vivo models, such as invertebrates or fish, rather than mammals which are
between in vitro and rodent models, to obtain information from a complete organism in
a fast and cost-effective manner. They are especially useful for the study of regulatory
pathways and cellular mechanisms, as well as being suitable as screening platforms to test
drugs and bioactive compounds. In addition, since the food industry is getting more and
more involved in health issues by designing innovative foods that contribute to a better
nutritional profile or to a certain functionality, fast and cost-effective models can be used to
pre-screen compounds with bioactivity to speed up the demonstration of active ingredient
effectiveness [136]. As represented in Figure 3, the simultaneous combination of these sorts
of biological models with a biology systems approach using omic technologies, will make
it easier and more feasible to scale-up the business pipeline of a bioactive ingredient until
scientific and legal requirements, in terms of demonstrating efficacy are met.
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6.2.1. Caenorhabditis elegans (C. elegans)

The nematode C. elegans, frequently used to study aging because of its lifespan charac-
teristics, has emerged as a powerful model organism for drug or nutrient screening due
to its cellular simplicity, genetic amenability and homology to humans combined with its
small size and low cost [137].

Morphologically, the adult C. elegans hermaphrodite form has only 959 somatic cells,
but it has various organs and tissues, including a nervous system consisting of only
300 neurons and 56 glial cells. The genome of the nematode shares greater than 83% homol-
ogy with the human genome, sharing human disease genes and disease pathways. In addi-
tion, the main functional components of mammalian synaptic transmission, such as neuro-
transmitters, ion channels, receptors, and transporters, are conserved in C. elegans [138].

Many studies have demonstrated the usefulness of C. elegans as a tool to study the
underlying mechanisms that give rise to aging-associated neurodegenerative diseases,
including Alzheimer’s disease [139,140], and other age-related conditions like sarcopenia,
because this nematode also shows loss of muscle mass with aging [141]. Moreover, C. elegans
not only allows effects in behavioural and molecular improvements to be determined, but
also modulation of lifespan caused by the studied substance [142].

However, C. elegans has a different lipid metabolism in comparison to mammals [143].
Unlike most other animal species, the C. elegans genome encodes anω-3 desaturase enzyme
that can convert 18-carbon and 20-carbonω-6 fatty acids intoω-3 fatty acids, along with
a ∆12 desaturase, which catalyses the formation of linoleic acid from oleic acid. Thus,
C. elegans does not have any dietary fatty acid requirements. Like most animals, C. elegans
also possesses ∆6 and ∆5 desaturase enzymes, which act, in conjunction with fatty acid
elongases, on similar substrates used by mammals and other animals to form 20-carbon
PUFAs. By contrast, the nematode is not able to produce 22-carbon PUFAs due to a
lack of the specific elongase activity. These differences in the LCPUFAs’ metabolism, in
combination with the simple anatomy of C. elegans and a range of available genetic tools,
makes this organism an attractive model to study fatty acid function. In this sense, strains
containing mutations in genes of the fatty acid desaturation pathway facilitate functional
studies of PUFAs, and fatty acid composition can be manipulated both genetically and
through the diet [144].

There are already many bioactive compounds, especially polyphenols and flavonoids
derived from plant extracts [145], which have successfully demonstrated an anti-aging
effect in C. elegans and curiously through a similar mechanism [146]. For example, trials
with curcumin [147], Hibiscus sabdarifa extract [148], strawberry extract [140] and Ilex
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paraguariensis extract [149] agree in regard to the activation of the transcription factors
DAF-16 and/or SKN-1 in C. elegans, which have a homologous function to FOXO and
Nrf2 (encoded by NFE2L2) in humans, respectively [150]. In mammals, the FOXO factor
activates the expression of genes related to longevity by promoting, among others, the
synthesis of sirtuins (histone deacetylase enzymes), and the factor Nrf2 is responsible for
inducing the expression of genes encoding the enzymes of the antioxidant response.

