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Introduction. Rennin-angiotensin system and salt diet play important roles in blood pressure control. We hypothesized that the
high-salt intake during pregnancy influences the degree of angiotensin-dependent control of the blood pressure in adult offspring.
Methods. Female Wistar rats in two groups (A and B) were subjected to drink tap and salt water, respectively, during pregnancy.
The offspring were divided into four groups as male and female offspring from group A (groups 1 and 2) and from group B
(groups 3 and 4). In anesthetized matured offspring mean arterial pressure (MAP), heart rate and urine output were measured
in response to angiotensin II (AngII) (0-1000 ng/kg/min, iv) infusion. Results. An increase in MAP was detected in mothers with
salt drinking water (𝑃 < 0.05). The body weight increased and kidney weight decreased significantly in male offspring from group
3 in comparison to group 1 (𝑃 < 0.05). MAP and urine volume in response to AngII infusion increased in group 3 (𝑃 < 0.05).These
findings were not observed in female rats. Conclusion. Salt overloading during pregnancy had long-term effects on kidney weight
and increased sex-dependent response to AngII infusion in offspring (adult) that may reveal the important role of diet during
pregnancy in AngII receptors.

1. Introduction

Normal pregnancy is associated with large changes in func-
tion and anatomy of cardiovascular system. Occasionally,
pregnancy is accompanied by a condition called preeclamp-
sia, which is characterized by edema, increased intravascular
coagulation, proteinuria, increased systemic vascular resis-
tance, and hypertension. Pregnancy-induced hypertension is
a major cause of maternal and fetal mortality [1–3]. High-
salt intake is also often associated with increased vascular
resistance and arterial pressure [3–5]. It is reported that
arterial blood pressure was significantly higher in pregnant
rats with high-salt intake in comparison with pregnant rats
having normal-salt diet [3, 6, 7]. Maternal nutritional status
during pregnancy has an important role in fetal growth [8, 9].

Furthermore, the risk of hypertension, as well as renal
and cardiovascular diseases, is in part determined before
birth by intrauterine factors [10]. Salt-supplemented diets
cause higher sodium concentrations in the amniotic fluid in
pregnant females. Lactating mothers with high-salt intake
may produce milk with normal sodium concentration [7].
However, findings of previous studies indicate that the milk
content in lactatingmothers with high-salt intake altered [11].
Different salt diets may be recommended for blood pressure
control during pregnancy as different levels of salt in utero
lead to long-term consequences for health of the fetus or
offspring [10]. Many systems involved in blood pressure con-
trol such as nephrogenesis, angiotensinogen expression, and
renin formation are developed in early stages of pregnancy
[10, 12, 13]. The salt diet may disturb these systems.
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Higher blood pressure was observed in offspring from
mothers subjected to high-sodium intake during preg-
nancy and lactation [7, 10, 14, 15]. Also, prenatally sodium-
overloaded pups showed disturbances in renal development,
which leads to functional and structural alterations that
persist in adult life [15]. These disturbances were associated
with lower plasma levels of angiotensin II (AngII), changes in
renalAngII receptor type 1 (AT1R) [10], and increased urinary
protein [15]. Prenatal and postnatal sodium-overloaded rats
showed increased urinary protein and kidney oxidative stress,
reduced glomerular filtration rate (GFR), and increased
plasma volume [15].

Renin angiotensin system plays an important role in
blood pressure control, and its activity was reported to be
gender-related [16–21]. The main arm of RAS is angiotensin
II (AngII) which plays a role in the progression of kidney
disease and its activity is influenced by AT1R and AT2R
[22, 23]. AT1R stimulation leads to vasoconstriction and
reduction in GFR [23, 24]. In addition, in response to AngII,
AT2R leads to vasodilatation [23, 25]. AT1R and AT2R
expression in male and female are gender-dependent. The
AT1R/AT2R ratio has also been examined in kidneys, and it
is found to be lower in females because of the presence of
17𝛽-estradiol [23–25].

Accordingly, it is hypothesized that different salt diets
may influence renin angiotensin system or renal function
in offspring. To test this hypothesis, adult male and female
offspring from the mothers that received high-salt drinking
water during pregnancywere subjected toAngII infusion and
the blood pressure response was determined.

