
RESEARCH ARTICLE

Sparsity-based method for ring artifact

elimination in computed tomography

Mona SelimID
1,2*, Essam A. RashedID

3, Mohammed A. Atiea1, Hiroyuki Kudo4

1 Department of Computer Science, Faculty of Computers and Information, Suez University, Suez, Egypt,

2 Department of Mathematics, Faculty of Science, Suez Canal University, Ismailia, Egypt, 3 Graduate School

of Information Science, University of Hyogo, Kobe, Japan, 4 Division of Information Engineering, Faculty of

Engineering, Information and Systems, University of Tsukuba, Tsukuba, Japan

* mona.selim@suezuniv.edu.eg

Abstract

Ring artifact elimination is one of the popular problems in computed tomography (CT). It

appears in the reconstructed image in the form of bright or dark patterns of concentric cir-

cles. In this paper, based on the compressed sensing theory, we propose a method for elimi-

nating the ring artifact during the image reconstruction. The proposed method is based on

representing the projection data by a sum of two components. The first component contains

ideal correct values, while the latter contains imperfect error values causing the ring artifact.

We propose to minimize some sparsity-induced norms corresponding to the imperfect error

components to effectively eliminate the ring artifact. In particular, we investigate the effect of

using different sparse models, i.e. different sparsity-induced norms, on the accuracy of the

ring artifact correction. The proposed cost function is optimized using an iterative algorithm

derived from the alternative direction method of multipliers. Moreover, we propose improved

versions of the proposed algorithms by incorporating a smoothing penalty function into the

cost function. We also introduce angular constrained forms of the proposed algorithms by

considering a special case as follows. The imperfect error values are constant over all the

projection angles, as in the case where the source of ring artifact is the non-uniform sensitiv-

ity of the detector. Real data and simulation studies were performed to evaluate the pro-

posed algorithms. Results demonstrate that the proposed algorithms with incorporating

smoothing penalty and their angular constrained forms are effective in ring artifact

elimination.

1 Introduction

Ring artifact is one of the well-known image degradations that restrict the quality of X-ray

computed tomography (CT) images [1]. In addition to general-purpose medical CT scanners,

it also occurs in CT images that are generated from a flat-panel detector such as C-arm CT,

dental CT, and micro-CT. The ring artifact can be recognized in the image domain as bright

or dark patterns of concentric circles. These circles vary in intensity value from ring to ring.

Also, it can be interpreted in the sinogram domain as bright or dark vertical lines having
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different intensity values. The ring artifact mainly arises as a consequence of some physical fac-

tors associated with non-uniform detector sensitivity, such as 1) existence of imperfect or dead

detector elements, 2) incomplete calibration of the detector elements, 3) impurity or dust in

the scintillator screen, or 4) presence of variation in the hardness or intensity of x-ray beams.

The ring artifact may resemble some structure of the scanned object, which prevents the result-

ing image from being used in various applications. Hence, the elimination of ring artifact is a

significant issue. One conventional technique that is used in ring artifact elimination is called

flat-field correction. It was reported that such simple technique could eliminate ring artifact

partially [2]. Other methods that deal with the ring artifact problem can be divided into hard-

ware- and software-based methods. The removal of ring artifact in most software-based meth-

ods was performed before or after the reconstruction process. However, such methods may

introduce other artifacts. On the other hand, the elimination of the ring artifact during the

reconstruction overcomes the limitations of such methods. In this paper, inspired by the com-

pressed sensing (CS) theory [3], we propose a software-based method to estimate and elimi-

nate the ring artifact during the image reconstruction process. Some sparsity-based methods

were presented to suppress the ring artifacts [4–8]. In this work, we introduce using sparsity-

induced norms like ℓ0, Huber ℓ0, and Huber ℓ1 in ring artifact removal through the reconstruc-

tion steps. The sinogram data corresponding to the image containing the ring artifact is also

contaminated by incorrect measurement values similar to the example shown in Fig 1. The

sinogram data in such case is composed of the perfect ideal values and the imperfect error val-

ues causing the ring artifact. The contribution of this paper is as follows. First, we propose to

use some sparsity-induced norms of the imperfect component as data fidelity to enforce the

sparsity of the imperfect component to eliminate the ring artifact. Second, we investigate the

effect of using different sparsity-induced norms on the ring artifact elimination. Third, we pro-

pose to improve image quality in the proposed algorithms by incorporating a smoothing pen-

alty function into the cost function. Fourth, we study a particular case of the developed

algorithms, where the values of the imperfect error component are constant over all the projec-

tion angles. Finally, we remark that this work can be considered a particular application of the

use of sparsity-induced norms in data fidelity to eliminate the effect of abnormal error data in

the sinogram [9, 10]. Such approach was proposed in our previous work together with a special

Fig 1. Projection data with vertical artifacts caused by bin failures in (a) can be modeled as a combination of (b) ideal projection data and (c) ring

artifact in the projection data domain. Red and yellow rectangles in (c) demonstrate the adjacent and non-adjacent bins failure cases, respectively.

https://doi.org/10.1371/journal.pone.0268410.g001
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application to the metal artifact reduction problem [11]. This paper demonstrates that the sim-

ilar approach works well for the ring artifact correction problem.

This paper is organized as follows. The related work is presented in Section 2. The proposed

algorithms are detailed in Section 3. After that, we show the results of the experimental studies

in Section 4. Finally, the conclusion is provided in 5.

2 Related work

There are numerous methods that have been investigated to suppress the ring artifact. These

methods can be classified into two general categories. The first category contains methods

based on the modification of hardware, such as those detailed in [12, 13]. The second category

contains software-based methods. Due to the necessity of modifying the device hardware and

consequently the extra cost in the first class, most of the investigated methods belong to the

second category. The software-based methods can be further divided into three classes as

follows:

• Pre-processing methods: remove the vertical stripes from the sinogram before image

reconstruction.

