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The manual delineation of the lesion is mainly used as a conventional segmentation method, but it is subjective and has poor
stability and repeatability. The purpose of this study is to validate the effect of a radiomics model based on MRI derived from
two delineation methods in the preoperative T staging of patients with rectal cancer (RC). A total of 454 consecutive patients
with pathologically confirmed RC who underwent preoperative MRI between January 2018 and December 2019 were
retrospectively analyzed. RC patients were grouped according to whether the muscularis propria was penetrated. Two
radiologists segmented lesions, respectively, by minimum delineation (Method 1) and maximum delineation (Method 2), after
which radiomics features were extracted. Inter- and intraclass correlation coefficient (ICC) of all features was evaluated. After
feature reduction, the support vector machine (SVM) was trained to build a prediction model. The diagnostic performances of
models were determined by receiver operating characteristic (ROC) curves. Then, the areas under the curve (AUCs) were
compared by the DeLong test. Decision curve analysis (DCA) was performed to evaluate clinical benefit. Finally, 317 patients
were assessed, including 152 cases in the training set and 165 cases in the validation set. Moreover, 1288/1409 (91.4%) features
of Method 1 and 1273/1409 (90.3%) features of Method 2 had good robustness (P < 0:05). The AUCs of Model 1 and Model 2
were 0.808 and 0.903 in the validation set, respectively (P = 0:035). DCA showed that the maximum delineation yielded more
net benefit. MRI-based radiomics models derived from two segmentation methods demonstrated good performance in the
preoperative T staging of RC. The minimum delineation had better stability in feature selection, while the maximum delineation
method was more clinically beneficial.

1. Introduction

Rectal cancer (RC) is one of the most frequently diagnosed
malignancies worldwide [1]. Accurate preoperative assess-
ment of T staging of rectal cancer is a critical step in clinical
treatment strategy, where a total mesorectal excision (TME)
is considered as an optimal treatment approach for early
staged RC (T1–2 and N-), while the treatment strategy for a
locally advanced stage of RC (T3–4 and/or N+) is neoadju-
vant chemotherapy (CRT) before TME [2, 3].

Currently, magnetic resonance imaging (MRI) is the
common first-line modality for accurate pretreatment assess-
ment of patients with RC. Moreover, rectal high-resolution

T2-weighted images (T2WIs) have a vital role in the preoper-
ative T staging of RC [3–5]. However, when there is an inva-
sion of muscular layers by vessels, exudative changes around
the lesion, and desmoplastic reaction, it is often hard to dis-
tinguish them from tumor infiltration outside the intestinal
wall, which often leads to common mistakes in the staging
of T2 and early T3 [4, 5].

Radiomics, a novel noninvasive tool, has shown multiple
gratifying advantages in the preoperative assessment, predic-
tion of treatment outcome, and distant metastasis of RC [6–
10], thereby providing important details of tissue features,
including the preoperative T staging. Among the factors that
affect radiomics analysis, segmentation is vital as the first step
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of the imaging process. Still, recent publications have demon-
strated that manual delineation of lesions is mainly used as a
conventional segmentation method, but it is subjective and
has poor stability and repeatability [9–11]. Zhang et al. [12]
showed that delineation discrepancy in volumes of interest
(VOIs) might affect predicting the performance of nasopha-
ryngeal carcinoma and breast cancer radiomics models.

Some studies have reported on manual delineation based
on MR images in RC patients. Most methodologies advocate
using the volume of the whole primary tumor, which is man-
ually drawn along the border of the tumor on each axial slice
to cover the lesion [7, 8, 13–18]. Yet, most studies have no
precise definition of the outer edge of the tumor. The type
of manual segmentation method that can yield higher clinical
benefit in patients with RC has been less discussed and
requires further quantitative assessment. Therefore, the aim
of our study was to validate and compare different radiomics
tumor delineation models in evaluating the repeatability of
feature extraction and exploring the preoperative T staging
of RC based on high-resolution T2WI.

2. Materials and Methods

2.1. Participants. 454 consecutive patients with RC who
underwent 3.0T rectal MRI before surgical resection at
Changhai hospital between January 2018 and December
2019 were retrospectively assessed. Inclusion criteria were
(1) pathologically confirmed RC with baseline MRI data,
(2) baseline MRI within 14 days before surgical resection,
and (3) single focus. Exclusion criteria were (1) a history of
previous malignant tumor or pelvic surgery (n = 7), (2) poor
quality of the images (n = 14), (3) received any treatment

before and/or after baseline MR examination (n = 85), and
(4) distant metastases (n = 31).