2. Methods

2.1. Animals. Eight female Wistar rats were individually
housed in cages with temperature controlled at about 25∘C
and maintained with ad libitum standard rat diet in a 12-
hour light/dark cycle. The rats were randomly divided into
two groups. Rats weremaintained on tapwater (groupA) and
high-salt water (2%) (group B) before mating until delivery.
High-salt water was prepared as 20 grams of salt in one liter
of water. Pregnant female rats were carefully monitored at the
end of pregnancy to determine the exact date of birth. On
the day of weaning (30th day of life), mothers were prepared
for surgery, and offspring were divided into four groups as
described in the following.

Groups 1 and 2 are male (group 1) and female (group
2) offspring from mothers who received tap water
during pregnancy.

Groups 3 and 4 are male (group 3) and female (group
4) offspring from mothers who received high-salt
water during pregnancy.

All offspring in the aforementioned four groups were
weighed in days 30, 45, and 60 after birth. Finally, these
animals (called offspring (adult)) with the mean age of
70.2 ± 1.08 days were subjected to experimental procedures.
All the animal experimental procedures described in this

study were approved in advance by the Isfahan University of
Medical Sciences Ethics Committee.

2.2. Drugs. The sodium chloride was purchased from Merck
KGaA (Darmstadt, Germany); angiotensin II and Evans Blue
were obtained from Sigma (St. Louis, Missouri, USA).

3. Experimental Protocol

3.1. Maternal Experimental Protocol. Thirty days after deliv-
ery, mothers in groups A and B were anesthetized with
ketamine (75mg/kg, ip), the trachea was cannulated to
facilitate ventilation, and a catheter was implanted into the
carotid artery. After basic stabilization for 30–60min, blood
pressure was measured and then blood sample was collected.

3.2. Offspring (Adult) Experimental Protocol. In experimental
groups 1 to 4, the animals wereweighed and anesthetizedwith
urethane (1.5 g/kg). The trachea was isolated to insert an air
ventilation tube. Then, the carotid artery was cannulated to
record blood pressure and jugular vein was cannulated for
AngII infusion. A catheter was implanted into the bladder
to measure urine volume. Urine output was collected online
during AngII infusion for period of one hour. After surgical
procedures, basal blood sample (0.5mL) was collected from
the carotid artery and then centrifuged at 6000 g for 20min
to determine serum levels of nitrite (stable NO metabolite)
and Na+; then, after the equilibrium time (30–60min), direct
blood pressure was continuously monitored. Then, a series
of intravenous infusions of AngII (0, 30, 100, and 300 ng
kg−1 min−1) via the jugular vein was commenced. Each dose
was administered until arterial blood pressure equilibration
was achieved (in about a 10min period), and then the
measurements were performed for 3–5 minutes. At the end
of the study, Evans Blue [9] solution (10mg/kg) was injected
via the carotid artery, and, one hour later, all animals were
sacrificed by a lethal injection of intravenous potassium
chloride (10% KCL).

4. Measurements

The level of nitrite was measured using a colorimetric
assay kit (Promega Corporation, USA) that involved the
Griess reaction. Briefly, after adding sulfanilamide solution
and after incubation, N-(1-naphthyl)ethylenediamine solu-
tion was added. Next, the sample absorbance was measured
by a microreader in the wavelength of 492 nm. The nitrite
concentration of samples was determined by comparing with
the nitrite standard reference curve. The serum level of Na+
was also measured by a flame photometer.

4.1. Determination of Aortic Endothelial Permeability.
Endothelial permeability of the aorta was measured by the
EB method. Briefly, one hour after EB injection, a piece
of thoracic aorta was obtained and immediately weighed.
Then, 2 cc formamide (Merck, Germany) was added and
placed in an oven (80∘C) for 24 hours. After cooling, the
absorbance was measured at 623 nm. The standard curve
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Table 1: Number of newborns, MAP, and serum nitrite level of mother with salt and tap water 30 days after delivery.

Group Number of newborns MAP (mmHg) Nitrite (𝜇mole/Lit) Na+ (meq/Lit)
Total male female

A 9.7 ± 1.2 6 ± 1.5 3.7 ± 1.1 101.6 ± 2.6 35.2 ± 7.5 135.7 ± 3.9
B 6.5 ± 1.3 2.7 ± 0.2∗ 3.7 ± 1.0 113.8 ± 3.8∗ 12.3 ± 1.9∗ 175.7 ± 14.8∗

𝑃 value 0.137 0.046 0.770 0.039 0.025 0.076
∗Significantly different from group A.