• Post-processing methods: remove the ring artifact from the image after image

reconstruction.

• In-processing methods: remove the ring artifact during image reconstruction.

2.1 Pre-processing methods

A technique based on a combination of wavelet decomposition and Fourier filtering was inves-

tigated to eliminate the stripes from the sinogram [14]. Also, a sinogram-based method was

proposed by supposing smoothness of the detector measurements for every projection angle

[15]. A derivative-based algorithm was developed to detect the mis-calibrated and defective

detector elements [16]. This algorithm used a bias correction model and a weighted moving

average filter to remove the stripe artifacts. An approach focused on filtering scheme by mor-

phological operations was developed for the ring artifact elimination [17]. A detector line ratio

method based on computing the ratio between the neighboring detector elements was pro-

posed in the sinogram space [18]. Furthermore, based on classifying the stripe artifacts in the

sinogram into different types, three methods were designed to deal with each type individually

[19]. Also, a combination of these three methods was proposed, and they concluded that this

combination could suppress all types of artifacts. A ring artifact removal algorithm was pro-

posed in the form of a 1D filter and can be combined with the standard filter used in the FBP

method [20]. Using wavelet filtering and weighted moving average filter in the sinogram

space, an approach was presented to remove the ring artifact [21]. The removal of stripe arti-

facts in the sinogram was performed via variable window averaging and weighted moving

average filters [22]. A U-Net-like deep neural network was employed to reduce the stripe arti-

facts in the sinogram space [23]. However, filtering the sinogram to remove the vertical stripes

may introduce new artifacts.

2.2 Post-processing methods

A correction algorithm was proposed by utilizing mean and median filters in both Cartesian

and polar coordinate systems. They concluded that implementing their algorithm in the polar

coordinate system gives higher performance [24]. A method based on generative adversarial

networks was investigated to remove the ring artifact from the image in the Cartesian
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coordinates [25]. Moreover, several methods have been investigated to suppress the ring arti-

fact from the image in the polar coordinate system. For example, an iterative method was

developed to remove the ring artifact from CT images utilizing relative total variation (TV)

[26]. A method using independent component analysis was presented for suppressing the ring

artifact [27]. This method divides the image into many independent components. Then, the

components that include the rings are identified to apply a smoothing filter only on the ring

components. A polar wavelet Gaussian filtering technique was presented to suppress the ring

artifact [28]. Furthermore, a method that depends on TV-Stokes and unidirectional TV model

was introduced to eliminate the ring artifact from cone-beam CT images [29]. Based on a uni-

directional relative variation model, an approach was investigated to suppress the ring artifact

[30]. Also, a variation-based method was formulated using ℓ0-norm/ℓ1-norm regularization

term to remove the ring artifact from the reconstructed images [4]. The reduction of ring arti-

fact was achieved based on sparse domain regularized stripe decomposition technique and

guided image filtering [5]. Moreover, a radial basis function neural network was designed to

eliminate the ring artifact from the reconstructed images [6]. Using generative adversarial net-

works and unidirectional relative TV, a method was presented to suppress the artifact from the

CT images [31]. Most of the post-processing methods consist of the following steps. Transform

the image contaminated with the ring artifact to the polar coordinates and carry out the filter-

ing, then return to the original Cartesian coordinates. The rationale behind using such trans-

formation is as follows. The ring artifact in the Cartesian coordinates can be converted into

lines in the polar coordinates, and filtering out the straight lines is much easier than the rings.

However, image quality achieved by these methods relies on the accurate determination of the

center of the ring artifact. This is because a small difference in the center determination could

convert the rings into curvy lines instead of the straight lines. Such curvy lines distort the out-

put image in the Cartesian coordinates.

2.3 In-processing methods

An optimization method based on TV and dictionary learning was investigated to correct the

ring artifact [7]. Recently, an algorithm for the ring artifact reduction was proposed using ring

TV and correction coefficient [8]. The proposed method follows this class of methods, where

removing the ring artifact during the reconstruction process does not require any data modifi-

cation before or after the reconstruction. Also, the probability of introducing other distortions

like the pre-or post-processing methods is low.

3 Methods

3.1 Problem formulation

In the case of ring artifact existence in the image, the image reconstruction model in x-ray CT

can be described as follows:

A~x ¼~b þ~l; ð1Þ

where~b ¼ ðb1; b2; . . . ; bMÞ
>

is the projection data. Also,~l ¼ ðl1; l2; . . . ; lMÞ
>

is the imperfect

error component of projection data, which may have positive or negative values. The size of

both~b and~l is M, where M = R × Θ (R represents the number of detector bins, and Θ repre-

sents the number of angles). Also,~x ¼ ðx1; x2; . . . ; xNÞ
>

is a vector representing a 2D image

consisting of N (pixels), and A = {aij} denotes the M × N system matrix. From the physical

model of ring artifact generation in CT, it is a reasonable assumption that the values of most

elements in~l are zeros, and only a small number of non-zero imperfect elements exist in~l.
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Consequently, the imperfect vector~l can be considered as a sparse vector. The sparsity of

imperfect vector~l inspires us to use the CS theory in ring artifact elimination problem. We

exploit the CS theory in our work in order to estimate the imperfect data that cause the ring

artifact and eliminate them from the projection data during image reconstruction to obtain a

ring-free image. Therefore, we propose to formulate a cost function in image reconstruction

by utilizing some sparsity-induced norms of~l as data fidelity to enforce the sparsity of imper-

fect component as follows:

Minimizeð~x ;~lÞ Sð~lÞ subject to A~x � ~b ¼ ~l; ð2Þ

where Sð~lÞ can be one of well-known sparse models in CS such as ℓ1-norm or ℓ0-norm. The

vector~l in Eq (2) is described to include only the non-ideal elements that generate the ring

artifact. However, in real CT imaging, both the statistical noise and imperfect error values are

included together in~l. In such case, Huber loss function can be utilized instead of ℓ1-norm as

a sparse model because it is a hybrid of ℓ1-norm and ℓ2-norm. Throughout the paper, we call it

