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Abstract

Background: Glutamate receptors of the AMPA type (AMPArs) mediate fast excitatory
transmission in the dorsal horn and are thought to underlie perception of both acute and chronic
pain. They are tetrameric structures made up from 4 subunits (GluR -4), and subunit composition
determines properties of the receptor. Antigen retrieval with pepsin can be used to reveal the
receptors with immunocytochemistry, and in this study we have investigated the subunit
composition at synapses within laminae |-lll of the dorsal horn. In addition, we have compared
staining of AMPArs with that for PSD-95, a major constituent of glutamatergic synapses. We also
examined tissue from knock-out mice to confirm the validity of the immunostaining.

Results: As we have shown previously, virtually all AMPAr-immunoreactive puncta were
immunostained for GIuR2. In laminae |-ll, ~65% were GluRI-positive and ~60% were GluR3-
positive, while in lamina Ill the corresponding values were 34% (GluR1) and 80% (GIuR3). Puncta
stained with antibody against the C-terminus of GluR4 (which only detects the long form of this
subunit) made up 23% of the AMPAr-containing puncta in lamina I, ~8% of those in lamina Il and
46% of those in lamina lll. Some overlap between GluR| and GIuR3 was seen in each region, but in
lamina | GIuR | and GIluR4 were present in largely non-overlapping populations. The GluR4 puncta
often appeared to outline dendrites of individual neurons in the superficial laminae. Virtually all of
the AMPAr-positive puncta were immunostained for PSD-95, and 98% of PSD-95 puncta contained
AMPAr-immunoreactivity. Staining for GluR |, GluR2 and GIuR3 was absent in sections from mice
in which these subunits had been knocked out, while the punctate staining for PSD-95 was absent
in mice with a mutation that prevents accumulation of PSD-95 at synapses.

Conclusion: Our results suggest that virtually all glutamatergic synapses in laminae I-lIl of adult
rat spinal cord contain AMPArs. They show that synapses in laminae |-l contain GIuR2 together
with GluR| and/or GIuR3, while the long form of GluR4 is restricted to specific neuronal
populations, which may include some lamina | projection cells. They also provide further evidence
that immunostaining for AMPAr subunits following antigen retrieval is a reliable method for
detecting these receptors at glutamatergic synapses.
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Background

The superficial part of the spinal dorsal horn (laminae I-
IT) is the major target for nociceptive primary afferents [1-
3]. It contains numerous excitatory and inhibitory
interneurons, a population of projection cells that are
located in lamina I, and the dorsally directed dendrites of
neurons that have their cell bodies in laminae III and IV
[4-7]. The circuitry of this region is complex and poorly
understood, although it is known that many of these neu-
rons respond to noxious stimulation [8-13] and that the
projection cells appear to be necessary for the develop-
ment of chronic pain states [14,15].

Glutamate is the main excitatory neurotransmitter in the
dorsal horn, and is released by all classes of primary affer-
ent, as well as by the axons of many spinal neurons and by
certain axons that descend from the brain [16,17]. Gluta-
mate acts on both ionotropic and metabotropic receptors,
and these are widely expressed in the spinal cord [18]. In
the dorsal horn, ionotropic receptors of the AMPA type
(AMPArs) mediate fast EPSPs [19,20] and are thought to
play a major role in the perception of both acute and
chronic pain [21,22]. AMPArs have a tetrameric structure
and are made up from four subunits (GluR1-4, also
known as GluR-A-D) that are encoded by four separate
genes, grial-4. All four subunits are expressed in the dorsal
horn [23-33]. Both homomeric and heteromeric receptors
can be formed, and the properties of the receptors depend
on subunit composition. AMPATrs that lack the GluR2 sub-
unit show significant Ca2+-permeability [34], while those
that possess subunits with long C-terminal tails (GluR1
and GluR4) have been shown to undergo activity-depend-
ent insertion, leading to long-term potentiation (LTP)
[35]. In addition, the subunits have specific sites at which
they can undergo phosphorylation, which results in alter-
ations in the channel properties of the receptor [36]. We
have previously demonstrated that acute noxious stimula-
tion results in phosphorylation at the S845 site of GluR1
subunits at synapses in the superficial dorsal horn [33],
and this is likely to lead to an increase in peak open prob-
ability of the receptors, and thus an enhancement of syn-
aptic transmission [37].

Although there are specific antibodies directed against
each of the AMPAr subunits, it is difficult to detect synap-
tic receptors with conventional immunocytochemistry,
because the cross-linking of proteins in the synaptic cleft
and post-synaptic density that occurs during fixation
restricts the access of these antibodies in tissue sections.
Antigen retrieval with pepsin [38] can be used to reveal
synaptic receptors, and we have previously described the
laminar distribution of GluR1-4 at synapses in the rat spi-
nal cord [33]. We reported that GluR2 was widely distrib-
uted throughout the grey matter, and was apparently
present in virtually all synapses that contained AMPATs,
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whereas GluR1 was largely restricted to laminae I-II1 of
the dorsal horn. GluR3 and 4 were found at relatively high
density in deep dorsal horn and ventral horn, but were
also present in some synapses in the superficial laminae.

In this study we have used immunocytochemistry with
antigen retrieval to provide detailed quantitative informa-
tion about the expression of the different AMPAr subunits
at glutamatergic synapses in laminae I-III of the dorsal
horn, and to examine the pattern of co-expression of sub-
units at synapses in this region. In order to identify
AMPATr-containing synapses, we used an antibody that
recognises all four subunits (pan-AMPAr antibody) [39].
One of the main aims was to determine the proportion of
synapses that contained GluR1 and/or GluR4, as this
would give an indication of the extent to which synaptic
plasticity involving these subunits could affect dorsal
horn neurons. To provide further evidence that the immu-
nostaining for AMPArs seen after antigen-retrieval with
pepsin is located at glutamatergic synapses, we compared
it with staining obtained with an antibody against the
post-synaptic density protein PSD-95 [40]. In addition,
we have used spinal cord sections from mice that lacked
the genes for GIluR1, 2 or 3 subunits [41,42] or expressed
a mutant form of PSD-95 [43] to demonstrate specificity
of synaptic labelling with the antibodies against these pro-
teins.

Results

Distribution of AMPATr subunits in laminae I-11l

Following antigen retrieval with pepsin, a punctate pat-
tern of staining was seen in the dorsal horn with antibod-
ies against each of the GluR subunits and also with the
pan-AMPATr antibody (Fig. 1). The distribution of puncta
seen with the GluR1, GluR2 and GIuR3 antibodies was
the same as that reported by Nagy et al. [33]. GluR1
puncta were largely restricted to laminae I-1II of the dorsal
horn, while GluR2 puncta were present throughout the
grey matter, but were densest and most strongly stained in
laminae I-1I. GluR3-immunoreactive puncta were also
present throughout the grey matter. The majority of those
in laminae I and II were relatively weakly stained com-
pared to puncta in deeper laminae, although scattered
bright puncta were seen in lamina I. However, the rabbit
GluR4 C-terminal antibody (GluR4-C) that was used in
this study gave a different pattern of labelling to that pre-
viously observed in the dorsal horn with a guinea-pig anti-
body against the N-terminus of this subunit (GluR4-N)
[33]. While the N-terminal antibody had labelled many
puncta in the superficial laminae, the C-terminal antibody
labelled few puncta, although these were often relatively
bright and arranged in rows or clusters (Fig. 1 arrow,
arrowhead). When we compared the staining with the 2
GluR4 antibodies directly, we found a population of
puncta that were strongly stained with both the GluR4-N
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Figure |

