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The basal forebrain cholinergic system relies on trophic support by nerve growth
factor (NGF) to maintain its phenotype and function. In Alzheimer’s disease (AD),
basal forebrain cholinergic neurons (BFCNs) undergo progressive atrophy, suggesting
a deficit in NGF trophic support. Within the central nervous system, NGF maturation
and degradation are tightly regulated by an activity-dependent metabolic cascade.
Here, we present a brief overview of the characteristics of Alzheimer’s pathology
in Down syndrome (DS) with an emphasis on this NGF metabolic pathway’s
disruption during the evolving Alzheimer’s pathology. Such NGF dysmetabolism
is well-established in Alzheimer’s brains with advanced pathology and has been
observed in mild cognitive impairment (MCI) and non-demented individuals with
elevated brain amyloid levels. As individuals with DS inexorably develop AD, we then
review findings that support the existence of a similar NGF dysmetabolism in DS
coinciding with atrophy of the basal forebrain cholinergic system. Lastly, we discuss the
potential of NGF-related biomarkers as indicators of an evolving Alzheimer’s pathology
in DS.

Keywords: Alzheimer’s, Down syndrome, nerve growth factor, metabolic pathway, basal forebrain cholinergic
neuron, cholinergic dysfunction, neuroinflammation

INTRODUCTION

Down syndrome (DS), also known as trisomy 21, is a genetic disorder caused primarily
by the triplication of chromosome 21, which leads to several abnormalities and
lifelong intellectual disability. As DS individuals age, they become at a very high risk
of developing Alzheimer’s disease (AD). Indeed, DS is now recognized as the most
common form of genetic AD, and AD presentation in DS (DSAD) is similar to that
of autosomal-dominant AD (ADAD) (Lott and Lai, 1982; Zigman and Lott, 2007;
Davidson et al., 2018; Strydom et al., 2018). Therefore, individuals with DS will inevitably
develop full-blown AD pathology with extracellular amyloid plaques, intracellular
neurofibrillary tangles, neuroinflammation, cholinergic depletion and cognitive and
learning deficits leading to clinical dementia in 70% of DS people over 60 years of age
(McCarron et al., 2014).
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ALZHEIMER PATHOLOGY IN DS

Amyloid and Tau Pathologies
Due in part to the triplication of genes encoding amyloid
precursor protein (APP) and β-amyloid cleavage enzyme 2
(BACE2) (St George-Hyslop et al., 1987; Acquati et al., 2000),
located on chromosome 21, individuals with DS display a
progressive accumulation of amyloid-beta (Aβ) peptides starting
before birth (Lemere et al., 1996; Teller et al., 1996; Mori et al.,
2002; Iulita et al., 2014). As in ADAD, the AD pathology in
DS (DSAD) follows a predictable disease trajectory (Wiseman
et al., 2015; Carmona-Iragui et al., 2017). As early as childhood, a
fraction of people with DS present diffuse Aβ plaques within their
brain (Lemere et al., 1996; Leverenz and Raskind, 1998). Early
Tau pathology (detected as AT8 immunoreactivity) in DS appears
by middle age (30–40 years) (Head et al., 2003; Davidson et al.,
2018), after Aβ pathology is established, and follows a distribution
pattern resembling that of AD, starting in the entorhinal cortex
and spreading to the hippocampus and the neocortex (Davidson
et al., 2018). By 40 years old nearly all DS brains show advanced
AD pathology with extensive amyloid plaques and neurofibrillary
tangles (NFTs) (Mann, 1988; Lemere et al., 1996; Leverenz and
Raskind, 1998; Lott and Head, 2001; Mori et al., 2002; Head
et al., 2003). However, DS brains with AD pathology present a
higher density of NFTs than that seen in sporadic AD (Hof et al.,
1995). A contributing factor may be the triplication of the dual-
specificity tyrosine phosphorylated and regulated kinase 1A gene
(DYRK1A), also located on chromosome 21, which is known
to phosphorylate Tau at several sites relevant to AD (Woods
et al., 2001; Liu et al., 2008). The triplication of APP, PS1 and
several immune response mediators associated with AD may also
play a role (Arron et al., 2006; Ryoo et al., 2008; Ryu et al.,
2010; Kurabayashi et al., 2015; García-Cerro et al., 2017). As in
sporadic AD, Aβ seems to be the main driver of dementia in DS
as indicated by case studies reporting on individuals with DS who
had partial trisomy 21 but were disomic for APP and who did not
develop plaques, NFTs or dementia (Prasher et al., 1998; Doran
et al., 2017). However, as in AD, cognitive decline in DS shows a
stronger association with NFTs than with Aβ plaques (Margallo-
Lana et al., 2007). Recently, a comprehensive revision of the
order and changes in AD biomarkers in adults with DS has been
communicated by Fortea and collaborators (Fortea et al., 2020).