Based on the National Comprehensive Cancer Network
(NCCN) and American Joint Committee on Cancer (AJCC)
staging system [19], the patients were grouped according to
different pathological T stages: T1–2 as a group without the
penetrated muscularis propria and T3–4 as the group with
penetration.

The training dataset and validation dataset were chro-
nologically divided: 152 consecutive RC patients between
January and December 2018 were included in the training
set, while 165 consecutive RC patients between January
2019 and December 2019 were enrolled in the validation
set (Figure 1).

The present study received approval from the local Insti-
tutional Review Board (Committee on Ethics of Biomedicine,
Changhai Hospital). Informed consent was waived for this
retrospective study.

2.2. Imaging Acquisition. Rectal MRI was scanned on two 3.0
T MR systems (Siemens Skyra 3.0T and GE Discovery 750w
3.0T) using a phased array coil. Before scanning, intestinal
cleaning was performed by enema administration with 20ml
of glycerin. Oblique-axial high-resolution T2WI was perpen-
dicular to the long axis of the rectum comprising the lesion.
Routine sequences including sagittal T2WI, axial diffusion-
weighted images (DWI, b-value: 0, 1000 s/mm2), axial T1-
weighted images (T1WI), and gadolinium contrast-enhanced
T1WI of the pelvis were obtained in the sagittal, coronal,
and axial planes. Details on parameters applied for high-
resolution T2WI, which were used for radiomics models, are
shown in Supplemental Table 1.

454 consecutive patients underwent rectal MRI with a pathologic 
diagnosis of RC from January 2018 to December 2019

231 consecutive RC patients from 
January to December 2018 were 

included in training set

223 consecutive RC patients from 
January to December 2019 were 

included in validation set

152 RC patients available for 
inclusion in training set

165 RC patients available for 
inclusion in validation set

4 patients excluded with a history of

8 patients excluded due to poor quality of 
the images

previous malignant tumor or pelvic surgery

48 patients excluded due to chemotherapy 
or radiotherapy before and/or after baseline 

MR examination

19 patients excluded with distant metastases

3 patients excluded with a history of 
previous malignant tumor or pelvic surgery

6 patients excluded due to poor quality of 
the images

37 patients excluded due to chemotherapy 
or radiotherapy before and/or after baseline 

MR examinationa 

12 patients excluded with distant metastases

Figure 1: Diagram for the inclusion of patients into the study. RC: rectal cancer.
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2.3. Image Segmentation. All original high-resolution T2WI
DICOMdata were uploaded to the HuiyingMedical Radcloud
radiomics platform (http://radcloud.cn/). As the T2W images
were required from two different MR systems in our study,
image normalization was essential for all data to achieve
homogeneity. Each image intensity was normalized to mini-
mize the MRI signal variations using the following formula:

f xð Þ = s x − μxð Þ
σx

, ð1Þ

where f ðxÞ indicates the normalized intensity, x indicates
the original intensity, μ refers to the mean value, σ indicates
the variance, and s is an optional scaling, which is by default
set to 1. While reserving the diagnostic intensity discrepancy,
the signal discrepancy in MR parameters was decreased for
subsequent radiomics analysis.

The region of interest (ROI) of each lesion was manually
delineated slice-by-slice on high-resolution T2W images. We
used two kinds of manual segmentations for ROI: Method
1—minimum delineation and the smallest and clearest solid
border that best fit the tumor region, excluding the blurry
region of the margin; Method 2—maximum delineation,

while the maximummargin of the lesion, including the entire
region of perirectal tissues, was used to define the ROI
(Figure 2). Then, the volume of interest (VOI) was recon-
structed through the ROIs.

2.4. Feature Extraction and Reduction. Two radiologists with
8 (H.L.) and 5 years (Z.Z.) working experience in abdom-
inal imaging independently reviewed all these images, who
were blinded to the patient information. Next, all delinea-
tions were checked by one senior radiologist (Y.Y., who
had 10 years of working experience in rectal MRI). Two
radiologists (H.L. and Z.Z.) performed image processing
of all cases on the platform, comprising Method 1 and
Method 2, respectively. One radiologist (H.L.) repeated
the segmentations of all cases one week later for final fea-
ture selection.