Huber ℓ1-norm. By the same manner, we suggest defining Huber ℓ0-norm as a combination of

ℓ0-norm and ℓ2-norm. In summary, Sð~lÞ can be one of the following functions:

Sð~lÞ ¼ k~lk1

1
ð‘1‐normÞ; ð3Þ

Sð~lÞ ¼ k~lk0

0
ð‘0‐normÞ; ð4Þ

Sð~lÞ ¼
XM

i¼1

sðliÞ; sðlÞ ¼
l

2
=2 jlj < d

djlj þ d
2
=2 jlj � d

ðHuber ‘1‐normÞ;

8
<

:
ð5Þ

Sð~lÞ ¼
XM

i¼1

sðliÞ; sðlÞ ¼
l

2
=2 jlj < d

djlj
0
þ d

2
=2 jlj � d

ðHuber ‘0‐normÞ:

8
<

:
ð6Þ

Generally, it is clear from the different causes of ring artifact that the values of the imperfect

vector in the projection data may be dependent on the measured angles. In other words, the

imperfect values are variables for all the angles. In addition to this general case, we suggest

studying a special case where the ring artifact originates from physical factors related to hard-

ware, such as the existence of some imperfect detector bins. Then, the imperfect elements in~l

occur due to the imperfect detector bins. In CT, if some detector bins have errors, the incorrect

values corresponding to those bins will be repeated for all the angles θ. Consequently, the mea-

sured value of the imperfect vector~l at any detector bin is constant for all the angles θ. Hereaf-

ter, such model having constant imperfect elements in the angular direction is called angular

constrained form. It can be mathematically expressed as follows. Let us express the system

matrix A using submatrices corresponding to each sinogram angle as A = [A1, A2, . . ., AΘ],

where Ai denotes the system matrix corresponding to the i-th projection angle. Similarly, we

express the projection data as~b ¼ ð~b1;
~b2; . . . ;~bYÞ

T
, where~bi denotes the projection data cor-

responding to the i-th projection angle. Using these notations, the image reconstruction prob-

lem in the angular constrained form can be formulated as

Minimize Sð~lÞ subject to Ay~x � ~by ¼ ~l; 8y: ð7Þ
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We remark that~l is constant for all θ, which originates from the constraint that values of ele-

ments in the imperfect vector are same for all the angles.

3.2 Proposed algorithms

The formulated cost function can be optimized using any iterative algorithm. For example,

first-order primal-dual method, alternative direction method of multipliers (ADMM) [32],

and proximal splitting. In this work, we use ADMM method as a prototype example to develop

iterative algorithms to solve the formulated cost function. We start with using ℓ1-norm as an

example of the sparsity-induced norm Sð~lÞ in the proposed cost function as follows:

Minimizeð~x ;~lÞ k~lk
1

1
subject to A~x � ~b ¼ ~l ð8Þ

The augmented Lagrangian corresponding to Eq (8) is

Lrð~x;~l;~uÞ ¼ k~lk
1

1
þ
r

2
k~l � A~x þ~b þ~uk2

2
; ð9Þ

where~u denotes the Lagrange multiplier and ρ> 0 is a positive constant. Using the augmented

Lagrangian function in Eq (9), ADMM method finds the solution to the primal-dual problem

ð~x;~uÞ according to the following three steps:

~xkþ1 ¼ arg min~x
r

2
k~lk � A~xk þ~b þ~ukk

2

2
; ð10Þ

~lkþ1 ¼ arg min~l k
~
l

k
k

1

1
þ
r

2
k~lk � A~xkþ1 þ~b þ~ukk

2

2
; ð11Þ

~ukþ1 ¼ ~uk þ ð~lkþ1 � A~xkþ1 þ~bÞ: ð12Þ

The update of image~x is performed through the minimization in Eq (10). Since Dð~xÞ ¼
r

2
k~lk � A~xkþ1 þ~b þ~ukk

2

2
is a differentiable function in this case, it can be minimized using

the standard gradient descent (GD) method as follows:

~xlþ1 ¼~xl � ar~x Dð~xlÞ; l ¼ 1; 2; . . . ; L; ð13Þ

where α> 0 denotes the step size, L is the maximum number of iterations in the GD method,

andrxDð~xlÞ is calculated as follows:

rxDð~xlÞ ¼ � rATðð~l þ~b þ~uÞ � A~xlÞ: ð14Þ

With respect to the update of the imperfect error vector~l, it can be done by the minimization

in Eq (11). By recalling the definition of proximity operator as follows:

Proxmf ð~yÞ ¼ arg min~x mf ð~xÞ þ
1

2
k~x � ~yk2

2
; ð15Þ

the necessary computation in Eq (11) is reduced to

Prox
mk
~
lk k1

1

ð~dkÞ;

~dk ¼ A~xkþ1 � ~b � ~uk

and μ = 1/ρ. It can be solved directly using a simple formula in closed form via the soft
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thresholding [33] function as follows:

~lkþ1 ¼ soft‐thresholdingð~dk; mÞ; ð16Þ

where the soft-thresholding(�) is defined by

soft‐thresholdingða; bÞ ¼

a � b a > b

aþ b a < � b

0 otherwise

:

8
>>><

>>>:

ð17Þ

The final iterative algorithm can be summarized in Algorithm 1.

Algorithm 1 ℓ1 -ring algorithm.

Input the projection data ~b.
Set initial value for ~x1, ~l1 and ~u1. Set the parameters (α > 0 and ρ >
0).
for k = 1, 2, . . ., K do
~y1 ¼~xk

for l = 1, 2, . . ., L do
~ylþ1 ¼~yl � ar~y Dð~ylÞ

end
~xkþ1 ¼~yL

~lkþ1 ¼ Prox
ð1=rÞk

~
lk k1

1

ðA~xkþ1 � ~b � ~ukÞ

~ukþ1 ¼ ~uk þ~lkþ1 � A~xkþ1 þ~b
end
Output the reconstructed image ~x.