Table 2: Basal values of MAP, HR, serum nitrite, Na+, and aorta permeability in male and female offspring (adult). Groups 1 and 2: male
(group 1) and female (group 2) offspring frommothers who received tap water during pregnancy. Groups 3 and 4: male (group 3) and female
(group 4) offspring from mothers who received high-salt water during pregnancy.

Gender Group Basal MAP
(mmHg)

Basal HR
(beat/min)

Basal serum
nitrite

(𝜇mol/Lit)

Aorta
permeability
(𝜇g/gr tissue)

Na+ (meq/Lit)

Male 1 115.3 ± 2.5 365 ± 14 4.71 ± 1.31 23.32 ± 4.49 132.75 ± 4.44
3 106.2 ± 7.1 371 ± 15 11.74 ± 3.94 19.66 ± 4.35 133.5 ± 2.23

𝑃 value 0.261 0.775 0.154 0.572 0.871

Female 2 98.1 ± 8.8 380 ± 6 8.33 ± 2.92 20.51 ± 5.09 133 ± 2.38
4 100.9 ± 6.4 379 ± 17 5.65 ± 0.59 21.37 ± 6.20 136 ± 2.81

𝑃 value 0.810 0.987 0.436 0.915 0.457

of EB concentration was plotted and the EB concentration
(𝜇g) to aorta weight (gr) was determined as the endothelial
permeability.

4.2. Serum Volume Measurement. Serum volume was mea-
sured using EB [26]. Sixty minutes after administration
of EB, blood samples were collected and centrifuged. The
dye concentration in the removed serum was determined
at 623 nm and compared to a standard curve constructed
using determined concentrations of the EB dye. The EB
concentration was calculated according to the amount of EB
injected to each animal and finally the serum volume was
measured.

4.3. Statistical Analysis. Data were expressed asmean ± SEM.
Body weight andMAP and heart rate (HR) response to AngII
were compared via repeated measures ANOVA for different
groups of factors and doses (0, 30, 100, and 300 ng kg−1
min−1 AngII) and their interactions. The 𝑃 value <0.05 was
considered statistically significant. The Student’s t-test was
used to compare other factors between the groups. Mothers
in groups A and B were compared in the number of newborn
via Mann-Whitney values.

5. Results

All measurements were in anesthetized rats. Therefore the
findings related to blood pressure may not be reflective of
physiological blood pressure levels, but the conditions were
similar in all groups.

5.1. Maternal Data. Maternal data are shown in Table 1.
The data indicated that the number of male newborns in
group A (mothers received tap water during pregnancy) was

statistically greater than that in group B (𝑃 < 0.05). In
group B, higherMAP and serumNa+ levels, and lower serum
nitrite level were obtained, indicating that the salt diet during
pregnancy increased MAP 30 days after delivery.

5.2. Offspring (Adult) Data

5.2.1. MAP, HR, and Urine Volume Change in response to
AngII Infusion. The basal data demonstrated no significant
difference between the two groups of male (groups 1 and
3) and the two groups of female animals (groups 2 and 4)
(Table 2). Results in the male offspring indicate that MAP,
urine volume, andHR in response to AngII were significantly
higher in group 3 than those in group1 (𝑃 < 0.05). Such
observationwas not detected in female animals (Figures 1 and
2).

5.2.2. Serum Levels of Nitrite and Sodium and Aorta Endothe-
lial Permeability. Serum nitrite level in group 3 was greater
than that in group 1, but the difference was not statistically
significant. The groups were not significantly different with
regard to the serum level of Na+ and endothelial permeability
of aorta as EB uptake (Table 2).