1409 radiomics features were extracted from each
method of segmentation with the above platform. All fea-
tures were grouped into four categories: (1) first-order fea-
tures, which quantitatively delineated the distribution of
voxel intensities of MR image by basic indexes; (2) shape-
based features, including the shape and size of the VOI
(e.g., the volume of segmentation); (3) texture features and
quantification of the region heterogeneity differences; (4)

(a) (b)

(c) (d)

Figure 2: Representative images for lesion delineation. (a, b) Minimum delineation of ROI on oblique-axial T2-weighted MR images (arrow)
and volume renderings of VOIs (Method 1). (c, d) Maximum delineation of ROI on oblique-axial T2-weighted MR images (arrow) and
volume renderings of VOIs (Method 2).
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higher order features, which included the transformation of
first-order statistics and shape and texture characteristics,
such as logarithm, exponential, gradient, square, square
root, local binary patterns (LBP), and wavelet transforma-
tion [7, 8].

The inter- and intraclass correlation coefficient (ICC)
was calculated to assess the reliability and reproducibility
of all features. Features with both inter- and intraobserver
ICCs exceeding 0.8 were applied for subsequent analysis,
which suggested good robustness of features. To reduce
the redundant features and select the optimal features,
the variance threshold algorithm (variance threshold = 0:8)
and Select-K-Best algorithm were adopted. The Select-K-
Best algorithm used P < 0:05 to determine optimal features
related to the T stage.

2.5. Machine Learning and Model Analysis. The radiomics
analysis was performed in the Radcloud platform. Based on
the selected features, the radiomics-based model was con-
structed with the support vector machine (SVM) in the train-
ing set, then verified in the validation set. For SVM, details of
the parameters, kernel (linear), penalty coefficient (1),
gamma (auto), class weight (balanced), decision function
shape (one-to-many), and random state (NA), were used.

To assess the model’s diagnostic performance, the
receiver operator characteristic (ROC) curve was obtained
by calculating areas under the curve (AUCs) in both datasets.
The DeLong test was performed to evaluate differences
between the ROC curves. The clinical benefits of radiomics
models were estimated by decision curve analysis (DCA).
Statistical significance was defined as P < 0:05.

Table 1: Pathological characteristics of the patients.

Variables
Training set Validation set

P value
(n = 152) (n = 165)

Gender
Male 94 (61.8%) 109 (66.1%) 0.434

Female 58 (38.2%) 56 (33.9%)

Age (years) 58:9 ± 8:3 57:5 ± 8:8 0.147

BMI (kg/m2) 23:8 ± 3:2 23:5 ± 3:1 0.397

Tumor location

Upper 36 (23.7%) 32 (19.4%) 0.648

Middle 92 (60.5%) 105 (63.6%)

Lower 24 (15.8%) 28 (17.0%)

Histological type

Adenocarcinoma 131 (86.2%) 146 (88.5%) 0.325

Mucinous adenocarcinoma 15 (9.9%) 17 (10.3%)

Signet ring cell carcinoma 6 (3.9%) 2 (1.2%)

Differentiation

High 20 (13.2%) 17 (10.3%) 0.713

Moderate 112 (73.7%) 127 (77.0%)

Poor 20 (13.2%) 21 (12.7%)

T stage

T1 22 (14.5%) 17 (10.3%) 0.320

T2 44 (28.9%) 51 (30.9%)

T3 74 (48.7%) 90 (54.5%)

T4 12 (7.9%) 7 (4.2%)

N stage

N0 94 (61.8%) 99 (60.0%) 0.056

N1 37 (24.3%) 28 (17.0%)

N2 21 (13.8%) 38 (23.0%)

Tumor deposit
Negative 118 (77.6%) 137 (83.0%) 0.226

Positive 34 (22.4%) 28 (17.0%)

Lymphovascular invasion
Negative 91 (59.9%) 100 (60.6%) 0.893

Positive 61 (40.1%) 65 (39.4%)

Perineural invasion
Negative 106 (69.7%) 117 (70.9%) 0.819

Positive 46 (30.3%) 48 (29.1%)

Tumor budding
Negative 114 (75.0%) 126 (76.4%) 0.777

Positive 38 (25.0%) 39 (23.6%)

CEA∗ Negative 107 (70.4%) 115 (69.7%) 0.892

Positive 45 (29.6%) 50 (30.3%)

CA19-9∗
Negative 126 (82.9%) 126 (76.4%) 0.150

Positive 26 (17.1%) 39 (23.6%)

BMI: body mass index; CEA: carcinoembryonic antigen; CA19-9: carbohydrate antigen 19-9. ∗Preoperative blood samples.
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3. Statistical Analysis

The Kolmogorov-Smirnov statistical test was used to test for
the normality in all continuous variables. A paired Student’s t
-test or Wilcoxon test was used to compare variables between
the two groups. Qualitative variables were assessed by the
chi-square test or Fisher’s exact test. SPSS software (version
20.0, Chicago, IL, USA) and R software (version 3.4.3) were
used for statistical analysis. A P value of <0.05 was consid-
ered to be a statistically significant difference.