Immunostaining with the pan-AMPAr antibody and with subunit-specific antibodies in laminae I-Ill of the rat
dorsal horn following antigen retrieval with pepsin. Each image shows a vertical strip taken through the central part of
the dorsal horn stained with the pan-AMPAr antibody (PAMPA) or with one of the subunit-specific antibodies. As we have
reported previously [60], lamina | is relatively thick in this region. Images of pan-AMPAr, GIuR| and GIuR?2 are taken from one
section, while those for GIuR3 and GluR4 are taken from another. GluR| puncta are most numerous in laminae | and Il, while
those that are GluR2- or GluR3-immunoreactive are present in large numbers throughout laminae I-lll. The GluR4 staining
was obtained with a rabbit antibody against the C-terminal part of the protein (GIuR4-C antibody), and is present at relatively
few puncta in laminae | and Il. However some clusters of GluR4 puncta that are orientated either transversely (arrow) or dor-
soventrally (arrowhead) are visible in the superficial dorsal horn. Each image was obtained from a projection of 5 optical sec-

tions at 0.3 um z-spacing. Approximate locations of laminar boundaries are shown. Scale bar = 20 pum.

and GluR4-C antibodies, as well as many puncta that were
more weakly stained with the GluR4-N antibody but were
not labelled by GluR4-C. All of the puncta stained with
either GluR4 antibody were also GluR2-immunoreactive
(Fig. 2). The distribution of punctate staining with the
pan-AMPAr antibody was very similar to that seen with
the GluR2 antibody (Fig. 1).

Quantification of AMPATr subunits

In sections stained with the pan-AMPAr antibody together
with combinations of subunit-specific antibodies, we
found that all of the puncta that were immunoreactive for
GluR1, 2, 3 or 4 were also pan-AMPAr positive (Fig. 3).
We therefore used the pan-AMPAr antibody to identify
synapses that contained AMPArs and to determine the
proportion of these synapses in each lamina that were
labelled with the GluR1, 3 and 4 antibodies. For each of
these subunits, 100 pan-AMPAr-positive puncta were ana-

lysed from each of laminae I, Ilo, Ili and III in sections
from 4 rats (Table 1). We analysed the two halves of lam-
ina II separately, since there are differences in the main
types of primary afferent input to each half, as well as in
the response properties of their neurons [3]. We found
that approximately 65% of the puncta in laminae I-II
were GluRl-immunoreactive, while this proportion
dropped to 34% in lamina III. Between 57-65% of puncta
in laminae I-1T were GluR3-positive, rising to 80% in lam-
ina III. In contrast, only a small minority of puncta in the
superficial laminae (23% in lamina I, 7-9% in lamina II)
were positive with the GluR4-C antibody, and the propor-
tion for lamina III was 46%. As expected [33] we found
that virtually all pan-AMPAr-positive puncta were GluR2-
immunoreactive in each of the laminae examined (Fig.
3e-h), and we therefore analysed a sample of 100 pan-
AMPAT puncta located throughout the dorsoventral extent
of laminae I-III in each rat. Between 98-100% (mean
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Figure 2
Comparison of immunostaining with the GluR4-C and GluR4-N antibodies. Confocal images from lamina | stained
with the GIluR4-C, GluR4-N and GluR2 antibodies. A few puncta are labelled with the GluR4-C antibody (two marked with
arrows). The GIuR4-N antibody stains these strongly, but also labels several other puncta more weakly (two shown with
arrowheads). All of the puncta labelled by each GluR4 antibody are GluR2-immunoreactive. Images were obtained from 4 opti-
cal spacing at 0.3 um. Scale bar = [0 um.

99%) of these puncta were positive for GIuR2 in sections
from the 4 rats.

Since the quantification of GluR1 and GluR3 was carried
out on the same set of sections, we were able to analyse
the co-localisation of these two subunits. We found that
the great majority (89-92%) of pan-AMPAr-positive
puncta throughout laminae I-1II were stained with either
GIuR1 or GluR3, while 25-37% contained both types of
immunoreactivity (Fig. 3a-d, Table 2). However, most of
the puncta that were strongly immunoreactive for GluR1
were either weakly stained or unstained with the GluR3
antibody, and vice versa. Approximately 10% of the pan-
AMPATr-positive puncta in laminae I-III in these sections
were not immunostained with either GluR1 or GluR3
antibodies (Table 2).

Since both the GluR1 and GluR4-C antibody were raised
in rabbit, we used a two-stage immunocytochemical pro-
cedure to look for possible co-existence between these
subunits in lamina I. This region was chosen since it has a
significant population of puncta that are immunoreactive
with each of these antibodies, and because it also contains
a relatively high density of projection neurons (see
below). We found that the great majority of GluR4-immu-
noreactive puncta in lamina I were not labelled by the
GluR1 antibody (Fig. 4), although a small proportion
(mean 3.9%, range 1.5-6.9%, n = 3) also showed GluR1-
immunoreactivity.

Although puncta immunoreactive with the GluR4-C anti-
body were relatively infrequent in laminae I-II, those that

were present were often strongly immunoreactive and
arranged in rows or clusters. Some of these were restricted
to lamina I and were transversely (Fig. 1 arrow) or longi-
tudinally orientated, while others that had a dorsoventral
orientation were seen in laminae I, I or III (Fig. 1 arrow-
head). Close inspection revealed that these clusters of
bright puncta were frequently arranged in parallel rows
which appeared to outline dendritic shafts (Fig. 5a). Those
in lamina I were usually also strongly stained with the
GluR3 antibody (Fig. 5b-c), while the dorsoventrally ori-
entated ones in laminae II or III were generally either
weakly stained or unstained with the GIluR3 antibody
(data not shown).

AMPAr staining in KO mice

Sections from mice in which the GluR1-3 subunits had
been knocked out and from corresponding wild-type ani-
mals were stained to reveal GluR1, GluR2 and GluR3, and
the results are illustrated in Fig. 6. Sections from wild-type
mice showed punctate staining with each of the 3 anti-
bodies, and the laminar distribution resembled that seen
in the rat dorsal horn. In each of the knock-outs staining
with the antibody corresponding to the product of the
deleted gene was completely absent, while an apparently
normal pattern of punctate staining was detected with the
other two antibodies.

PSD-95 and its relation to pan-AMPATr staining

Following antigen retrieval with pepsin, the PSD-95 anti-
body gave a punctate staining pattern in the rat dorsal
horn, which was similar to that seen with the pan-AMPAr
and GIuR2 antibodies (Fig. 7a). Puncta were present
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Staining with GluR1-4 and pan-AMPAr antibodies. Confocal images that show immunoreactivity for GluR 1|, GluR3 and
pan-AMPAr (pAMPA) in lamina | (a-d), and GluR2, GluR4 and pan-AMPAr in lamina Il (e-h). In each case a merged image is
shown (d,h). Note that all puncta labelled with the GluR1-4 antibodies are also labelled with the pan-AMPAr antibody. a-d:
Although most of the puncta that are strongly labelled with the GluR| or GluR3 antibody are weakly labelled or negative with
the other one, some can be seen to contain immunostaining for both subunits (2 shown with arrows). e-f: All of the puncta
that are GluR4-positive are also labelled with the GluR2 and pan-AMPAr antibodies. The images are projections of 2 optical

sections at 0.35 um z-spacing. Scale bar = 10 um.

throughout the grey matter of the spinal cord, but were
densest in the superficial dorsal horn (laminae I-II). In
sections from PSD-95-mutant (but not wild-type) mice,
staining with the PSD-95 antibody was absent, while
staining with GluR2 antibody in the same sections was
apparently normal (Fig. 7b-g).