We followed the same steps to derive three iterative algorithms corresponding to the

remaining three sparsity-induced norms mentioned above, i.e. ℓ0-norm, Huber ℓ1-norm and

Huber ℓ0-norm. The result of the derivation shows the following. Almost same algorithms can

be obtained for the cases of using four different norms, and the only difference among the four

cases appears in the form of the proximity operator in Step 2. For clarity, the proximity opera-

tors corresponding to the four cases are summarized in Table 1. Throughout the paper, we call

the algorithms corresponding to ℓ1-norm, ℓ0-norm, Huber ℓ1-norm, and Huber ℓ0-norm by

ℓ1-ring, ℓ0-ring, Hℓ1-ring, and Hℓ0-ring algorithms, respectively.

Table 1. Proximity operators corresponding to different sparsity-induced norms.

f(x) Proxμf (y)

ℓ1-norm y � m y > m

yþ m y < � m

0 Otherwise

8
>><

>>:

ℓ0-norm t y2=2 > m

0 Otherwise

(

Huber ℓ1-norm yþ md y < � ðmþ 1Þd

y=ðmþ 1Þ � ðmþ 1Þd � y � ðmþ 1Þd

y � md y > ðmþ 1Þd

8
>><

>>:

Huber ℓ0-norm y=ðmþ 1Þ � ðmþ 1Þd � y � ðmþ 1Þd

y Otherwise

(

https://doi.org/10.1371/journal.pone.0268410.t001

PLOS ONE Sparsity-based method for ring artifact elimination in computed tomography

PLOS ONE | https://doi.org/10.1371/journal.pone.0268410 June 28, 2022 7 / 25

https://doi.org/10.1371/journal.pone.0268410.t001
https://doi.org/10.1371/journal.pone.0268410


3.3 Extension with smoothing penalty

We propose to incorporate a smoothing penalty Hð~xÞ into the proposed cost function in Eq

(2) to strengthen the power to remove the artifact. The new cost function with the smoothing

penalty is given by

Minimizeð~x ;~lÞ Sð~lÞ þ bHð~xÞ subject to A~x � ~b ¼ ~l; ð18Þ

where β> 0 denotes the hyper-parameter that controls the strength of smoothing. In this

work, we choose to use a smoothing penalty similar to Markov random fields (MRFs) [34].

This is because it possesses the advantage of edge-preserving property, and it is also a differen-

tiable function that can be easily minimized. With respect to the optimization of penalized cost

function, we first describe the ℓ1-norm case, followed by explaining how it can be changed to

the other three norms. The cost function in the ℓ1-norm case is given by

Minimizeð~x ;~lÞ k~lk
1

1
þ bHð~xÞ subject to A~x � ~b ¼ ~l; ð19Þ

where Hð~xÞ is the smoothing penalty defined by

Hð~xÞ ¼
X

j

X

~j2Uj

wj~j hðxj � x~jÞ; ð20Þ

hðtÞ ¼
t2=2 jtj < Z

Zjtj þ Z2=2 jtj � Z

(

; ð21Þ

where Uj denotes the set of eight neighboring pixels around the j-th pixel, and wj~j is the weight-

ing parameter computed as the Euclidean distance between the j-th pixel and the ~j-th pixel.

This modified cost function can be optimized by using iterative algorithms derived from

ADMM similar to those in the previous section. The same ADMM steps yield, except Step 1,

which can be modified and minimized as follows:

~xlþ1 ¼~xl � ar~x Dð~xlÞ � b
0
r~x Hð~xlÞ; l ¼ 1; 2; . . . ; L; ð22Þ

where b
0
¼ ab, andr~x Hð~xlÞ is calculated as follows:

r~x Hð~xÞ ¼
X

j

X

~j2Uj

wj~j

xj � x~j jxj � x~j j < Z

Z xj � x~j � Z

� Z xj � x~j � � Z

8
><

>:
ð23Þ

The final algorithm is detailed in Algorithm 2.

Algorithm 2 ℓ1 -smth-ring algorithm.

Input the projection data ~b.
Set initial value for ~x1, ~l1 and ~u1. Set the parameters (α > 0, ρ > 0
and b

0).
for k = 1, 2, . . ., K do
~y1 ¼~xk

for l = 1, 2, . . ., L do
~ylþ1 ¼~yl � ar~y Dð~ylÞ � b

0

r~y Hð~ylÞ

end
~xkþ1 ¼~yL

~lkþ1 ¼ Prox
ð1=rÞk

~
lk k1

1

ðA~xkþ1 � ~b � ~ukÞ

~ukþ1 ¼ ~uk þ~lkþ1 � A~xkþ1 þ~b
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end
Output the reconstructed image ~x.

Similarly to the case without the smoothing penalty, the iterative algorithms corresponding

to the other three norms mentioned above are given as follows: change the proximity operator

in Algorithm 2, as shown in Table 1. Throughout the paper, we call the four obtained algo-

rithms by ℓ1-smth-ring, ℓ0-smth-ring, Hℓ1-smth-ring, and Hℓ0-smth-ring algorithms, respec-

tively. In addition, we call a collection of these four algorithms using the smoothing penalty by

improved algorithms to distinguish them from the algorithms without the smoothing.

3.4 Constrained algorithms

This section describes iterative algorithms for the angular constrained form where elements of

imperfect error vector have the same values for all the angles, i.e. the formulation of Eq (7). A

simple algorithm for this special case can be given as follows. The proposed algorithms in the

previous sections are only modified by including the constraint that the values of elements in

the imperfect vector~l are constant for all the angles (the angular-independency constraint).

