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Understanding population extinctions is a chief goal of ecological theory. While stochastic theories of population
growth are commonly used to forecast extinction, models used for prediction have not been adequately tested with
experimental data. In a previously published experiment, variation in available food was experimentally manipulated
in 281 laboratory populations of Daphnia magna to test hypothesized effects of environmental variation on population
persistence. Here, half of those data were used to select and fit a stochastic model of population growth to predict
extinctions of populations in the other half. When density-dependent demographic stochasticity was detected and
incorporated in simple stochastic models, rates of population extinction were accurately predicted or only slightly
biased. However, when density-dependent demographic stochasticity was not accounted for, as is usual when
forecasting extinction of threatened and endangered species, predicted extinction rates were severely biased. Thus, an
experimental demonstration shows that reliable estimates of extinction risk may be obtained for populations in
variable environments if high-quality data are available for model selection and if density-dependent demographic
stochasticity is accounted for. These results suggest that further consideration of density-dependent demographic
stochasticity is required if predicted extinction rates are to be relied upon for conservation planning.
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Introduction

As changing global climate and anthropogenic modifica-
tion of the biosphere increasingly threaten global biodiversity
[1,2], accurately predicting extinctions takes on new urgency
[3–5]. Although stochastic models of population growth and
decline are commonly used to forecast extinction, quantita-
tive model predictions for population dynamics in randomly
fluctuating (i.e., natural) environments have only been poorly
supported by experiments [4,6–7]. In contrast, validation with
observational field data [5,8–10] is beset by numerous
difficulties, including low precision [11], low replication
[12], small sample size [12,13], poor data quality [12], and
lack of independence [12,14]. Without empirical validation,
viability analyses for threatened and endangered species are
subject to doubt, and identifying risk factors for population
extinction is difficult. The results reported here support the
further use of stochastic models for predicting extinction, but
only where detailed information about variation in individual
fitness is available for estimating the structure and magnitude
of demographic stochasticity.

Two components contribute to random variation in per
capita population growth rates: demographic stochasticity
and environmental variability [15–18]. Here, demographic
stochasticity refers to variation in individual fitness, sampling
effects in finite populations, and chance events that affect
individuals independently [18–20]. Variation in environ-
mental conditions can cause expected individual fitness to
fluctuate, resulting in environmental stochasticity. Defining
DN¼Ntþ1�Nt, a model for per capita population growth rate
with demographic and environmental stochasticity is

DN
N
¼ ½kðN;wÞ � l� þWðreðNÞ þ rdðNÞ=NÞ ð1Þ

where k is the (possibly density-dependent) expected multi-
plicative per capita population growth rate depending on
population size N in the previous time step and parameters w,
W is a normal unit variate, and re(N) and rd(N) are models for
the (possibly density-dependent) effects of environmental
and demographic stochasticity, respectively [18]. This is a
general model, which can approximate or has as its special
cases many common stochastic population growth models,
including linear and nonlinear stochastic differential equa-
tions [21,22], birth-death processes [17,23,24], and discrete
and continuous-time branching process models [25], although
it is unclear if these approximations reliably represent the
dynamics of small populations [26].
Recent research suggests that demographic stochasticity

might have a density-dependent component in the sense that
the variance contributed to the population’s growth rate by
demographic stochasticity, represented by rd in Equation 1,
is a function of population size [18,19,27]. This phenomenon
is independent of the well-known scaling of demographic
stochasticity with population size, represented by the ratio
rd(N)/N in the model [15,16,18,25]. While theory predicts that
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density-dependent demographic variation will occur in all
populations in which vital rates are density-dependent [19],
and will therefore be ubiquitous in both natural and
experimental populations, the severity of density dependence
in demographic variation has rarely been investigated, and
thus rarely measured [18,27]. Extinction forecasts that ignore
density-dependent demographic stochasticity in populations
in which it is present will be biased, possibly severely.

To test for effects of environmental variation on persis-
tence, 281 laboratory populations of water fleas (Daphnia
magna) were maintained under experimentally controlled
conditions for 104 d using three levels of variation in food
availability as a source of environmental stochasticity [28].
Here, those data are used to select and test stochastic models
of population dynamics. To ensure independence, the data
were divided into subsets for model fitting and model testing.
Then, as an exploratory analysis, deviations were plotted
from expected population growth against population size for
populations in the low-variability treatment to suggest how
demographic variation might be structured. On the basis of
this analysis, a set of models was developed for population
growth in fluctuating and constant environments to test for
effects of environmental variation. Finally, population
growth trajectories with (i) density-dependent demographic
stochasticity, and (ii) density-independent demographic
stochasticity were simulated to obtain model predicted
extinction rates. Simulated extinctions for the model with
density-dependent demographic stochasticity were consistent
with observed rates of extinction in the test dataset or were
only slightly biased, while the model with density-independ-
ent demographic stochasticity considerably underestimated
observed extinctions. These results suggest that biased
estimates of extinction risk resulting from ignoring density-
dependent demographic stochasticity may lead to unwar-

ranted optimism concerning the eventual fates of endangered
populations.