In each of 3 rats, we analysed 100 pan-AMPAr-immunore-
active puncta from laminae I-IIT and found that virtually
all of them (mean 99.7%, range 99-100) were also posi-

tive for PSD-95 (Fig. 8). We also found that 97.7% (96-
99%) of PSD-95-immunoreactive puncta were labelled
with the pan-AMPAr antibody.

Discussion

The main novel findings of this study are (1) that GluR1
is present at the majority of AMPAr-containing synapses
(~65%) in laminae I-1I, where it is invariably co-localised
with GluR2 and often with GluR3, and (2) that antibody
against the C-terminal part of GluR4 labels relatively few

Table I: Percentages of pAMPAr-positive puncta with different AMPAr subunits. Percentage of AMPAr-positive puncta in each lamina
that were immunopositive with GluRI, GluR3 and GluR4-C antibodies. Each represents the mean value from 4 rats with the range

given in brackets.

subunit
Lamina GluR|1 GIuR3 GluR4
1 64 (59-68) 65 (54-70) 23 (15-34)
llo 66 (58-70) 57 (54-63) 7 (3-10)
i 63 (57-70) 57 (53-59) 9 (5-11)
]| 34 (27-42) 80 (76-86) 46 (38-54)
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Table 2: Co-localization of GluRI and GIuR3. Percentage of AMPAr-positive puncta in each lamina that showed different patterns of
immunoreactivity for GluRIl and GIuR3. Each represents the mean value from 4 rats with the range given in brackets.

Lamina GluRI+/GluR3+ GluR1+/GluR3- GluRI1-/GluR3+ GluRI1-/GluR3-
1 37 (32-44) 27 (24-35) 28 (22-33) 8 (6-11)
llo 32 (27-36) 34 (25-41) 25 (20-30) 9 (5-12)
Il 31 (26-35) 32 (28-35) 26 (22-29) 11 (8-16)
m 25 (21-28) 9 (4-14) 56 (49-65) 11 (6-17)

synapses in the superficial laminae, with those in lamina
I being largely separate from GluR1-containing puncta.
We confirm that virtually all AMPAr-containing synapses
in the superficial dorsal horn possess GIuR2 subunits. We
also provide further evidence that the staining seen with
AMPAr antibodies after antigen retrieval corresponds to
synaptic receptors, by demonstrating a high degree of co-
localisation with the postsynaptic density protein PSD-95,
and by showing that punctate staining with GluR1-3 anti-
bodies is absent in tissue from corresponding knock-out
mice.

PSD-95 in the dorsal horn

PSD-95, a member of the membrane-associated guanylate
kinase (MAGUK) family, is a major constituent of the
post-synaptic density at glutamatergic synapses, and con-
tains domains that are involved in protein-protein inter-
actions. PSD-95 is known to play an important role in
NMDA receptor-mediated synaptic plasticity [43-45], and

GluR1 GluR4

Figure 4

Immunostaining for GluR| and GluR4 in lamina I.
Confocal images that show immunoreactivity for GluR| and
GluR4, together with a merged image (right). Note that in
this field the two types of immunoreactivity are contained in
different puncta, with no co-localisation. This is a projection
of 16 optical sections at 0.3 um z-spacing. Scale bar =5 um.

in the spinal cord it appears to be necessary for the devel-
opment of neuropathic pain following peripheral nerve
injury [46,47], although not for inflammatory pain [47].
There have apparently been few studies of the distribution
of PSD-95 in the spinal cord, although Tao et al. [48] used
an immunocytochemical method without antigen
retrieval and reported staining that was densest in laminae
I and Ilo, while Garry et al. [47] observed B-galactosidase
activity associated with PSD-95 expression that was
restricted to neurons in lamina II. Fukaya and Watanabe
[40] demonstrated that treatment of sections with pepsin
prior to immunocytochemistry unmasks epitopes and
allows detection of MAGUK proteins in the post-synaptic
density, whereas these were not visualised reliably with
conventional methods. It is therefore likely that the punc-
tate pattern that we have demonstrated corresponds to the
distribution of PSD-95 in the post-synaptic densities of
glutamatergic synapses, and the finding that this staining
was absent in PSD-95 mutant mice confirms that the anti-
body is specific for the protein. Interestingly, the antibody
that we used was raised against the N terminal portion of
PSD-95, which is intact in the mutant mouse. Migaud et
al. [43] demonstrated that a truncated form of the protein,
known as PSDPPZ12, was synthesised in these animals.
However, they concluded that this was not localised to
post-synaptic densities, and our results confirm this inter-
pretation.

The almost perfect co-localisation of PSD-95- and pan-
AMPAr-immunostaining seen in the present study
strongly suggests that both proteins are expressed at virtu-
ally all glutamatergic synapses in the superficial dorsal
horn in the adult rat. Although it is possible that there is a
population of glutamatergic synapses that lack both pro-
teins, there is apparently no evidence to support such a
suggestion.

Comparison with previous findings

Although we did not determine the percentage of gluta-
matergic synapses that expressed GluR1 in our previous
study [33] we did estimate that this subunit was present at
30-40% of synapses associated with terminals that con-
tained VGLUT1 or were derived from unmyelinated pri-
mary afferents in laminae I-II, and at ~15% of the
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Figure 5

Immunostaining for GluR2, GIuR3 and GluR4 in lamina l. a: A confocal image from a parasagittal section, showing a

cluster of GluR4-immunoreactive puncta that appear to outline a single dendrite in lamina I. The boxed area is shown in b-e. b-
e: part of the field shown in a, scanned to reveal GluR4, GIuR3 and GIuR2, together with a merged image. The GluR4-positive
puncta are also GluR2- and GluR3-immunoreactive, and 2 of these are indicated with arrows. This is a projection of 19 optical

sections at 0.3 um z-spacing. Scale bar = 10 um.

synapses formed by VGLUT2-containing boutons in these
laminae. However, in the present study we found that
~65% of puncta in these laminae were GluR1-immunore-
active. In both the quantitative analysis of GluR1 in our
previous study [33] and also in the present study, we used
the same GluR1 antibody and detected this with a Cy5-
conjugated secondary antibody. However, in the present
study the Cy5 fluorescence was revealed with a highly sen-
sitive gallium arsenide phosphide (GaAsP) PMT, and the
improved sensitivity probably accounts for the much
higher expression that we observed here.