4. Results

4.1. Participant Characteristics. A total of 317 patients were
finally enrolled. There was no significant difference between
the training and validation sets. The patient characteristics
and pathological outcomes are summarized in Table 1.
According to the T stage by postoperative pathological exam-
ination, 183 patients (57.7%) were assigned to the penetra-
tion group.

4.2. Radiomics Features. All radiomics features extracted
from Method 1 and Method 2 with ICCs ranged from 0.005
to 1.000. 1288/1409 features of Method 1 (91.4%) and
1273/1409 features of Method 2 (90.3%) had good robustness
and were applied for subsequent analysis (both inter- and
intraobserver ICCs ≥ 0:8). There was a significant statistical
difference (Z = 18:574, P < 0:001) between the two methods.

The median (quartile range) volume of the two methods
was 5.981 (2.490, 13.907) cm3 and 11.617 (5.594, 31.117)
cm3, respectively. There was a significant difference in tumor
size between Method 1 and Method 2 (Z = 3:29, P = 0:001).

Finally, 4 optimal features (Method 1) and 7 optimal
features (Method 2) associated with T stage were selected to
build the radiomics models (Model 1 and Model 2) (Table 2
and Supplemental Figure 1).

4.3. Performance of Radiomics Model. The ROC curves of the
SVM classifier showed good performance with AUCs of
0.838 and 0.928 for Model 1 and Model 2 in the training

set, respectively. For estimating differences in the two models
in the validation set, Model 2 had an AUC of 0.903 (95% CI:
0.807-0.999), with a sensitivity of 87.0% and specificity of
82.3%, indicating a better performance compared with
Model 1 that had an AUC of 0.808 (Figure 3). The DeLong
test showed a significant difference (P = 0:035). Details con-
tained in the models are shown in Table 3.

The decision curves demonstrated better performance of
SVM models in predicting the T stage of RC than either the
“all” or the “none” scheme at a threshold probability of 0.0-
0.9 (Figure 4). The DCA showed that the Model 2 algorithm
added more net benefit than that of Model 1.

Table 2: Selected radiomics features.

Model No Radiomics feature Radiomics class Filter

Method 1

1 Skewness First order Wavelet-HLL∗

2 Maximum First order Wavelet-HLL∗

3 High gray level zone emphasis GLSZM Wavelet-HLH∗

4 Gray level nonuniformity GLSZM Wavelet-LHL∗

Method 2

1 Skewness First order Wavelet-HLL∗

2 High gray level zone emphasis GLSZM Wavelet-LHL∗

3 Skewness First order Wavelet-LHL∗

4 High gray level run emphasis GLRLM Original

5 High gray level run emphasis GLRLM Logarithm

6 High gray level run emphasis GLRLM Square root

7 High gray level run emphasis GLRLM Wavelet-LLL∗

GLSZM: gray level size zone matrix; GLRLM: gray level run length matrix. ∗The wavelet transform decomposes the tumor area image into low-frequency
components (L) or high-frequency components (H) in the x, y, and z axes. Method 1: minimum delineation method; Method 2: maximum delineation method.

AUC
Method 2: 0.903
Method 1: 0.808

1.0

0.8

0.6

0.4Se
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0.0

0.0 0.2 0.4 0.6 0.8 1.0
1 − specificity

Figure 3: Receiver operator characteristic (ROC) curves in the
validation set. AUC was 0.808 for the minimum delineation model
(Method 1); AUC was 0.903 for the maximum delineation model
(Method 2).
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5. Discussion

Our work showed that Method 2 had a better value in differ-
entiating T1-2 from T3-4. Although the statistical difference
was found between the two manual segmentations of MRI-
based radiomics in ROC, Method 1 gained more stability
and repeatability.

Due to the diverse treatments and prognoses, the distinc-
tion between T1-2 and T3-4 is quite important as it can pre-
vent undertreatment or overtreatment. Among the widely
used imaging methods, high-resolution MRI is the most
commonly used imaging approach for this purpose. Even

though rectal high-resolution T2WI is suggested for the con-
ventional preoperative staging of RC, differentiation between
T2 and early T3 tumors is still unsatisfactory [20, 21]. One
common misunderstanding is caused by penetration to the
muscular propria layers by small vessels and desmoplastic
reaction, which may lead to a great challenge in staging by
using traditional imaging methods [4, 5].