It is noteworthy that the presence of the apolipoprotein E
ε4 allele (APOEε4), the highest genetic risk factor associated
with AD in the general population, is also a major determinant
of AD pathogenesis and progression in people with DS. It has
been shown that APOEε4 raises the risk for both early-onset
and sporadic AD (Corder et al., 1993; Strittmatter et al., 1993;
Qian et al., 2017) and accelerates both symptom onset and
pathology severity in a gene-dose-dependent manner (Blacker
et al., 1997; Farrer et al., 1997; Fleisher et al., 2013; Liu et al.,
2013; Gonneaud et al., 2016; Lautner et al., 2017; Cacciaglia
et al., 2018; Mishra et al., 2018). Accordingly, 65–80% of all
AD sufferers harbor at least one APOEε4 allele (Farrer et al.,
1997). The elevated risk of developing dementia conferred by
APOEε4 involves mechanisms associated with both Aβ and tau
aggregation (Therriault et al., 2020). APOEε4 carriers also have

increased blood-brain barrier breakdown that has been shown
to predict cognitive decline (Bell et al., 2012; Zhao et al., 2015;
Montagne et al., 2020). Similarly, in people with DS the presence
of the APOEε4 allele increases the risk of dementia, although to a
lesser extent than in the general population (Prasher et al., 2008;
Rohn et al., 2014). It also lowers the age of disease onset (Schupf
et al., 1996; Deb et al., 2000; Coppus et al., 2008; Bejanin et al.,
2021), aggravates Aβ deposition (Hyman et al., 1995; Bejanin
et al., 2021), and accelerates neurodegeneration (Bejanin et al.,
2021). Additionally, DS individuals harboring the APOEε4 allele
are at additional increased risk for early mortality (Prasher et al.,
2008; Hithersay et al., 2019).