In contrast, we found that only 7-23% of puncta in lami-
nae I and II were immunoreactive with an antibody
against the C-terminal portion of GluR4, whereas in our
previous study we reported that more than 40% of puncta

in these laminae were stained with the GluR4-N antibody
[33]. This discrepancy resulted from the relatively weak
staining by the GluR4-N antibody of many puncta that
were negative with the GluR4-C antibody, as shown in
Fig. 2. There are a number of possible explanations for the
difference in staining patterns between the two antibod-
ies. Firstly, the GluR4-N antibody may cross-react with
another protein, for example one of the other AMPAr sub-
units. This seems very unlikely since in the hippocampus
staining with this antibody is restricted to the dendrites of
interneurons, and is not seen on pyramidal cells, which
express GluR1, 2 and 3 subunits (M.W. unpublished
observations). Alternatively, it may be that immunostain-
ing with the GluR4-N antibody is more sensitive, resulting
in identification of a population of puncta that are below
the detection threshold with the GluR4-C antibody. How-
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Immunostaining for GluR|l, GluR2 and GIuR3 in AMPAr knock-out and wild-type mice. Confocal images showing
parts of the superficial dorsal horn from a wild-type (w.t.) mouse and from mice in which the genes coding for GIuR 1, GluR2
and GIuR3 (grial, 2 and 3) had been knocked out. Each row shows staining in a different mouse, and in each case staining for
GIuRI (red) is shown in the left column, followed by staining for GluR2 (blue) and GIuR3 (green), with a merged image in the
right column. Note the lack of staining for the corresponding subunit in each of the knock-out mice. Images show projections

of 8 optical sections at 0.3 um z-separation. Scale bar =5 um.

ever, we found that the puncta that are positive with the
GluR4-C antibody in laminae I-II were often very strongly
labelled, which argues against this explanation. Nonethe-
less, it is possible that the difference in location of the
epitopes (extracellular for GluR4-N, intracellular for
GluR4-C) is a contributory factor. A third explanation is
that the alternatively spliced short form of GluR4
(GluR4c) [49], which lacks the epitope recognised by the

GluR4-C antibody, is expressed at some synapses in the
superficial dorsal horn that have undetectable levels of the
long form of GluR4. As far as we are aware, there is little
evidence available concerning the expression of GluR4c in
the spinal cord, although Kawahara et al. [50] have esti-
mated that approximately 10% of the mRNA for GluR4 in
adult human spinal grey matter is the GluR4c form. What-
ever the explanation, the present findings suggest that the
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Figure 7

PSD-95 immunostaining in dorsal horn. a: The distribu-
tion of PSD-95-immunoreactivity in the rat dorsal horn fol-
lowing antigen retrieval with pepsin. Approximate positions
of the laminae are shown. Punctate staining for PSD-95 is
present throughout the dorsal horn, with the highest density
in the superficial part (laminae I-Il). b-g show immunostain-
ing for GluR2 (green) and PSD-95 (red) in lamina Il in a wild-
type mouse (b-d) and in a PSD-95 mutant mouse (e-g). Note
the lack of punctate staining for PSD-95 in the PSD-95
mutant. All images are from single optical sections. Scale bars
=50 um (a), 10 um (b-g).

long form of GluR4 is highly expressed in only a small
proportion of synapses in the superficial dorsal horn.

AMPAr subunit expression at synapses in the superficial
dorsal horn

Our results suggest that the great majority of cells with
dendrites in laminae I and II express GluR2 together with
either or both of the GluR1 and GluR3 subunits (and pos-
sibly low levels of GluR4c). Approximately 10% of puncta
were found to lack both GluR1- and GluR3-immunoreac-

http://www.molecularpain.com/content/4/1/5

tivity, and these may correspond to those that express the
GluR4 subunit. Alternatively, it may be that these syn-
apses do contain GluR1 or GluR3, but at levels that were
below the detection threshold with the methods used in
this study.

The finding that ~65% of puncta in laminae I-II were
GluR1l-immunoreactive suggests that this subunit is
expressed by the majority of cells in these laminae. There
are several lines of evidence to suggest that this subunit
plays a role in synaptic plasticity in the dorsal horn in pain
states. Zhou et al. [51] observed a rapid up-regulation of
GluR1 mRNA in the lumbar dorsal horn following injec-
tion of complete Freund's adjuvant into the hindpaw,
while Fang et al. [52] reported phosphorylation of this
subunit at both §831 and S845 sites in Western blots of
spinal cord tissue after intradermal capsaicin injection.
We were able to demonstrate S845 phosphorylation of
GluR1 at synapses in laminae I-1I of the ipsilateral dorsal
horn after capsaicin injection [33]. In addition, it has been
reported that GluR1-containing receptors can be recruited
to neuronal plasma membranes in lumbar spinal cord fol-
lowing a noxious visceral stimulus [53]. Synaptic plastic-
ity involving GluR1 could therefore potentially occur in a
high proportion of neurons in the superficial dorsal horn.

Interestingly, the GluR4-C-immunoreactive puncta seen
in laminae I and II were often arranged in clusters, and in
fortuitous sections these appeared to outline parts of the
dendritic trees of individual neurons, as shown in Fig. 5.
These neurons are presumably relatively infrequent (since
only a few clusters were observed in each section) and
have a high density of glutamatergic synapses on their
dendritic trees. The arrangement of puncta indicated that
the dendrites were often of relatively large diameter. The
clusters of GluR4-immunoreactive puncta seen in lamina
I may belong to projection cells, which are thought to
make up approximately 5% of the neuronal population in
this lamina [54]. Projection cells with the neurokinin 1
(NK1) receptor have been shown to have a high density of
synaptic input from substance P-containing primary affer-
ents (which are also glutamatergic) [12], and we have
recently observed that a population of large projection
cells that lack the NK1 receptor [55] receive numerous
contacts from VGLUT2-immunoreactive boutons on their
dendritic trees (AJT and EP, unpublished observations).

Dorsoventrally-orientated clusters of GluR4-C-immuno-
reactive puncta were also seen in laminae II and III, and
these may represent either the ventrally directed dendrites
of lamina I cells or else dorsal dendrites of cells located in
deeper laminae. Projection neurons in laminae IIT and IV
that express the NK1 receptor have been shown to have
dorsally directed dendrites that extend into lamina I [6],
and these are known to have a high density of synaptic
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Figure 8
Co-localisation of PSD-95 and pan-AMPAr in lamina Il. Confocal images showing the co-localisation of immunostaining
for pan-AMPAr (pPAMPA) and PSD-95 in lamina Ili. These images were projected from 2 optical sections at 0.3 um z-separa-

tion. Scale bar =5 pm.
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input from substance P-containing afferents [56]. It is
therefore possible that some of the clusters of GluR4-
immunoreactive puncta are associated with these cells.

Since the majority of glutamatergic synapses in lamina I
appear to contain GluR1, it is likely that some of the pro-
jection neurons in this lamina express this subunit. How-
ever, these would belong to a different population to
those that express GluR4, since the 2 subunits were very
seldom colocalised. It has been shown that lamina I pro-
jection neurons can develop LTP following either high or
low-frequency stimulation of primary afferents [57,58].
Activity-dependent insertion of AMPArs that contain
either GluR1 or GluR4 is thought to underlie certain
forms of LTP, and it is therefore likely that either GluR1-
or GluR4-containing receptors are responsible for this
phenomenon in lamina I projection cells.