We can observe the following with a deep look at Step 4 of the iterative algorithms at an itera-

tion k. Each element λrθ of the imperfect vector~l are updated for every detector bin (r) in

every projection angle (θ) based on each elements drθ of the vector~d defined above as follows:

for r = 1, 2, . . ., R do

for θ = 1, 2, . . ., Θ do

l
kþ1

ry ¼ Prox
mk
~
lk k1

1

ðdk
ryÞ

end

end

Applying the angular-independency constraint means that the update of~l occurs only at

every detector bin as follows:

for r = 1, 2, . . ., R do

l
kþ1

r ¼ Prox
mk
~
lk k1

1

ðð
PY

y¼1
dk

ryÞ=YÞ

for θ = 1, 2, . . ., Θ do

l
kþ1

ry ¼ l
kþ1

r

end

end

Using the update of~l mentioned above in each iterative algorithm described in the previ-

ous sections, the corresponding iterative algorithm including the angular-independency can

be obtained. We call the resulting algorithms by (cstr-ℓ1-ring, cstr-ℓ0-ring, cstr-Hℓ1-ring, and

cstr-Hℓ0-ring algorithms) for the case without the smoothing, and (cstr-ℓ1-smth-ring, cstr-ℓ0-

smth-ring, cstr-Hℓ1-smth-ring, and cstr-Hℓ0-smth-ring algorithms) for the case with the

smoothing.

3.5 Convergence properties

The convergence of iterative algorithm using ℓ1-norm or Huber ℓ1-norm is guaranteed for the

following reason. These algorithms can be considered as an application of ADMM to the con-

vex minimization subject to the linear constraint. However, the iterative algorithms using ℓ0-

norm or Huber ℓ0-norm are not guaranteed to converge due to the non-convex nature of cost

functions. However, as we will show in the next section, the algorithms using ℓ0-norm or

Huber ℓ0-norm converge to nice approximate solutions in practice. Also, their power to
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eliminate the ring artifact is much stronger compared to the ℓ1-norm based algorithms. This

observation motivated us to keep the ℓ0-norm based algorithms in this paper in spite of the

lack of mathematical guarantee in the convergence. We note that similar behaviors, i.e.
approximate solution with the ℓ0-norm works better than the exact solution with the ℓ1-norm,

have been observed in other application areas of CS.

4 Results

4.1 Experimental setup

To evaluate the proposed algorithms, we performed experimental studies using real data in

addition to simulation data. In the real data, some experiments for propagation-based phase-

contrast imaging were performed by synchrotron radiation X-ray micro-CT (Spring-8,

BL20XU beamline), Japan [35, 36]. A sample of duplex stainless steel was scanned with an x-

ray energy of 37.7 (KeV). The sample-to-detector distance was varied between 8 and 1200

(mm). Also, a CMOS camera of 4.0 megapixels, with a 10 (μm) thick scintillator was used for

measuring the projection data. The number of projection data was 1800 over 180 degrees, and

each projection data consisted of 1024 × 1024 pixels. From the conventional FBP reconstruc-

tion of this data, the central slice of the reconstructed 3D image was contaminated with strong

ring artifact. Moreover, in the simulation data, we used a 2D slice obtained from a dataset of

screening chest CT images. The dataset includes 68 volumes for various patients scanned

using Hitachi CT-W950SR scanner. Each volume is composed of 25 to 31 transaxial slices,

where each slice is composed of 320 × 320 (pixels) with a slice thickness of 10 (mm) and a

pixel size of 1 × 1 (mm). The 2D chest slice was resized to 512 × 512 (pixels). The simulation

studies were carried out with and without adding noise to the projection data. It is known that

the statistical noise in the CT measurements follows Poisson distribution [37]. Assume that b0

is the number of average photon counts transmitted from the x-ray source, and bi is the

detected photons measured after attenuation by the scanned object at detector bin i. Then, the

noisy projection data gi at detector bin i can be calculated using Eqs (24) and (25). Moreover,

to simulate the ring artifact, we first converted the image into the sinogram by the forward

projection. Then, the generated sinogram was altered by assuming that some selected detector

bins have non-uniform sensitivity compared to normal bins. Finally, using the altered sino-

gram, we reconstructed the image by the standard filtered back-projection (FBP) method to

obtain the corrupted image. For the purpose of performance evaluation, we compared our

algorithms with the correction method [28] and the combination method [19]. We refer to

these methods as M1 and M2, respectively. Three parameters are required to implement the

M1 method (Gaussian filter width σ, decomposition level L, and wavelet base function W). On

the other hand, to correct the image by the M2 method, some parameters need to be adjusted,

such as the ratio between the defective and background values R. Also, the size of the smooth-

ing filters that remove the small to medium and large stripes in the sinogram (Sm, Sl) is

required for executing the M2 method. In order to obtain satisfactory results with the M1 and

M2 methods, we selected their parameters based on the best image quality in terms of RRMSE

values besides visual evaluation. Furthermore, to study the effect of using the standard ℓ2-

norm on ring artifact removal, we compared our proposed algorithms with two algorithms

using ℓ2-norm for the data fidelity term with and without smoothing penalty. Additionally, the

GD method was used for the optimization problem of these two algorithms, which we name ℓ2

and ℓ2-smth algorithms. All the algorithms were implemented using C++ platform on a

machine with Intel(R) core(TM) i7–2670QM CPU @ 2.20 GHz processor and 6 GB RAM. The
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average execution time of the proposed algorithms for every iteration was 6.0 seconds.

gi ¼ � logð
~bi

b0

Þ; ð24Þ

~bi � Poissonðbi ¼ b0exp� Ai~xÞ: ð25Þ

4.2 Image quality measurements

To evaluate image quality achieved by the proposed algorithms, we used two image quality

metrics throughout the simulation studies. Suppose that~z ¼ ðz1; . . . ; zNÞ
>

denotes the refer-

ence image and~x denotes the reconstructed or corrected image. The first metric is the relative

root-mean-square error (RRMSE), which can be computed by

RRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1
ðxi � ziÞ

2

P
ixi

s

: ð26Þ

The second metric is the structural similarity (SSIM) index [38], which can be computed by

SSIM ¼
ð2mxmz þ c1Þð2sxz þ c2Þ

ðm2
x þ m

2
z þ c1Þðs

2
x þ s

2
z þ c2Þ

; ð27Þ

where μx and μz are the mean values of images~x and~z , respectively. s2
x and s2

z are the variance

values of images~x and~z , respectively. σxz is the correlation coefficient value of image~x and

image~z . c1 = (k1�s)2 and c2 = (k2�s)2 where k1 = 0.01 and k2 = 0.03 and s is the dynamic range

of the pixel values.