Neuroinflammation
Neuroinflammation is another paramount feature of AD
pathology that contributes to the progression and severity of the
disease (Akiyama et al., 2000). The interest in the role of immune
processes in AD pathogenesis began with the discovery of major
histocompatibility molecules and complement system proteins
in amyloid plaques (Jonker et al., 1982), and the description
of HLA-DR- and IL-1β-positive reactive microglia surrounding
amyloid plaques and neurofibrillary tangles (McGeer et al., 1987,
1988). This concept was reinforced by genome-wide association
studies indicating that immune-related genes, such as TREM2,
HLA-DRB5-HLA-DRB1, CR1 and CLU are risk factors for
AD (Harold et al., 2009; Lambert et al., 2009, 2013; Brouwers
et al., 2012; Jonsson et al., 2013). DS brains display lifelong
neuroinflammatory changes starting at the fetal stage, prior to
plaque deposition. Still, the precise cause of neuroinflammation
initiation –triggered either by the accumulating AD pathology or
by the triplication of immune-related genes [reviewed in Wilcock
(2012)]—remains unclear. Early reports on neuroinflammation
in DS described a pronounced proliferation of activated glia
overexpressing S100B, another chromosome 21 gene product,
and interleukin-1 (IL-1) α and β (Griffin et al., 1989; Royston
et al., 1999). Since then, the evolving neuroinflammatory
phenotype of DS, which presents both similarities and differences
compared to that in sporadic AD, has been increasingly described
(Stoltzner et al., 2000; Head et al., 2003; Xue and Streit, 2011;
Wilcock et al., 2015; Flores-Aguilar et al., 2020). In fetuses and
neonates with DS, neuroinflammation is characterized by an
increase in the number of IL-1β-expressing microglia (Griffin
et al., 1989). This neuroinflammation escalates as children and
young adults with DS show an exacerbated neuroinflammatory
profile with activation of the complement pathway, elevated
levels of key inflammatory cytokines and altered microglia
morphology indicative of activation, including the presence of
rod-like microglia (Stoltzner et al., 2000; Wilcock et al., 2015;
Flores-Aguilar et al., 2020). Older DS individuals (over 40 years
of age) also display increased levels of potent inflammatory
cytokines compared to karyotypical controls, although to a
lesser extent than their younger DS counterparts. However,
an increase of dystrophic microglia with age has been reliably
demonstrated (Stoltzner et al., 2000; Wilcock et al., 2015;
Flores-Aguilar et al., 2020). Accordingly, elevated cytokine
expression and immune dysregulation have been reported in
the blood of children and adults with DS (Licastro et al., 2005;
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Iulita et al., 2016; Sullivan et al., 2017; Waugh et al., 2019; Weber
et al., 2020). It has been proposed that such changes promote AD
pathology in DS (Wilcock and Griffin, 2013). Such changes may
also be used to predict and monitor pathological progression.
For example, longitudinal changes in TNFα, IL-8, and AD
biomarkers in plasma along with a nerve growth factor (NGF)
metabolism dysregulation could predict prospective cognitive
decline in a population of DS individuals asymptomatic for AD
(Iulita and Cuello, 2016).

Cholinergic Dysfunction
The cholinergic neurotransmitter system is crucial for cortical
and hippocampal activity, learning and memory. Its atrophy
and degeneration are central to AD symptomatogenesis (Bowen
et al., 1976; Davies and Maloney, 1976; Whitehouse et al., 1981,
1982; Mufson et al., 1989; Grothe et al., 2010; Kerbler et al.,
2015). Its role in the AD pathology is highlighted by the fact
that four of the five drugs currently approved for AD treatment
are acetylcholinesterase (AChE) inhibitors, which, by preventing
the breakdown of acetylcholine, increase the cholinergic tone
resulting in improved cognitive outcomes, as long as sufficient
cholinergic terminals persist in the telencephalon (Hampel et al.,
2018; Kabir et al., 2019; Marucci et al., 2020). Degeneration
of basal forebrain cholinergic neurons (BFCNs) parallels the
development of AD pathology, progressing silently for several
years prior to the onset of cognitive symptoms (Grothe et al.,
2014), as reviewed by Hampel et al., 2018. Further, the
degeneration of BFCNs predicts atrophy of the brain regions
innervated by their projections such as the entorhinal cortex
and cerebral cortex (Schmitz and Spreng, 2016; Schmitz et al.,
2018). Loss of cholinergic innervation has also been linked to
vascular dysfunction, another early predictor of the progression
to AD (Iturria-Medina et al., 2016), and increased blood-brain
barrier permeability (Domer et al., 1983; Radu et al., 2017;
Nizari et al., 2019, 2021).