Conclusion

Our results provide further confirmation that the immu-
nostaining seen in the spinal dorsal horn with antibodies
against AMPATrs, following antigen retrieval with pepsin,
represents receptors located at glutamatergic synapses.
They show that the majority of such synapses in laminae
I-III contain GluR2 with either or both of GluR1 and
GIluR3 subunits. In contrast, the long form of the GluR4
subunit has a much more restricted distribution in the
superficial dorsal horn, and appears to be associated with
specific types of neuron, many of which also express
GluR2 and GluR3, but not GluR1. These neurons may cor-
respond, at least in part, to lamina I projection cells. The
high degree of co-localisation of pan-AMPATr staining with
that for PSD-95 suggests that virtually all glutamatergic
synapses in this region contain AMPArs in the adult spinal
cord.

Methods

Animals

Eighteen adult male Wistar rats (Harlan, Loughborough,
UK; 230 - 300 g) were deeply anaesthetised with pento-
barbitone and perfused through the left ventricle with
Ringer's solution followed by 4% freshly depolymerised
formaldehyde. Lumbar segments (L2-L5) were removed,
stored in the same fixative for 5-8 hours and then cut into
transverse or parasagittal 60 um thick sections with a
Vibratome. In addition, spinal cord tissue that had been
fixed according to the same protocol was obtained from
adult mice of either sex that lacked the genes for GluR1
(grial-/-), GluR2 (gria2-/-) or GluR3 (gria3-/-), or had a
mutation affecting the gene coding for PSD-95 [43],
together with tissue from corresponding adult wild-type
mice. The mouse spinal cords were cut with a Vibratome
into transverse 60 um thick sections. Sections were rinsed
for 30 mins in 50% ethanol to enhance antibody penetra-
tion.

All experiments were approved by the Ethical Review
Process Applications Panel of the University of Glasgow,
and were performed in accordance with the European
Community directive 86/609/EC and the UK Animals
(Scientific Procedures) Act 1986. All efforts were made to
minimize the number of animals used and their suffering.

Immunocytochemistry

All sections underwent antigen retrieval with pepsin prior
to immunocytochemical processing [33,38]. This
involved incubating the sections at 37°C for 30 mins in
PBS followed by 10 mins in 0.2 M HCI containing 1 mg/
ml pepsin (Dako, Glostrup, Denmark). They were then
reacted for double- or triple-immunofluorescence label-
ling with various combinations of antibodies directed
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Table 3: Characteristics of primary antibodies used in this study
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Antibody Source Species, Type Dilution Reference
GluR|1 Chemicon Rabbit, polyclonal 1:500
GluR2 Chemicon Mouse, monoclonal 1:300 [59]
GIuR3 M. Watanabe Goat, polyclonal 1:500
GluR4-N M. Watanabe Guinea pig, polyclonal 1:500 [33]
GluR4-C LabVision Rabbit, polyclonal 1:100
pan-AMPAr M. Watanabe Guinea pig, polyclonal 1:100 [39]
PSD-95 M. Watanabe Rabbit, polyclonal 1:200 [40]

against AMPAr subunits or PSD-95 (see Table 3 for details
of the antibodies used and their concentrations). In most
cases, sections were incubated for 2-3 days at 4°C in a
cocktail of 2 or 3 primary antibodies (each raised in a dif-
ferent species), and then overnight at 4°C in species-spe-
cific secondary antibodies that were raised in donkey and
conjugated to either Alexa 488 (Invitrogen, Paisley, UK;
1:500), or to Rhodamine Red or Cy5 (Jackson Immunore-
search, West Grove, PA, USA; 1:100). For the sections that
were reacted with both GluR1 and GluR4-C antibodies a
different approach was used, since both of these antibod-
ies were raised in rabbit. In this case, sections were ini-
tially incubated for 1 day in GluR1 antibody followed by
1 day in Fab' fragment of donkey anti-rabbit IgG conju-
gated to Rhodamine Red (Jackson Immunoresearch;
1:100). They were then incubated in unlabelled Fab' frag-
ment of donkey anti-rabbit IgG (Jackson Immunore-
search; 1:20) for 2 hours (to block any binding sites on the
GluR1 antibody), followed by 3 days in rabbit anti-
GluR4-C and 1 day in Alexa 488-labelled donkey anti-rab-
bit IgG (Invitrogen; 1:500).

For all immunocytochemical reaction, the rinses were in
PBS with 0.3 M NaCl, and antibodies were diluted in PBS
that contained 0.3% Triton-X100. Sections were mounted
in anti-fade medium (Vectashield; Vector Laboratories,
Peterborough, UK) and stored at -20°C.

Antibodies

The goat GluR3 antibody was raised against glutathione S-
transferase fused to the C terminal residues 830-862 of
the mouse GluR3 subunit (GenBank accession number
AB022342) and affinity-purified using GST fusion pro-
tein-coupled cyanogen bromide-activated Sepharose 4B
(Amersham Biosciences, Bucks, UK) as described previ-
ously [33].

All of the other polyclonal antibodies used in this study
were also affinity-purified. The GluR1 antibody (Chemi-
con, Chandlers Ford, UK; cat no. AB1504) was raised
against a synthetic peptide corresponding to the last 13
amino acids of rat GluR1 and is reported to show no cross-
reactivity with other AMPAr subunits (manufacturer's
specification), while the monoclonal GluR2 antibody

(Chemicon, cat no. mab397, clone 6C4) has been exten-
sively characterised and shown not to detect other AMPA
or kainate subunits [59]. The GluR4-N antibody was
raised against residues 245-273 of mouse GluR4 and rec-
ognises a single protein band of ~98 kDa in Western blots
of the PSD fraction from mouse spinal cord [33]. Staining
with this antibody is blocked by pre-incubation with the
immunising peptide [33]. The GluR4-C antibody (Labvi-
sion, Fremont, CA, USA; cat no. RB-9059) was raised
against a peptide derived from the C-terminal of human
GluR4 and recognises a single band of ~105 kDa in West-
ern blots of rat brain lysates (manufacturer's specifica-
tion). The PSD-95 antibody was raised against the N-
terminal region (residues 1-64) of mouse PSD-95 and
recognised a band of 87-97 kDa on Western blots of rat
brain homogenates [40]. Finally, the pan-AMPAr anti-
body was raised against residues 717-745 of the mouse
GluR1 (a region that shows high sequence homology
between the GluR1-GluR4 subunits) and detected each of
the four AMPAT subunits in transfected cells, with a trace
of cross-reactivity to the kainate receptor subunit GluR6
[39].

Confocal microscopy and Analysis

Sections were scanned with a Bio-Rad Radiance 2100 con-
focal microscope with Argon, HeNe and red diode lasers,
or a Bio-Rad MRC1024 confocal with a Krypton-Argon
laser. All of the analysis was carried out on stacks of con-
focal images scanned sequentially (to avoid fluorescent
bleed-through) with a 60x oil-immersion lens and a z-
separation of 0.3 or 0.35 pm.