Previous academic studies have demonstrated that radio-
mics have good performance in evaluating many types of
tumors and can be utilized as a profitable noninvasive modal-
ity for the local staging in RC [6–12]. The workflow involves
acquisition and segmentation of images and extraction and
reduction of features, and when the features are selected, a
statistical model is established [10]. Among the factors that
affect radiomics analysis, segmenting is essential as the imag-
ing processing step. There are three segmentation methods:
manual, semiautomatic, and automatic, each of which has
its advantages and disadvantages. At present, manual delin-
eation of the ROI is most commonly used as a conventional
segmentation method; however, it is subjective and has poor
stability and repeatability [22].

In the present study, two different manual segmenta-
tions were utilized to explore the influence of diverse delin-
eation on the stability of feature selection and preoperative
T staging’s diagnostic efficiency. The inter- and intraclass
correlation coefficients of features were computed. Our
results showed that features based on minimum delineation
had high robustness, which suggested good reliability and
reproducibility.

Meanwhile, our results also showed that the diagnostic
performance of radiomics models could be affected by delin-
eation discrepancy. The above analysis indicated that the
SVM model based on maximum delineation had a higher
predictive performance than the minimum delineation
model (P < 0:05) for T stage classification, thus suggesting
good diagnostic efficiency. In their nasopharyngeal carci-
noma and breast cancer studies, Zhang et al. [12] built a
quantitative image postprocessing algorithm that demon-
strated delineation differences in segmentation affecting
radiomics-based diagnostic performance. Kocak et al. [23]
analyzed the effect of radiomics segmentation with margin
shrinkage in the evaluation of renal carcinomas. Neverthe-
less, manual segmentation tends to lead to the excessive
delineation of the lesion border to ensure the entire lesion
is recognized in most clinical practices [24]. Our clinical
decision-making curves revealed that the clinical benefits of
the maximum delineation algorithm were greater than the
minimum approach in the evaluation of the T stage in RC
patients, which is consistent with previous research [12, 25–
29] and could be explained by the dilated margin of perirectal
tissues containing complex information about identifying
tumor heterogeneity.

This present study has several limitations. First, VOIs
were manually delineated instead of being semiautomatical-
ly/automatically segmented, thus making it difficult to avoid
subjective errors and making it unsuitable for large-scale data
processing [30, 31]. Studies had indicated that semiautoma-
ted/automated segmentations can provide the reproducible
and accurate estimates of the tumor [31–34]. However, similar

Table 3: ROC analysis of the prediction model for the training and
validation sets.

Training set Validation set
Method 1 Method 2 Method 1 Method 2

AUC 0.838 0.928 0.808 0.903

95% CI 0.764-0.912 0.864-0.992 0.669-0.947 0.807-0.999

Sensitivity 0.871 0.903 0.956 0.870

Specificity 0.805 0.866 0.588 0.823

Accuracy 0.823 0.876 0.800 0.850

PLR 4.464 6.733 2.323 4.927

NLR 0.160 0.112 0.074 0.158

PPV 0.628 0.718 0.759 0.870

NPV 0.943 0.960 0.909 0.823

P∗ 0.036 0.035

PLR: positive likelihood ratio; NLR: negative likelihood ratio; NPV: negative
predictive value; PPV: positive predictive value. ∗Compared by DeLong test.

Figure 4: Decision curve analysis (DCA) of the two schemes of
delineation. DCA showed that at the probability threshold of 0.0
to 0.9, the SVM model based on the maximum algorithm
provided more net benefit than utilizing the minimum delineation
scheme. Model 1: minimum delineation method; Model 2:
maximum delineation method.
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to the previous studies, which used manual segmentation in
RC patients, these studies described a semiautomated/auto-
mated delineated manner along the tumor’s outer edge on
each consecutive slice, with no precise definition of the border
of the whole lesion. Second, this was a retrospective single-
center cohort study without external validation. Therefore, a
future multicenter study is required to verify our findings.
Finally, we only discussed the effects of twomanual segmenta-
tions of VOIs using T2WI. The effect of other routine
sequences on diverse delineations, such as DWI and
contrast-enhancedMRI, is still unclear and needs to be further
investigated [35].

6. Conclusions

In this study, we developed two radiomics models based on
different manual segmentations to assess the T stage in RC
patients. The diverse delineation could cause certain differ-
ences in feature selection. Despite this discrepancy, both
methods had good diagnostic performance in the preopera-
tive T staging of RC. The minimum delineation had better
stability in feature selection, while the maximum delineation
was more beneficial in clinical decision-making.
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