Cholinergic dysfunction in DS was first evidenced by a
significant reduction in choline acetyltransferase (ChAT) and
AChE activity in the temporal cortex of older individuals with
DS, which was not present in a younger DS subject (Yates
et al., 1980, 1983). Soon after, a significant and seemingly age-
related reduction in volume of the nucleus basalis was also
observed (Casanova et al., 1985). Further studies demonstrated
that abnormalities in the cholinergic system develop as the
individuals age and accumulate AD pathology since fetuses
display a neuronal density and vesicular acetylcholine transporter
(VAChT) immunoreactivity comparable to controls and that
newborns with DS have ChAT activity levels similar to age-
matched controls (Kish et al., 1989; Lubec et al., 2001). Age-
related atrophy and neurodegeneration of BFCNs is recapitulated
in mouse models of DS (Holtzman et al., 1992, 1996; Fiedler
et al., 1994; Cooper et al., 2001; Granholm et al., 2002) and
was attributed to APP gene triplication through disruption of
endosomal phenotype and function (Cataldo et al., 2003). Such
cholinergic dysfunction is sex-dependent and can be restored by
estrogen treatment (Granholm et al., 2002; Kelley et al., 2014b).

Interestingly, in the Ts65Dn mouse model of DS, maternal
supplementation with choline, a critical substrate for the

synthesis of acetylcholine, during pregnancy and lactation
reduced cognitive dysfunction and degeneration of BFCNs in
their adult offspring (Moon et al., 2010; Ash et al., 2014; Kelley
et al., 2014a; Strupp et al., 2016; Kelley et al., 2016; Powers
et al., 2017). Although the exact mechanisms underlying the
effects of choline therapy remain obscure, it has been shown that
choline treatment rescued the expression of genes related to the
cytoskeleton and cholinergic neurotransmission amongst others
(Kelley et al., 2019).

NERVE GROWTH FACTOR METABOLIC
DYSREGULATION IN DS

Basal forebrain cholinergic neurons depend on the continuous
supply of NGF for the maintenance of their functional phenotype,
their synaptic integrity and ultimately their survival (Hefti and
Will, 1987; Cuello, 1996; Levi-Montalcini et al., 1996). In the
adult CNS it has been demonstrated experimentally that the
levels of endogenous NGF regulates the day-to-day number of
cortical cholinergic synapses (Debeir et al., 1999). These findings
led to Appel’s hypothesis that the trophic support to BFCNs
is compromised in AD (Appel, 1981). However, the levels of
NGF transcripts are unaffected (Goedert et al., 1986; Jette et al.,
1994; Fahnestock et al., 1996) and the protein levels of the NGF
precursor, proNGF, are greatly elevated in AD post-mortem brain
samples (Fahnestock et al., 1996, 2004; Peng et al., 2004; Pedraza
et al., 2005; Al-Shawi et al., 2008; Bruno et al., 2009a). A resolution
of such an apparent paradox and insight into the cause of the
cholinergic deficits characteristic of AD was brought about by
the discovery of an NGF metabolic pathway controlling the
availability of mature NGF (mNGF) as well as its extracellular
degradation (Bruno and Cuello, 2006). The pharmacological
manipulation of this NGF metabolic pathway has shown it to
regulate the cholinergic phenotype of both the cortical synapses
and the BFCN cell bodies (Allard et al., 2012, 2018).

In brief, proNGF is released into the extracellular space
in response to neuronal or neurotransmitter stimulation. In
ex vivo studies it has been shown that proNGF (and not
mature NGF, mNGF) is released along with a set of zymogens
and convertases responsible for its maturation and degradation
(Bruno and Cuello, 2006). Maturation of proNGF into mNGF
is accomplished by the enzyme plasmin, which is generated by
the cleavage of its inactive zymogen, plasminogen, by tissue
plasminogen activator (tPA), a process regulated by the tPA
inhibitor, neuroserpin (Bruno and Cuello, 2006). Degradation
of receptor-unbound mNGF is performed by the matrix
metalloproteinases 9 and 3 (MMP-9 and MMP-3), derived from
cleavage of their protein precursors, a process regulated by tissue
inhibitor of metalloproteinases-1 (TIMP-1) (Figure 1; Bruno and
Cuello, 2006; Pentz et al., 2021b).