Analysis of the percentage of AMPAr puncta that were
immunolabelled for GluR1, GluR3 or GluR4 was carried
out on sections from 4 rats. From each rat, one section
that had been reacted with pan-AMPAr, GluR1 and GluR3
antibodies, and one that had been reacted with pan-
AMPAr and GluR4-C antibodies was selected. From each
section, a set of confocal scans covering a ~100 um wide
strip through the entire dorsoventral extent of laminae I-
IIT was obtained. The lamina I/II and II/III borders were
identified by examining sections through a dark-field con-
denser [60], while the lamina III/IV border was deter-
mined by reference to an atlas of rat spinal cord [61].
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Lamina IT was divided into outer (I1o) and inner (Ili) parts
by drawing a line midway between the I/II and II/III bor-
ders. pan-AMPAr-immunostaining in confocal scans was
examined with MetaMorph software (Universal Imaging,
Downington, PA, USA) and immunoreactive puncta were
initially selected by using a grid [33]. This was done in
such a way as to ensure that puncta through the full dors-
oventral extent of each lamina were selected. From each
section, 400 pan-AMPAr-labelled puncta were selected
(100 each from laminae I, Ilo, IIi and III) and these were
then examined to determine whether they were immuno-
reactive with the GluR1, GluR3 or GluR4 antibodies.

Examination of sections that had been reacted with pan-
AMPAr antibody and GIuR2 revealed an almost perfect
co-localisation throughout laminae I-III. We therefore
used a modification of the approach described above, in
which 100 pan-AMPAr puncta were selected from the full
dorsoventral extent of this region in a single section each
from 4 rats and examined for the presence of GluR2.

To determine the extent of GluR1 and GluR4 co-localisa-
tion in lamina I, confocal scans were obtained from 4 sec-
tions each from 3 rats. The confocal images representing
GluR4 were initially examined with Neurolucida for Con-
focal (MicroBrightField Inc., Colchester, VT, USA) and at
least 25 GluR4-immunoreactive puncta were selected
from each section. Confocal images representing both
types of immunoreactivity were then merged and the pres-
ence or absence of GluR1-immunostaining in each of the
selected puncta was recorded.

To investigate co-localisation of AMPArs with PSD-95,
one section that had been reacted with pan-AMPAr and
PSD-95 antibodies was selected from each of 3 rats. In
each case a set of confocal images was scanned to produce
a~100 pm-wide strip through the full extent of laminae I-
III. One hundred PSD-95-immunoreactive puncta were
initially selected from the full dorsoventral extent of this
region and examined to determine whether they were also
pan-AMPAr-immunoreactive. A similar approach was
then used to determine the proportion of pan-AMPAr-
immunoreactive puncta that were labelled with the PSD-
95 antibody. In each case, the selection of puncta was
made while the observer was blind to the other type of
immunostaining.

Immunostaining of mouse tissue

Sections from grial-/-, gria2-/- and gria3-/- mice (n = 2 for
each mutation) and appropriate wild-type animals were
reacted with antibodies against GluR1, GluR2 and GluR3,
while those from 3 PSD-95-mutant and wild-type mice
were reacted with PSD-95 and GluR2 antibodies.

http://www.molecularpain.com/content/4/1/5

Competing interests
The author(s) declare that they have no competing inter-
ests.

Authors' contributions

EP participated in the design of the study and the analysis;
MW generated several of the antibodies; BH participated
in some of the experiments; SGNG generated the PSD-95
mutant mice; AJT conceived of the study, participated in
design and analysis and drafted the manuscript. All
authors participated in the writing of the manuscript and
approved the final version.

Acknowledgements

We are grateful to Mr R Kerr and Ms C Watt for expert technical assist-
ance, to Drs Gergely Nagy and Rohini Kuner for helpful discussion and
advice, to Drs Wei-Dong Yao and Tai-Xing Xu for providing tissue from
PSD-95 mice and to the Wellcome Trust for financial support. The GluR-
A, -B and -C knockout material was kindly provided by Drs Rolf Sprengel
and Peter H. Seeburg.

References

I. Light AR, Perl ER: Spinal termination of functionally identified
primary afferent neurons with slowly conducting myelinated
fibers. | Comp Neurol 1979, 186:133-150.

2. Sugiura Y, Lee CL, Perl ER: Central projections of identified,
unmyelinated (C) afferent fibers innervating mammalian
skin. Science 1986, 234:358-361.

3.  Todd AJ, Koerber : Neuroanatomical substrates of spinal noci-
ception. In Wall and Melzack's Textbook of Pain 5th edition. Edited
by: McMahon S, Koltzenburg M. Edinburgh: Elsevier; 2005:73-90.

4.  Rexed B: A cytoarchitectonic atlas of the spinal cord in the
cat. | Comp Neurol 1954, 100:297-379.

5.  Todd A, Spike RC: The localization of classical transmitters
and neuropeptides within neurons in laminae I-lll of the
mammalian spinal dorsal horn. Prog Neurobiol 1993, 41:609-645.

6. Todd AJ, McGill MM, Shehab SA: Neurokinin | receptor expres-
sion by neurons in laminae I, lll and IV of the rat spinal dorsal
horn that project to the brainstem. Eur | Neurosci 2000,
12:689-700.

7.  Dostrovsky J, Craig AD: Ascending projection systems. In Wall
and Melzack's Textbook of Pain 5th edition. Edited by: McMahon S,
Koltzenburg M. Edinburgh: Elsevier; 2005:187-203.

8.  Christensen BN, Perl ER: Spinal neurons specifically excited by
noxious or thermal stimuli: marginal zone of the dorsal
horn. | Neurophysiol 1970, 33:293-307.

9. Hunt SP, Pini A, Evan G: Induction of c-fos-like protein in spinal
cord neurons following sensory stimulation. Nature 1987,
328:632-634.

10. Doyle CA, Hunt SP: Substance P receptor (neurokinin-I)-
expressing neurons in lamina | of the spinal cord encode for
the intensity of noxious stimulation: a c-Fos study in rat. Neu-
roscience 1999, 89:17-28.

1. Bester H, Chapman V, Besson JM, Bernard JF: Physiological prop-
erties of the lamina | spinoparabrachial neurons in the rat. |
Neurophysiol 2000, 83:2239-2259.

12.  Todd AJ, Puskar Z, Spike RC, Hughes C, Watt C, Forrest L: Projec-
tion neurons in lamina | of rat spinal cord with the neuroki-
nin | receptor are selectively innervated by substance p-
containing afferents and respond to noxious stimulation. |
Neurosci 2002, 22:4103-4113.

13.  Polgar E, Campbell AD, Macintyre LM, Watanabe M, Todd AJ: Phos-
phorylation of ERK in neurokinin | receptor-expressing neu-
rons in laminae Ill and IV of the rat spinal dorsal horn
following noxious stimulation. Mol Pain 2007, 3:4.

14.  Mantyh PW, Rogers SD, Honore P, Allen BJ, Ghilardi JR, Li ], Daugh-
ters RS, Lappi DA, Wiley RG, Simone DA: Inhibition of hyperalge-
sia by ablation of lamina | spinal neurons expressing the
substance P receptor. Science 1997, 278:275-279.

Page 12 of 14

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=109477
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=109477
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=109477
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3764416
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3764416
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3764416
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=13163236
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=13163236
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7904359
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7904359
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7904359
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10712649
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10712649
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10712649
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5415075
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5415075
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5415075
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3112583
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3112583
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10051214
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10051214
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10051214
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10758132
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10758132
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12019329
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12019329
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12019329
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17309799
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17309799
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17309799
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9323204
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9323204
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9323204

Molecular Pain 2008, 4:5

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

Nichols ML, Allen BJ, Rogers SD, Ghilardi JR, Honore P, Luger NM,
Finke MP, Li J, Lappi DA, Simone DA, Mantyh PW: Transmission of
chronic nociception by spinal neurons expressing the sub-
stance P receptor. Science 1999, 286:1558-1561.