5.2.3. Body Weight, Kidney Weight, and Serum Volume.
Changes of body weight in days 30, 45, and 60 after birth
showed significant weight gain in group 3 when compared
with group 1 (𝑃 < 0.05) (Figure 1). Also, serum volume
in group 3 was higher than the volume in the other group
(𝑃 < 0.05). However, kidney weight (KW g/100 g body
weight) in group 3 was significantly less than that in group 1
(𝑃 < 0.05). Such finding was not observed in female groups
2 and 4 (Figure 2).
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Figure 1: MAP and HR responses to AngII and body weight change in male (groups 1 and 3) and female (groups 2 and 4) offspring (adult).
The star (∗) indicates significant difference from group 1. Groups 1 and 2: male (group 1) and female (group 2) offspring from mothers who
received tap water during pregnancy. Groups 3 and 4: male (group 3) and female (group 4) offspring from mothers who received high-salt
water during pregnancy.

6. Discussion

The major findings of this study indicated that high-
salt intake during pregnancy decreased kidney weight and
increased plasma volume and increased the vascular, heart,

and urine output responses to graded AngII infusion in
male but not in female adult offspring. It is well known
that salt diet is accompanied with increased vascular resis-
tance and arterial pressure [3–5], and it increases arterial
blood pressure in pregnant rats [3, 6, 7]. Higher blood
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Figure 2: Body weight, urine output response to AngII infusion, and kidney weight in male (groups 1 and 3) and female (groups 2 and 4)
offspring (adult). Groups 1 and 2: male (group 1) and female (group 2) offspring from mothers who received tap water during pregnancy.
Groups 3 and 4: male (group 3) and female (group 4) offspring from mothers who received high-salt water during pregnancy.

pressure was observed in offspring from mothers subjected
to high-sodium intake during pregnancy and lactation [7,
10, 14, 15], and certainly maternal nutritional status during
pregnancy plays an important role in fetal growth [8, 9]
and organ function. It seems that, among the factors that
provide hypertension in offspring from mothers subjected
to high-sodium intake during pregnancy, RAS is the main
controlling system. Recently, Bayoglu et al. demonstrated that

angiotensinogen, angiotensin converting enzyme [27], AT1R,
and AT2R expression altered following maternal high-salt
intake. They suggested that high-salt diet during pregnancy
affects expression of the renal key elements of RAS in
fetus and offspring [28]. The effect of low- and high-salt
diets during pregnancy was examined on heart of male
offspring, and it was concluded that high-salt diet in adult
male offspring leads to higher levels of blood pressure and
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angiotensin II [29]. Although adaptive response to salt during
pregnancy is also important for offspring [30], it is not exactly
clear how other functional systems may be disturbed from
this salt diet. Reduction in number of glomeruli and higher
risk of hypertension may occur in offspring from mothers
who were subjected to high-salt diet during pregnancy [31].
High-salt intake during pregnancy was investigated in other
studies, indicating that cardiac cell andRASmay be disturbed
in offspring [32, 33], but gender difference is not exactly
known. Our findings also demonstrated that high-salt diet
during pregnancy increased theMAP response to AngII only
in male rats. However, this was not observed in female rats.
It is reported that females compared with males are less
sensitive toAngII [25, 34, 35]. Sensitivity toAngII ismediated
by AT2R [35] and AT2R/AT1R expression ratio, which is also
higher in female than male [36, 37]. It is important that when
the endogenous RAS is blocked, males are still more sensitive
to salt diets [38]. Accordingly, there is a possibility that high-
salt diets in pregnant rats may alter the AT1R expression in
male offspring but not in female. Urine volume response to
AngII was also increased in male offspring from mothers
who received high-salt diet, while urine volume generally
decreased in these offspring [28]. The results obtained for
the kidney weight in the current study were inconsistence
with the results reported in other experiments [28]. Finally,
significant difference was observed in serum nitrite level
of mothers with salt and tap water 30 days after delivery,
but no difference was observed between offspring (adults).
Nitric oxide concentration is related to endothelial function
[39–42]. Endothelial cells are salt sensor, and endothelial
function could be changed by salt intake [43–46] because salt
inactivates endothelial NO synthase in endothelial cell [47].
Therefore, the reduction of serum nitrite level in mothers
with salt water is directly related to salt intake.

7. Conclusion

High-salt intake during pregnancy promotes MAP, heart
rate, and urine output responses to AngII in male offspring.
Increase in body weight and plasma volume and decrease
in kidney weight were also observed in such male offspring.
High-salt drinking water during pregnancy may not alter
MAP, heart rate, and urine output response to AngII in
female offspring.The results obtained suggest the effect of salt
drinking water during pregnancy in development of RAS in
male offspring.
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