4.3 Results of the simulation with noise-free projection data

In this section, we applied the proposed algorithms to the simulated projection data without

statistical noise corresponding to the above-mentioned 2D chest slice. The simulated sinogram

consisted of 512 (bins) × 1,000 (angles), where the standard parallel-beam geometry with 360˚

angular range was assumed. We considered three different cases, each of which corresponds to

a different setup of the non-uniform sensitivity bins and consequently a different ring artifact

pattern in the image domain. The details are summarized as follows. In the first case, we

assumed that some non-adjacent bins have non-uniform sensitivities producing the ring arti-

fact. In the other two cases, some adjacent detector bins have non-uniform sensitivities pro-

ducing the thick ring artifact of multiple pixel width where the maximum width was set to 3

(pixels). We assumed that the imperfect error value in each detector bin is constant with

respect to the angle in the first and second cases, and varied with respect to the angle in the

third case. Using the sinograms~b corresponding to the three different cases, we reconstructed

images~x by the proposed algorithms as well as M1 and M2 methods. The two parameters (ρ
and δ) control the degree of the ring artifact removal in the proposed algorithms. All the algo-

rithms were implemented using the same values for these parameters ρ, δ, N, and K for the fol-

lowing reasons: to obtain a fair comparison between the different algorithms and to show the

effect of the different sparsity-induced norms on the ring artifact elimination. The parameter

values used in our implementation are summarized as follows: L = 2, K = 2, 000, α =

125 × 10−3, ρ = 0.004, δ = 0.092, b
0
¼ 15:0, and η = 0.001. Also, the parameter values (σ=0.8,

L=4, and W=db40) and (R=5, Sm=5, and Sl=10) were used for the correction by M1 and M2
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methods, respectively. Fig 2 illustrates an example of the reconstructed images using ℓ2 and ℓ2-

smth algorithms for the first study case. The true slice, the corrupted image, the reconstruc-

tions using all the proposed algorithms, and the images corrected by using the M1 and M2

methods are shown in Figs 3–5 for all the study cases. Moreover, Figs 6 and 7 show the recon-

structed images using the angular constrained forms of the proposed algorithms and their

improved versions for the first and second study cases, respectively. Also, an enlargement of a

small region of interest (ROI) containing the heart region is shown in the upper right corner

of each image with more compressed grayscale.

From Fig 2, we can notice that the ring artifact still exists in the reconstructed images using

ℓ2 and ℓ2-smth algorithms. On the other hand, it is clear from the reconstructions shown in

Figs 3–5 that the M1 method eliminated the ring artifact, but there still exist wave-like errors.

Meanwhile, the M2 method partially suppressed the ring artifact. Also, additional artifacts

were created like the ones shown in the part highlighted by the red arrows. Choosing different

parameters in the M1 and M2 methods may further remove the rings but also damages the

image so that we did not succeed in getting nicer images than those shown here. By looking at

the reconstructions by the proposed algorithms, we can observe that ℓ1-ring algorithm suc-

ceeds in eliminating most of the ring artifact except few rings located near the center. For

example, we can notice that one ring appeared with low contrast in the first study case, while

very small number of rings still appeared in the second and third study cases. Meanwhile, the

reconstructions by ℓ1-smth-ring algorithm illustrate that the remaining artifacts were

smoothed well. The reconstructions by ℓ0-ring algorithm produced ring-free images, though

Fig 2. Reconstructed images using ℓ2 and ℓ2-smth algorithms for the first study case. All reconstructed images in figures hereafter are displayed with

the same grayscale for consistency.

https://doi.org/10.1371/journal.pone.0268410.g002
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very little new artifacts were introduced in the second study case. Additional improvement

with the smoothing penalty was able to efficiently suppress these remaining artifacts. It also

produced high-quality image closer to the original image without any loss in the fine details.

Furthermore, the reconstruction by Hℓ1-ring and Hℓ0-ring algorithms show that they provide

similar results to those in ℓ1-ring and ℓ0-ring algorithms, respectively. However, the latter algo-

rithms eliminate more ring artifacts and produce better results than the former ones. The

residual artifacts were disappeared well with Hℓ0-smth-ring algorithm and were smoothed

well with Hℓ1-smth-ring algorithm, where they still slightly appeared with low contrast. More-

over, it is notable from Figs 6 and 7 that the angular constrained forms of the proposed algo-

rithms were able to suppress more ring artifacts compared to the original non-angular

constrained ones. It could eliminate approximately all the ring artifact except very few rings

appearing with very low contrast in some algorithms. Further improvement with the smooth-

ing penalty can weaken the remaining artifacts.

Fig 3. Reconstructed images in the first study case (noise-free, non-adjacent error detector bins, and angular-independent error case).

https://doi.org/10.1371/journal.pone.0268410.g003
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For quantitative evaluation, we measured the quantitative metrics (RRMSE and SSIM)

between the original reference image and the reconstructed image by each algorithm. The

obtained metric values are summarized in Tables 2 and 3 for all the study cases. From these

results, we can observe that the RRMSE values for the proposed algorithms are significantly

smaller than the compared methods. Also, the SSIM values for the proposed algorithms are

higher than the compared methods. Furthermore, we note that the metric values for ℓ1-smth-

ring and ℓ0-smth-ring algorithms and their angular constrained forms outperformed the other

proposed algorithms.