Broman |: Neurotransmitters in subcortical somatosensory
pathways. Anat Embryol (Berl) 1994, 189:181-214.

Todd AJ, Hughes DI, Polgar E, Nagy GG, Mackie M, Ottersen OP,
Maxwell DJ: The expression of vesicular glutamate transport-
ers VGLUTI and VGLUT2 in neurochemically defined
axonal populations in the rat spinal cord with emphasis on
the dorsal horn. Eur | Neurosci 2003, 17:13-27.

Coggeshall RE, Carlton SM: Receptor localization in the mam-
malian dorsal horn and primary afferent neurons. Brain Res
Brain Res Rev 1997, 24:28-66.

Yoshimura M, Jessell T: Amino acid-mediated EPSPs at primary
afferent synapses with substantia gelatinosa neurones in the
rat spinal cord. | Physiol 1990, 430:315-335.

Yoshimura M, Nishi S: Excitatory amino acid receptors involved
in primary afferent-evoked polysynaptic EPSPs of substantia
gelatinosa neurons in the adult rat spinal cord slice. Neurosci
Lett 1992, 143:131-134.

Dickenson AH, Chapman V, Green GM: The pharmacology of
excitatory and inhibitory amino acid-mediated events in the
transmission and modulation of pain in the spinal cord. Gen
Pharmacol 1997, 28:633-638.

Garry EM, Fleetwood-Walker SM: A new view on how AMPA
receptors and their interacting proteins mediate neuro-
pathic pain. Pain 2004, 109:210-213.

Furuyama T, Kiyama H, Sato K, Park HT, Maeno H, Takagi H,
Tohyama M: Region-specific expression of subunits of iono-
tropic glutamate receptors (AMPA-type, KA-type and
NMDA receptors) in the rat spinal cord with special refer-
ence to nociception. Brain Res Mol Brain Res 1993, 18:141-151.
Tolle TR, Berthele A, Zieglgansberger W, Seeburg PH, Wisden W:
The differential expression of 16 NMDA and non-NMDA
receptor subunits in the rat spinal cord and in periaqueduc-
tal gray. | Neurosci 1993, 13:5009-5028.

Henley JM, Jenkins R, Hunt SP: Localisation of glutamate recep-
tor binding sites and mMRNAs to the dorsal horn of the rat spi-
nal cord. Neuropharmacology 1993, 32:37-41.

Tachibana M, Wenthold R), Morioka H, Petralia RS: Light and elec-
tron microscopic immunocytochemical localization of
AMPA-selective glutamate receptors in the rat spinal cord.
J Comp Neurol 1994, 344:431-454.

Jakowec MWV, Yen L, Kalb RG: In situ hybridization analysis of
AMPA receptor subunit gene expression in the developing
rat spinal cord. Neuroscience 1995, 67:909-920.

Jakowec MW, Fox A, Martin L], Kalb RG: Quantitative and quali-
tative changes in AMPA receptor expression during spinal
cord development. Neuroscience 1995, 67:893-907.

Popratiloff A, Weinberg R, Rustioni A: AMPA receptor subunits
underlying terminals of fine-caliber primary afferent fibers. |
Neurosci 1996, 16:3363-3372.

Morrison BM, Janssen WG, Gordon JW, Morrison JH: Light and
electron microscopic distribution of the AMPA receptor
subunit, GIluR2, in the spinal cord of control and G86R
mutant superoxide dismutase transgenic mice. | Comp Neurol
1998, 395:523-534.

Spike RC, Kerr R, Maxwell DJ, Todd AJ: GluRI and GIuR2/3 sub-
units of the AMPA-type glutamate receptor are associated
with particular types of neurone in laminae I-lll of the spinal
dorsal horn of the rat. Eur | Neurosci 1998, 10:324-333.
Engelman HS, Allen TB, Macdermott AB: The distribution of neu-
rons expressing calcium-permeable AMPA receptors in the
superficial laminae of the spinal cord dorsal horn. | Neurosci
1999, 19:2081-2089.

Nagy GG, Al Ayyan M, Andrew D, Fukaya M, Watanabe M, Todd AJ:
Widespread expression of the AMPA receptor GluR2 subu-
nit at glutamatergic synapses in the rat spinal cord and phos-
phorylation of GIuRl in response to noxious stimulation
revealed with an antigen-unmasking method. | Neurosci 2004,
24:5766-5777.

Burnashev N, Monyer H, Seeburg PH, Sakmann B: Divalent ion per-
meability of AMPA receptor channels is dominated by the
edited form of a single subunit. Neuron 1992, 8:189-198.

35.
36.
37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

http://www.molecularpain.com/content/4/1/5

Bredt DS, Nicoll RA: AMPA receptor trafficking at excitatory
synapses. Neuron 2003, 40:361-379.

Song I, Huganir RL: Regulation of AMPA receptors during syn-
aptic plasticity. Trends Neurosci 2002, 25:578-588.

Banke TG, Bowie D, Lee H, Huganir RL, Schousboe A, Traynelis SF:
Control of GIuRl AMPA receptor function by cAMP-
dependent protein kinase. | Neurosci 2000, 20:89-102.
Watanabe M, Fukaya M, Sakimura K, Manabe T, Mishina M, Inoue Y:
Selective scarcity of NMDA receptor channel subunits in the
stratum lucidum (mossy fibre-recipient layer) of the mouse
hippocampal CA3 subfield. Eur | Neurosci 1998, 10:478-487.
Fukaya M, Tsujita M, Yamazaki M, Kushiya E, Abe M, Akashi K, Nat-
sume R, Kano M, Kamiya H, Watanabe M, Sakimura K: Abundant
distribution of TARP gamma-8 in synaptic and extrasynaptic
surface of hippocampal neurons and its major role in AMPA
receptor expression on spines and dendrites. Eur | Neurosci
2006, 24:2177-2190.

Fukaya M, Woatanabe M: Improved immunohistochemical
detection of postsynaptically located PSD-95/SAP90 protein
family by protease section pretreatment: a study in the adult
mouse brain. | Comp Neurol 2000, 426:572-586.

Zamanillo D, Sprengel R, Hvalby O, Jensen V, Burnashev N, Rozov A,
Kaiser KM, Koster HJ, Borchardt T, Worley P, Liibke J, Frotscher M,
Kelly PH, Sommer B, Andersen P, Seeburg PH, Sakmann B: Impor-
tance of AMPA receptors for hippocampal synaptic plasticity
but not for spatial learning. Science 1999, 284:1805-1811.
Hartmann B, Ahmadi S, Heppenstall PA, Lewin GR, Schott C, Bor-
chardt T, Seeburg PH, Zeilhofer HU, Sprengel R, Kuner R: The
AMPA receptor subunits GluR-A and GluR-B reciprocally
modulate spinal synaptic plasticity and inflammatory pain.
Neuron 2004, 44:637-650.

Migaud M, Charlesworth P, Dempster M, Webster LC, Watabe AM,
Makhinson M, He Y, Ramsay MF, Morris RG, Morrison JH, O'Dell TJ,
Grant SG: Enhanced long-term potentiation and impaired
learning in mice with mutant postsynaptic density-95 pro-
tein. Nature 1998, 396:433-439.