Nevertheless, there is still few research studies assessing the effect of ω-3 PUFA using
C.elegans as an experimental model. According to a study published some years ago,ω-3
PUFAs are able to extend C. elegans lifespan through PPARα activation [151]. In contrast,
assessment of fish oil in C. elegans gave opposite results, with ω-3 PUFAs also being
observed in high doses of oil to cause a reduction in lifespan. This is probably because
excessive amounts ofω-3 PUFAs are more likely to undergo peroxidation, thus increasing
ROS production and ultimately leading to a lifespan reduction. This suggest that low
concentrations ofω-3 PUFAs are better able to improve lifespan [141], a phenomenon that
makes sense with the hormetic effect ofω-3 LCPUFAs, since it has already been reported
that low doses of phytochemicals [152] and fatty acids [153] emphasize stress-response
pathways, enhancing the regulation of various cytoprotective proteins.

C. elegans has also been used as a model to test different lipidic structures. Synthetically
structured TGs with medium and long-chain fatty acids were administered in an emulsion
to the nematode. The results showed that medium and long-chain TGs could shorten the
lifespan and increase ROS, despite TGs with mixed combinations of medium and long-chain
fatty acids not affecting the lifespan of the nematodes [89]. Furthermore, Beaudoin-Chabot
et al. performed a study where C. elegans was supplemented with deuterated trilinolenin, a
TG with 3 α-linolenic acid (ALA, the precursor of theω-3 PUFA series). Using a knockout
strain of C. elegans (fat-1) that mimics the human dietary requirement ofω-3 fatty acids, they
proved that the deuterated lipid significantly extended the lifespan of worms, prevented
the accumulation of lipid peroxides and reduced the accumulation of ROS, demonstrating
that deuterated ALA-TG could be used as a food supplement to decelerate the aging
process [154].

In addition, the nematode is a suitable model for multi-omics approaches. For example,
metabolic changes that characterize wild type and long-lived C. elegans strains have been
previously studied by applying metabolomics techniques [155]. However, a common chal-
lenge related to omics applied to aging studies is that C. elegans, as a hermaphroditic species,
can contaminate aging populations with progeny introducing a confounder factor. The
use of 5′-fluoro-2′-deoxyuridine (FUDR) can circumvent this problem because it decreases
progeny production by reducing germ cell division, but this treatment has been shown
to directly influence metabolism. To solve this problem, comprehensive time-resolved
multi-omics and modelling resource for studying the metabolic changes during normal
aging in C. elegans have started to be developed [156]. Furthermore, several microfluidic
systems for C. elegans have been developed recently, allowing automation and performing
aging experiments in a high-throughput manner [157].

To sum up, despite C. elegans possibly being sensitive to treatments withω-3 PUFAs,
it is a great model to study the mechanisms involved in the relationships between ω-3
PUFAs and aging [144]. It is faster and cheaper than other in-vivo models, such as murine
models, and it is very versatile because of its lipid metabolism, so it could be very useful
for screening assays of structuredω-3 LCPUFAs.

6.2.2. Drosophila melanogaster (Drosophila)

Drosophila is a species of fly often referred to as the fruit fly. It is typically used in
research owing to its rapid life cycle, relatively simple genetics with only four pairs of
chromosomes, and large number of offspring per generation [158]. Despite Drosophila being
predominantly used as a model to understand developmental biology, the flies have also
been used for testing new drugs in a much faster way than mammalian models; indeed they
may even be used for the initial high-throughput screening process as an alternative to cell
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culture [158]. In comparison with C. elegans, drug administration can be more complicated
because Drosophila is not so close to the medium.

Furthermore, with a median lifespan of about 60–80 days and well-conserved metabolic
pathways between fly and man, Drosophila has emerged as an excellent genetic model to
study the complexity of the aging process. Added to the ability to efficiently identify
and characterize single-gene mutations that extend lifespan, the well-developed genetic
techniques that allow precise spatiotemporal control of genetic perturbations have made
flies the premier model system to address questions about tissue-specific functional decline
and tissue–tissue interactions during the aging process [159].