Finally, from the above qualitative and quantitative evaluation, the proposed algorithms

and their angular constrained forms, especially with incorporating the smoothing penalty, are

effective in suppressing the ring artifact. They also achieve higher image quality compared

with the other methods implemented in this work. Fig 8 displays both RRMSE and SSIM val-

ues versus the iteration numbers for the third study case, and it is clear that the reconstruction

Fig 4. Reconstructed images in the second study case (noise-free, adjacent error detector bins, and angular-independent error case).

https://doi.org/10.1371/journal.pone.0268410.g004
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by the proposed algorithms required about 2000 iterations to converge. One drawback of the

proposed algorithms is that the iterative algorithms derived from ADMM method are slow in

convergence. In the future, we plan to improve the slow convergence speed by introducing

faster optimization methods.

4.4 Results of the simulation with noisy projection data

We also studied the case where projection data contains statistical noise in addition to the ring

artifact. In the noisy data case, Poisson noise corresponding to 106 (counts/bin) was added to

the sinogram of the first study case in the previous section. Using this sinogram, we recon-

structed images by the proposed algorithms. The parameter values in the proposed algorithms

were as follows: L = 2, K = 500, α = 5 × 10−3, ρ = 0.001, δ = 0.03 and η = 0.01. Also, b
0
were

750.0 in ℓ1-smth-ring, 55.0 in ℓ0-smth-ring, 75.0 in Hℓ1-smth-ring, 45.0 in Hℓ0-smth-ring, and

Fig 5. Reconstructed images in the third study case (noise-free, adjacent bad detector bins, and angular-dependent error case).

https://doi.org/10.1371/journal.pone.0268410.g005
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150.0 in the angular constrained forms. Moreover, the parameter values in the M1 and M2

methods were the same as in the case without noise. The true image, the corrupted image, and

the reconstructions by the proposed algorithms and the compared methods are shown in Figs

9 and 10 shows the reconstructions by the angular constrained forms of the proposed algo-

rithms and their improved versions with the smoothing penalty.

From the visual evaluation of the results, we can notice that the M1 and M2 methods pro-

duced similar results to those in the previously studied noise-free case. Furthermore, we can

observe that the reconstructions by ℓ1-ring and ℓ0-ring algorithms did not succeed in

completely eliminating the ring artifact, where it only slightly decreased the intensity of some

rings. The reconstructions by Hℓ1-ring and Hℓ0-ring algorithms produced similar results to

those in ℓ1-ring and ℓ0-ring algorithms, respectively. Meanwhile, the remaining artifacts were

weakened with ℓ1-smth-ring algorithm. Also, they were suppressed with ℓ0-smth-ring, Hℓ1-

Fig 6. Comparison of reconstruction images between the proposed algorithms and their angular constrained forms for the first study case (noise-free,

non-adjacent error detector bins, and angular-independent error case).

https://doi.org/10.1371/journal.pone.0268410.g006
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smth-ring, and Hℓ0-smth-ring, where the artifact slightly appeared with low contrast. It can be

notable that the reconstructions by Hℓ1-ring and Hℓ0-ring algorithms contained less noise

compared to ℓ1-ring and ℓ0-rings algorithms. The reason for this is the existence of the qua-

dratic part in Huber ℓ1-norm and Huber ℓ0-norm cost functions in Hℓ1-ring and Hℓ0-ring

algorithms.

Concerning the results of the angular constrained forms of the proposed algorithms, it is

clear that the angular constrained forms of the proposed algorithm could eliminate all the ring

artifact with ℓ0-ring and Hℓ0-ring algorithms. They also removed most of the rings except

some rings located near the center in both ℓ1-ring and Hℓ1-ring algorithms, although some

new artifacts were introduced. Additionally, we can observe that the angular constrained

forms of the improved algorithms could effectively remove the artifact and produce ring-free

images.

Fig 7. Comparison of reconstructed images between the proposed algorithms and their angular constrained forms for the second study case (noise-

free, adjacent error detector bins, and angular-independent error case).

https://doi.org/10.1371/journal.pone.0268410.g007
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To perform quantitative evaluation of the proposed algorithms, RRMSE and SSIM values

were measured and presented in the last two columns in Table 2. We can observe that the

improved versions of the proposed algorithms and their angular constrained forms achieved

the best values among all the implemented algorithms. The performance of the proposed algo-

rithms in the case of noisy projection is less than that in the case of noise-free projection data,

Table 2. RRMSE and SSIM values of reconstructed images by the proposed algorithms and the compared methods for the first and second study cases and the noisy

data.