Investigations in post-mortem brain tissue, plasma and
cerebrospinal fluid (CSF) revealed that NGF metabolic
dysfunction is present in the preclinical and clinical
continuum of sporadic AD (Peng et al., 2004; Bruno et al.,
2009a,b; Mufson et al., 2012; Hanzel et al., 2014; Pentz et al.,
2020). Specifically, both NGF maturation and degradation are
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FIGURE 1 | Schematic representation of the NGF metabolic pathway and its altered state in Alzheimer’s and Down syndrome pathology. (A) In the healthy brain,
proNGF is co-released in the extracellular space with zymogens and convertases involved in its maturation and degradation. proNGF is cleaved to yield mNGF by
plasmin, itself derived from the cleavage of plasminogen by tPA, a process regulated by neuroserpin. mNGF then dimerizes and binds to p75/TrkA receptor
complexes on presynaptic terminals of BFCNs, followed by the retrograde transport of mNGF to their cell bodies in the basal forebrain. Receptor-unbound mNGF is
rapidly degraded by MMP-9 and MMP-3, which are produced from their pro-proteins under the control of TIMP-1. (B) In Alzheimer’s disease and in Down syndrome
brains, increased neuroserpin and decreased tPA lead to reductions in the maturation of proNGF to mNGF by limiting plasmin concentrations. Further, decreased
TIMP-1 and increased MMP-3/MMP-9 result in the excessive degradation of unbound mNGF. These changes result in impaired trophic support to BFCNs, leading to
their atrophy.

disrupted at preclinical AD stages as revealed in individuals with
no cognitive impairment (NCI) but with high brain β-amyloid
(Aβ) levels (HA-NCI). This NGF dysmetabolim correlated with
cerebral Aβ and Tau deposition, cognitive performance, and loss
of cholinergic synapses (Pentz et al., 2020). NGF dysmetabolism
is also found in the brain of people with prodromal AD, also
referred to as mild cognitive impairment (MCI), and with clinical
AD as represented by increased levels of proNGF, neuroserpin,
as well as MMP-3 and MMP-9 activity (Peng et al., 2004; Bruno
et al., 2009a,b; Mufson et al., 2012; Pentz et al., 2020). These
findings are also in accordance with other accounts of increased
proNGF in CSF from people with AD (E Counts et al., 2016),
and with the altered expression of MMP-3, neuroserpin, and
plasminogen reported in CSF from AD and MCI participants
(Hanzel et al., 2014). These findings have also been replicated
in transgenic animal models of the AD-like amyloid pathology
(Bruno et al., 2009a; Iulita et al., 2017). Further, it was suggested
that there is a link between such NGF dysmetabolism and CNS
inflammation in the amyloid pathology since injection of Aβ

oligomers in the hippocampus of naïve rats provoked both brain
inflammation and NGF dysregulation (Bruno et al., 2009a).

Interestingly, a similar NGF dysmetabolism with
increased cortical proNGF levels has been reported in DS
(Iulita et al., 2014, 2016; Iulita and Cuello, 2016; Caraci et al.,