Komiyama NH, Watabe AM, Carlisle HJ, Porter K, Charlesworth P,
Monti J, Strathdee D), O'Carroll CM, Martin S), Morris RG, O'Dell TJ,
Grant SG: SynGAP regulates ERK/MAPK signaling, synaptic
plasticity, and learning in the complex with postsynaptic
density 95 and NMDA receptor. | Neurosci 2002, 22:9721-9732.
Fagiolini M, Katagiri H, Miyamoto H, Mori H, Grant SGN, Mishina M,
Hensch TK: Separable features of visual cortical plasticity
revealed by N-methyl-D-aspartate receptor 2A signaling.
Proc Natl Acad Sci USA 2003, 100:2854-2859.

Tao F, Tao YX, Gonzalez JA, Fang M, Mao P, Johns RA: Knockdown
of PSD-95/SAP90 delays the development of neuropathic
pain in rats. Neuroreport 2001, 12:3251-3255.

Garry EM, Moss A, Delaney A, O'Neill F, Blakemore ], Bowen ], Husi
H, Mitchell R, Grant SG, Fleetwood-Walker SM: Neuropathic sen-
sitization of behavioral reflexes and spinal NMDA receptor/
CaM kinase Il interactions are disrupted in PSD-95 mutant
mice. Curr Biol 2003, 13:321-328.

Tao YX, Huang YZ, Mei L, Johns RA: Expression of PSD-95/
SAP90 is critical for N-methyl-D-aspartate receptor-medi-
ated thermal hyperalgesia in the spinal cord. Neuroscience
2000, 98:201-206.

Gallo V, Upson LM, Hayes WP, Vyklicky L Jr, Winters CA, Buonanno
A: Molecular cloning and development analysis of a new
glutamate receptor subunit isoform in cerebellum. J Neurosci
1992, 12:1010-1023.

Kawahara Y, Ito K, Sun H, Ito M, Kanazawa |, Kwak S: GluR4c, an
alternative splicing isoform of GIluR4, is abundantly
expressed in the adult human brain. Brain Res Mol Brain Res
2004, 127:150-155.

Zhou QQ, Imbe H, Zou S, Dubner R, Ren K: Selective upregula-
tion of the flip-flop splice variants of AMPA receptor subu-
nits in the rat spinal cord after hindpaw inflammation. Brain
Res Mol Brain Res 2001, 88:186-193.

Fang L, Wu J, Zhang X, Lin Q, Willis WD: Increased phosphoryla-
tion of the GIuRI subunit of spinal cord alpha-amino-3-
hydroxy-5-methyl-4-isoxazole propionate receptor in rats
following intradermal injection of capsaicin. Neuroscience 2003,
122:237-245.

Page 13 of 14

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10567262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10567262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10567262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7913798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7913798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12534965
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12534965
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12534965
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9233541
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9233541
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1982314
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1982314
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1982314
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1359471
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1359471
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1359471
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9184794
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9184794
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9184794
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15157680
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15157680
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15157680
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8097549
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8097549
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8097549
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8254358
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8254358
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8254358
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7679210
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7679210
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7679210
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8063961
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8063961
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7675213
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7675213
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7675213
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7675212
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7675212
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7675212
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8627372
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8627372
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9619504
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9619504
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9619504
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9753141
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9753141
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9753141
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10066261
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10066261
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10066261
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15215299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15215299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15215299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1370372
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1370372
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1370372
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14556714
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14556714
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12392933
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12392933
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10627585
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10627585
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10627585
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9749710
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9749710
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9749710
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17074043
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17074043
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17074043
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11027400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11027400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11027400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10364547
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10364547
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10364547
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15541312
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15541312
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9853749
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9853749
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9853749
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12427827
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12427827
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12427827
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12591944
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11711866
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11711866
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11711866
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12593798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12593798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12593798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10854750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10854750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10854750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1372042
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1372042
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15306133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15306133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15306133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11295247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11295247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11295247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14596864
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14596864
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14596864

Molecular Pain 2008, 4:5

53.

54.

55.

56.

57.

58.

59.

60.

6l.

Galan A, Laird JM, Cervero F: In vivo recruitment by painful
stimuli of AMPA receptor subunits to the plasma membrane
of spinal cord neurons. Pain 2004, 112:315-323.

Spike RC, Puskéar Z, Andrew D, Todd AJ: A quantitative and mor-
phological study of projection neurons in lamina | of the rat
lumbar spinal cord. Eur | Neurosci 2003, 18:2433-2448.

Puskar Z, Polgar E, Todd AJ: A population of large lamina | pro-
jection neurons with selective inhibitory input in rat spinal
cord. Neuroscience 2001, 102:167-176.

Naim M, Spike RC, Watt C, Shehab SA, Todd AJ: Cells in laminae
IIl and IV of the rat spinal cord that possess the neurokinin-
| receptor and have dorsally directed dendrites receive a
major synaptic input from tachykinin-containing primary
afferents. | Neurosci 1997, 17:5536-5548.

Ikeda H, Heinke B, Ruscheweyh R, Sandkiihler J: Synaptic plasticity
in spinal lamina | projection neurons that mediate hyperal-
gesia. Science 2003, 299:1237-1240.

Ikeda H, Stark J, Fischer H, Wagner M, Drdla R, Jager T, Sandkiihler J:
Synaptic amplifier of inflammatory pain in the spinal dorsal
horn. Science 2006, 312:1659-1662.

Vissavajjhala P, Janssen WG, Hu Y, Gazzaley AH, Moran T, Hof PR,
Morrison JH: Synaptic distribution of the AMPA-GIuR2 subu-
nit and its colocalization with calcium-binding proteins in rat
cerebral cortex: an immunohistochemical study using a
GluR2-specific monoclonal antibody. Exp Neurol 1996,
142:296-312.

Todd A, Spike RC, Polgar E: A quantitative study of neurons
which express neurokinin | or somatostatin sst,, receptor in
rat spinal dorsal horn. Neuroscience 1998, 85:459-473.

Molander C, Xu Q, Grant G: The cytoarchitectonic organiza-
tion of the spinal cord in the rat. I. The lower thoracic and
lumbosacral cord. | Comp Neurol 1984, 230:133-141.

http://www.molecularpain.com/content/4/1/5

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here: O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 14 of 14

(page number not for citation purposes)



http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15561387
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15561387
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15561387
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14622144
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14622144
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14622144
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11226680
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11226680
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11226680
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9204935
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9204935
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9204935
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12595694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12595694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12595694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16778058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16778058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16778058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8934561
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8934561
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8934561
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9622244
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9622244
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6512014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6512014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6512014
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Distribution of AMPAr subunits in laminae I-III
	Quantification of AMPAr subunits
	AMPAr staining in KO mice
	PSD-95 and its relation to pan-AMPAr staining

	Discussion
	PSD-95 in the dorsal horn
	Comparison with previous findings
	AMPAr subunit expression at synapses in the superficial dorsal horn

	Conclusion
	Methods
	Animals
	Immunocytochemistry
	Antibodies
	Confocal microscopy and Analysis
	Immunostaining of mouse tissue

	Competing interests
	Authors' contributions
	Acknowledgements
	References