Case 1 Case 2 Noisy data

RRMSE SSIM RRMSE SSIM RRMSE SSIM

M1 0.5852 0.8946 0.5953 0.8926 0.5900 0.8901

M2 0.3184 0.9392 0.3288 0.9304 0.4994 0.9280

ℓ2 0.4682 0.8757 0.5314 0.8763 0.4695 0.8826

ℓ2-smth 0.3418 0.9519 0.4741 0.9193 0.3901 0.9429

ℓ1-ring 0.2968 0.9470 0.3344 0.9374 0.9749 0.6055

ℓ1-smth-ring 0.0708 0.9969 0.0813 0.9961 0.4342 0.9030

ℓ0-ring 0.1228 0.9897 0.2215 0.9713 0.8412 0.6974

ℓ0-smth-ring 0.0697 0.9969 0.0757 0.9965 0.3758 0.9429

Hℓ1-ring 0.1289 0.9897 0.2396 0.9738 0.8466 0.6943

Hℓ1-smth-ring 0.0806 0.9961 0.0946 0.9950 0.2928 0.9682

Hℓ0-ring 0.0837 0.9956 0.2188 0.9749 0.7865 0.7283

Hℓ0-smth-ring 0.0754 0.9966 0.0779 0.9963 0.3359 0.9590

Cstr-ℓ1-ring 0.2547 0.9586 0.2474 0.9605 0.9675 0.6165

Cstr-ℓ1-smth-ring 0.0705 0.9969 0.0695 0.9969 0.5836 0.8314

Cstr-ℓ0-ring 0.1346 0.9881 0.1309 0.9884 0.9618 0.6190

Cstr-ℓ0-smth-ring 0.0746 0.9966 0.0788 0.9963 0.5904 0.8290

Cstr-Hℓ1-ring 0.1272 0.9890 0.1386 0.9870 0.9625 0.6193

Cstr-Hℓ1-smth-ring 0.0737 0.9966 0.0755 0.9965 0.5853 0.8299

Cstr-Hℓ0-ring 0.1384 0.9880 0.1324 0.9887 0.9640 0.6183

Cstr-Hℓ0-smth-ring 0.0693 0.9964 0.0775 0.9963 0.5933 0.8270

https://doi.org/10.1371/journal.pone.0268410.t002

Table 3. RRMSE and SSIM values of reconstructed images by the proposed algorithms and the compared methods

for the third study case.

Case 3

RRMSE SSIM

M1 0.5957 0.8924

M2 0.3302 0.9294

ℓ2 0.5370 0.8708

ℓ2-smth 0.4805 0.9169

ℓ1-ring 0.3253 0.9403

ℓ1-smth-ring 0.0801 0.9962

ℓ0-ring 0.1445 0.9861

ℓ0-smth-ring 0.0751 0.9968

Hℓ1-ring 0.2403 0.9735

Hℓ1-smth-ring 0.0944 0.9950

Hℓ0-ring 0.1497 0.9871

Hℓ0-smth-ring 0.0780 0.9963

https://doi.org/10.1371/journal.pone.0268410.t003
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even with Hℓ1-ring or Hℓ0-ring algorithms. Consequently, we plan to incorporate a statistical

model in addition to the sparsity-induced norms for further improvement of the reconstruc-

tion with noisy projection data.

4.5 Results of the real data

For additional evaluation of the proposed algorithms, we implemented the proposed algo-

rithms with real data. We used the projection data corresponding to the central slice of the

above-mentioned real data. We implemented the proposed method and the compared meth-

ods with this data. The results are shown in Fig 11. Also, an enlargement of a small ROI located

in the center of each reconstruction is shown in the upper right corner of each image.

The results are summarized as follows. Most of the ring artifacts were removed well with

the corrections using M1 and M2 methods. However, some remaining rings were still visible.

These existing techniques worked well, but were not complete in this experiment. The recon-

structed images with ℓ2 and ℓ2-smth algorithms and their angular constrained versions (cstr-ℓ2

and cstr-ℓ2-smth) still included the strong ring artifact. Since the real projection data is cor-

rupted with noise, Hℓ0-ring, Hℓ0-smth-ring, and the angular constraint versions of Hℓ1-ring

and Hℓ0-ring algorithms could remove most of the ring artifact well. Moreover, cstr-smth-

Hℓ1-ring and cstr-smth-Hℓ0-ring algorithms almost completely removed the ring artifact lead-

ing to high-quality reconstructions. Finally, we would like to strengthen the following fact.

Using ℓ2-norm cannot suppress the ring artifact, whereas the combination of ℓ1-or ℓ0-norm

and ℓ2-norm as in Huber ℓ1- and Huber ℓ0-norms is able to remove the ring artifact. This

means that the use of sparsity-induced norm is essential in the ring-artifact elimination

problem.

5 Conclusion

In this work, we developed a class of algorithms to eliminate the ring artifact from CT images.

The first group of algorithms minimizes different sparsity-induced norms of the imperfect

error components of the sinogram. In the second group of algorithms, we improved the first

class of algorithms by incorporating the smoothing penalty into the cost function to remove

the remaining ring artifact. Furthermore, we also introduced angular constrained forms

Fig 8. Computed (a) RRMSE and (b) SSIM values versus the iteration numbers for the third study case.

https://doi.org/10.1371/journal.pone.0268410.g008

PLOS ONE Sparsity-based method for ring artifact elimination in computed tomography

PLOS ONE | https://doi.org/10.1371/journal.pone.0268410 June 28, 2022 19 / 25

https://doi.org/10.1371/journal.pone.0268410.g008
https://doi.org/10.1371/journal.pone.0268410


corresponding to the proposed algorithms and their improved versions. The proposed algo-

rithms are able to correct the ring artifact well during image reconstruction and need neither

pre-processing nor post-processing steps. We evaluated the performance of these algorithms

through a number of simulation and real data studies. In the simulation, we considered three

different cases where different setups of the ring artifact patterns were simulated. Both the

qualitative and quantitative evaluation results demonstrated that the improved versions of the

proposed algorithms and their angular constrained forms are efficient in ring artifact suppres-

sion. They also provide significantly better results than the compared methods, i.e. M1 and M2

methods. In summary, we can conclude that the sparsity-induced norms for the imperfect

error components of the projection data in the data fidelity as well as the smoothing penalty

can effectively eliminate the ring artifact.

Fig 9. Reconstructed images in the case of noisy projection data (noisy projection data, non-adjacent error detector bins, and angular-independent

error case).

https://doi.org/10.1371/journal.pone.0268410.g009
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Fig 10. Comparison of reconstructed images between the proposed algorithms and their angular constrained forms in the case of noisy projection data

(noisy projection data, non-adjacent error detector bins, and angular-independent error case).

https://doi.org/10.1371/journal.pone.0268410.g010
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Fig 11. Results of the real data.

https://doi.org/10.1371/journal.pone.0268410.g011
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