2017), therefore providing an explanation for the cholinergic
atrophy in DS (Yates et al., 1983; Kish et al., 1989; Lubec et al.,
2001). In DS as in AD, reduced levels of tPA and plasminogen,
which are involved in proNGF maturation as well as heightened
neuroserpin expression lead to a build-up of proNGF. In parallel,
over-activation of MMP-9, the main NGF-degrading protease,
leads to increased degradation of the biologically active mNGF
protein (Iulita and Cuello, 2014; Iulita et al., 2014). This double
hit on the NGF pathway results in decreased availability of
mature NGF to sustain trophic support of BFCNs in DS as in
AD. Such impairment in NGF metabolism is an early event
in DS and is detectable before the clinical presentation of AD.
Indeed, increased levels of proNGF, decreased tPA activity and
increased MMP-9 activity were detected in conditioned media
from primary cultures from fetal DS cortex (Iulita et al., 2014).
In addition, levels of proNGF, as well as MMP-1, MMP-3,
and MMP-9 activity were found elevated at AD asymptomatic
stages in the plasma from a cohort of clinically characterized DS
individuals. In this cohort, an elevation of proNGF levels at the
1-year follow-up predicted the extent of cognitive deterioration
(Iulita and Cuello, 2016). The association between Aβ and NGF
pathway dysfunction was further strengthened by the fact that
Aβ load highly correlated with the elevation of proNGF in older
DS individuals (Iulita and Cuello, 2016). The presence of an
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APOEε4 allele in DS individuals, as in other people at risk of AD,
may further aggravate the brain’s NGF dysmetabolism. Indeed,
APOEε4 mice show upregulated levels of both proMMP9 and
MMP9 (Bell et al., 2012).

NGF METABOLIC PATHWAY RELATED
BIOMARKERS AS INDICATORS OF AD
PATHOLOGY IN DS

The diagnosis of AD in DS is challenging given the underlying
DS intellectual disability and the lack of diagnostic criteria
and cognitive screening tools adapted to people with DS (Lee
et al., 2017). Therefore, validated biomarkers that signal the
progression of Alzheimer pathology in DS are presently of
great medical importance. Correlations between classical AD
biomarkers and cognition are increasingly being established to
define the status of this pathology in DS (Fortea et al., 2020). We
propose that NGF metabolism-related biomarkers in body fluids
should assist in that task.

Analysis of cortical thickness, intracranial volume, fraction
anisotropy, and cerebral blood flow employing magnetic
resonance imaging (MRI) could identify AD pathology in both
DS and sporadic populations (Handen et al., 2020). Alternatively,
positron emission tomography (PET) imaging to trace amyloid
deposition with compounds such as Pittsburgh Compound B
(PiB) and [18F]-florbetaben, commonly used to detect sporadic
AD, have shown mixed results in identifying AD within the DS
population. It was suggested that since those with DS display a
lifelong amyloidoisis that is already very prominent at a young
age, amyloid PET may not be of use in tracking the progress of
AD (Abrahamson et al., 2019). More recently, a cross-sectional
and longitudinal study in individuals with DS showed that
it was possible to differentiate MCI-DS from the cognitively
stable group using [18F]-AV-45 (florbetapir) PET. Additionally,
although PET tracers for Tau have proved a challenge for the
field (Robertson et al., 2017), a recent study using the Tau PET
tracer [18F]-AV1451 in a small cohort of DS individuals showed
that Tau deposition was correlated with age, amyloid deposition,
decreased brain volume and reduced glucose metabolism (Rafii
et al., 2017). Evaluation of Tau PET tracers using autopsy
brain tissue also suggested that the regional distribution of Tau
pathology in DS differs from ADAD and sporadic AD (Lemoine
et al., 2020). An issue with current neuroimaging studies in
DS populations is that the normative atlases being used were
developed for the non-DS population, although this is currently
being addressed by the creation of atlases for the DS brain
(McGlinchey et al., 2020).

The pattern of biofluid biomarker changes in AD in DS
have been considered to be largely similar to those in sporadic
AD (Rafii et al., 2015). While those with DS have a higher
baseline of Aβ peptides due to the triplication of the APP and
BACE2 genes located on chromosome 21, an increase in CSF
levels of Aβ42 or the Aβ42/Aβ40 ratio relative to this baseline
are associated with the onset of AD in DS (Lee et al., 2017).
Several studies have demonstrated that changes in plasma Aβ40
and Aβ42 in DS correlate with AD onset (Schupf et al., 2007;