Curiously, diverse studies withω-3 LCPUFAs have been made in Drosophila and DHA
and EPA have already proven to significantly increase longevity. The fly is an interesting
model to understand the fundamental mechanisms that control lipid metabolism because it
does not possess the ∆5 and ∆6 desaturases which participate in the conversion of ALA to
EPA and to DHA [160]. Champigny et al. tested monoglyceride forms of EPA and DHA in
Drosophila that showed increased bioavailability in previous studies using rodents. A dose
of 0.3 mg/mL of these monoglycerides showed potent effects on mitochondrial respiration,
specially EPA, and provided protection against lipid peroxidation by maintaining SOD
activity during aging, demonstrating that Drosophila can provide a new understanding of
the potential beneficial effects of investigating the metabolic pathways of DHA and EPA in
oxidative stress related pathologies [160].

In addition,ω-3 LCPUFAs showed neuroprotective effects in Drosophila. Their inges-
tion protected the flies against oxidative stress and consequent neuronal and mitochondrial
dysfunctions frequently found in neurodegenerative processes, reinforcing the protective
role of EPA and DHA against environmental neurodegenerative diseases [161]. Moreover,
the proven neuroprotective effect has been linked to improvements in cognitive function in
Drosophila. For example, the supplementation of fly dietary pattern with fish oil positively
impacts short-term memory and learning abilities compared to fruit flies that are provided
with a standard diet [162].

As a high-throughput screening platform, omic technologies applied to the aging
process have also been used in Drosophila, and for example, it has been measured how the
global lipidome of Drosophila changes during aging. In this study selective degradation of
TG species in flies close to death were found while PL signatures were almost unaltered
compared to normal flies at all ages, suggesting a tight control of membrane composition
throughout lifetime largely uncoupled from storage lipid metabolism [163].

6.2.3. Zebrafish

The zebrafish (Danio rerio) is a freshwater fish, traditionally used in ecotoxicology and
developmental biology studies. As an experimental organism, it has expanded to other
fields like regenerative medicine, infectious diseases, neurosciences and cancer research
among others [164]. Compelling experimental features together with its similarity with
mammals are key factors for its popularity. Zebrafish share organ make up, cellular types
and metabolic processes with vertebrates, and have orthologous genes for 70% of human
ones. However, it is mainly due to its ease of use that it is such a powerful research tool. The
zebrafish life cycle is short, and they are highly fecund, spawning hundreds of offspring
per breeding couple per week. All these advantageous features have made the zebrafish
a valuable model to demonstrate bioactivity in food research and it has been recently
introduced into this field [136].

As a model used for toxicological studies, zebrafish have been extensively used to
screen molecules with antioxidant or pro-oxidant potential by different methodologies, and
it is a suitable model to determine the pro-inflammatory resolving properties of bioactive
compounds [136]. A recent study testing aspirin in zebrafish, linked neuroinflammation
with cognitive defects showing decreased neutrophil infiltration and changes in the neurons
of the hippocampus in sleep deprived fish [165]. Despite limited literature regarding this
phenomenon in zebrafish, new data reinforce the growing utility of zebrafish to explore
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neurobehavioral bases and provide clinically translatable data [166]. Cognitive function can
be easily measured in zebrafish using learning tasks and short-term and long-term memory
tests, and neurodegenerative disorders can be assessed measuring decline in locomotion
and characteristic biomolecular and cellular markers [164].

Altogether, there is also extensive literature testing bioactive compounds and nu-
tritional interventions in zebrafish [167]. For example, flavonoids have demonstrated
chemobehavioral effects in zebrafish larvae [168], and fish fed with high-fat diets had worse
performance in behavioural tests [166].

Zebrafish are an interesting model organism for lipid metabolism studies because they
synthesize LCPUFA through a similar pathway to the one used by humans, despite not
expressing FADS1 like mammals [169]. As an example, Sierra et al. showed that DHA had
antiepileptic effects in a zebrafish model [170] and more recently, a study supplementing
ALA proved a reduction in epileptic seizure susceptibility in developing zebrafish em-
bryos [171]. However, there are still few studies about prevention of cognitive decline and
ω-3 LCPUFAs in fishes.