Jones et al., 2009; Matsuoka et al., 2009; Schupf et al., 2010;
Coppus et al., 2012). As for Tau, increases in CSF total Tau
(tTau) and phosphorylated Tau (pTau), have been correlated
with AD onset in DS (McGlinchey et al., 2020; Pentz et al.,
2021a). Likewise, plasma neurofilament light (NfL), and IL1β,
have been shown in multiple studies to reliably distinguish DSAD
individuals with DS asymptomatic for AD (aDS) (Petersen and
O’Bryant, 2019; Startin et al., 2019; McGlinchey et al., 2020).
Of the biomarkers discussed, NfL has emerged as the leading
plasma biomarker. With 90% sensitivity and 92% specificity in
its ability to distinguish between aDS and prodromal DSAD
groups (Petersen and O’Bryant, 2019; McGlinchey et al., 2020).
Additional more recently posited biofluid biomarkers include
levels of TNF-a, IL-6, IL-10, and S-adenosylhomocysteine (SAH),
a change in SAM/SAH ratio and CpG methylation percentage
(Lee et al., 2017).

Given that degeneration of the cortical forebrain cholinergic
system is a critical factor associated with cognitive decline in
AD, both in the general population and in DS, as discussed
above, current AD biomarker panels should be enriched
by the addition of biomarkers able to monitor cholinergic
dysfunction in both research and clinical contexts (Hampel
et al., 2018; Cuello et al., 2019; Pentz et al., 2021a). NGF
dysmetabolism’s presence within DS and AD brains, and its
relationship to cholinergic dysfunction, present the opportunity
for the identification of novel biomarkers signifying AD
pathology and subtyping for cholinergic dysfunction within
DS populations. Analysis of NGF pathway proteins in
matched CSF/plasma samples from DSAD and individuals
with DS aDS, as well as controls, revealed that the levels
of the 50 kDa isoform of proNGF and MMP9 in CSF
were competent to identify symptomatic AD from the
wider DS population. Both members of the NGF metabolic
pathway identified symptomatic AD from the wider DS
population with a sensitivity and specificity matching or
outperforming that of the classical AD CSF biomarkers
pTau, tTau, and the AB42/40 ratio (Pentz et al., 2021a).
Importantly, longitudinal increases in 50 kDa proNGF levels
in plasma over 1 year correlated to prospective cognitive
decline over the subsequent 2 years (Iulita and Cuello,
2016), demonstrating a potential value of NGF-related
biomarkers in identifying incipient cognitive decline in
this population.

CONCLUSION

The nearly inexorable development of the AD pathology
and the ensuing dementia in DS individuals is nowadays
well-established and has been eloquently summarized
by Lott and Head (2019). The growing awareness of
this situation has triggered an increased interest and
research in unraveling aspects of the AD pathology in
DS, as this is the largest population of genetic AD and
therefore offers clues regarding the early, preclinical stages
of this pathology. A pathology which continues to defy
therapeutic intervention.
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As discussed in this brief review, the occurrence of NGF
dysmetabolism leading to BFCNs dysfunction is now well-
established. NGF metabolism-related biomarkers have proven
significance in identifying AD pathology at preclinical stages and
in monitoring its progression in the AD clinical continuum.
This might offer distinctive possibilities of defining differential
conditions of cholinergic compromise.

Alzheimer’s disease is presently recognized as being the
leading cause of death in DS. Therefore, novel biomarkers
signaling the initial, preclinical stages of AD in DS should
offer valuable tools for future early therapeutic interventions.
A scenario which would spare DS individuals of the onset of
clinical AD and which would also provide new therapeutic
opportunities for individuals with sporadic AD.

The further investigation of the NGF metabolic compromise
in AD should provide clues as to how best re-establish an
adequate trophic support for the phenotypic maintenance
of BFCNs; the atrophy of which importantly contributes to
cognitive decline in AD pathology. If such pharmacological
intervention becomes feasible it would halt the progressive
atrophy of the BF cholinergic system. An effective
pharmacological intervention of a deregulated NGF metabolic

pathway would signify restoring mNGF homeostasis at
physiological levels and at physiological sites.
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