New omics technologies have also been used with zebrafish in food research. As
examples, nutrigenomic analysis was performed in zebrafish after consumption of poultry
egg products [172], and metagenomic analyses were made after a 6-month feeding trial
with Hermetia illucens [173].

In summary, despite zebrafish having considerably longer life cycles in compared to
worms and flies, fish husbandry is considerably more complex because animals must be
maintained in centralized aquaculture facilities with controlled water and light parameters.
Despite this zebrafish are a good model for ingredient suppliers and scientists to test the
impact on health of several compounds, particularly, because they have a high conservation
of physiological processes and genes relevant to human disease [174].

7. Conclusions

Nutritional strategies have been widely applied in the preservation of brain health
since food contains a variety of bioactive substances closely related with proper cognitive
function. Vitamins, minerals, polyphenols andω-3 LCPUFAs are key nutrients for healthy
brain aging which reduce age-related inflammation and oxidative stress, according to pre-
clinical data. Considering the role of DHA and EPA, they have promising potential against
mental health impairments, but for the time being, the relationship between cognitive
function and individual food components remains inconclusive because no clear efficacy or
mechanism has been confirmed in humans.

Recently, new structured forms of both DHA and EPA with improved bioavailability
gained attention as they could exert a greater effect in reducing neuroinflammation and
enhancing cognitive functions. This review summarizes the current state of the art in
relation to these molecules and suggests a research pipeline based on the use of high-
throughput in vivo models as screening platforms i.e., zebrafish, C. elegans and Drosophila,
in combination with cutting-edge omic technologies. The use of these innovative tools and
strategies will provide a reliable set of data to comprehend and shed light on the effect and
mechanisms of new structures ofω-3 LCPUFAs on cognitive functions and brain aging in
a cost-effective manner that could be applied in the food industry (Figure 3).

In closing, the promising potential of new structural forms of DHA and EPA as
bioactive compound for healthy brain aging could be used in more personalized dietary
patterns and in the maintenance of optimum brain health in elderly people, improving
healthspan and contributing to a more sustainable healthcare system.
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Abbreviations

AKT protein kinase B
ALA linoleic acid
ARA arachidonic acid
Bcl-2 B-cell lymphoma 2
CAT catalase
COX cyclooxygenases
CREB cAMP response element binding protein
CYP450 cytochrome P450
DHA docosahexaenoic acid
EE ethyl ester
EGCG epigallocatechin gallate
EPA eicosapentaenoic acid
FOXO forkhead box protein O
FUDR 5′-fluoro-2′-deoxyuridine
FADS1 fatty acid desaturase 1
GC gas chromatography
GPx glutathione peroxidase
GPR110 G-protein coupled receptor 110
GR glutathione reductase
GSH reduced glutathione
HO-1 heme-oxygenase-1
IGF-1 insulin-like growth factor 1
IL interleukin
LC liquid chromatography
LOX lipoxygenases
LPC lysophosphatidyl-choline
MaR maresins
MS mass spectrometry
mTOR mechanistic target of rapamycin
NCDs non-communicable diseases
NFE2L2 nuclear factor erythroid 2 like 2
NF-kB nuclear factor (NF)-kappa B
NMR nuclear magnetic resonance
NO nitric oxide
NSPCs neural stem progenitor cells
ω-3 PUFAs omega-3 polyunsaturated fatty acids
ω-3 LCPUFAs long-chain omega-3 polyunsaturated fatty acids
PI3K phosphoinositide 3-kinase or phosphatidylinositol 3-kinases
PKA protein kinase A
PKC protein kinase C
PL phospholipid
PUFAs polyunsaturated fatty acids
ROS reactive oxygen species
RONS reactive oxygen and nitrogen species
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RvD D-series resolvins
RvE resolvins
SC senescent cells
SOD superoxide dismutase
SPM specialized pro-resolving mediators
TG triglyceride
TNF tumour necrosis factor
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