Results

Exploratory Graphical Analysis
After rescaling to isolate density dependence in rd (see

Materials and Methods), the scatter plot of observed devia-
tions from expected population growth rate suggested that
variation from demographic stochasticity was dependent on
population size in populations in the low-variability treat-
ment (Figure 1). Nonparametric tests for correlation con-
firmed that the negative relationship between loge-
transformed deviations and population size was highly
significant (Spearman rank-order correlation: q ¼�0.23, p ,

0.0001; Kendall’s s: q ¼ �0.17, p , 0.0001; N ¼ 342). The
average deviation was fit to an exponential model (see
Materials and Methods) (Table 1).

Estimation of Extinction Rates in Experimental
Populations
Extinction rates of populations in experimental treatments

with low and medium levels of variation were not significantly
different, although these were different from the extinction
rate of populations subject to a high level of environmental
variation (see Materials and Methods). Consequently, obser-
vations in the testing dataset from the low and medium
variability treatments were pooled for remaining analyses,
resulting in a more conservative test of model-predicted
extinction rates. The maximum likelihood estimate of
extinction rate for populations from the low- and medium-
variability treatments in the model-testing dataset was 48.4%
(95% confidence interval [CI], 38.0%–58.9%; Figure 2). The
maximum likelihood estimate of extinction rate in the high-
variability treatment was 70.2% (95% CI, 55.1%–82.7%; Fig-
ure 2).

Model Selection
Model-predicted extinction rates were obtained by fitting a

simple Ricker model for population growth, E[k]¼ k0e
�bN, to

data in the model-fitting dataset, although a h-Ricker model
was also considered (see Materials and Methods). Moderate to
considerable support was obtained for models with only
demographic stochasticity compared to models with both
demographic and environmental stochasticity, according to
Akaike’s information criterion (AIC; Table 1). However, there
was overwhelming support for a model with density-depend-
ent demographic stochasticity compared to a model with
density-independent demographic stochasticity for popula-
tions in the low- and medium-variability treatments (DAIC¼

Figure 1. Demographic Stochasticity Is Strongly Density-Dependent in

Experimental Populations of D. magna

Deviations from expected population size were rescaled by multiplying
the observed deviation by initial population size for the interval to isolate
density dependence in rd (see Materials and Methods). Rescaled
deviations are strongly dependent on population size ( p , 0.0001).
Because observed deviations overlap, obscuring the pattern, points have
been jittered in the dimension of the x-axis by the addition of a small
amount of random noise.
DOI: 10.1371/journal.pbio.0030222.g001

Table 1. AIC Scores for Ricker Models of Population Growth

Experimental Treatment Model I Model II Model III

Low and medium variability (pooled) 1026.8 (0) 1028.8 (2.0) 1063.8 (37.0)

High variability 518.6 (0) 519.6 (1.0) 522.8 (4.2)

Models with density-dependent demographic stochasticity (model I), density-dependent demographic stochasticity

and environmental stochasticity (model II), and density-independent demographic stochasticity (model III) were

fitted to data from high-variability and pooled low- and medium-variability treatments. The difference between the

model score and the score of the best model (DAIC) is given in parentheses.

DOI: 10.1371/journal.pbio.0030222.t001
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37.0) and considerable support for populations in the high-
variability treatment (DAIC¼ 4.2). These results confirm that
density dependence in demographic variance strongly influ-
enced realized population growth in experimental popula-
tions.

Accuracy of Model-Predicted Extinction Rate
The accuracy of model predictions can be assessed by

comparing model-predicted extinction rates with the 95% CI
for the estimated extinction rate of populations in the model-
testing half of the experimental dataset (see Materials and
Methods). Overall, models with density-dependent demo-
graphic stochasticity accurately predicted population extinc-
tion rates within estimable accuracy for populations with low
and medium levels of environmental variation, while pre-
dictions for populations with a high level of environmental
variation were slightly biased (Figure 2). Models which
incorrectly assumed density-independent demographic sto-
chasticity were severely biased and underpredicted observed
extinction rates (Figure 2).

Discussion

A stochastic Ricker model of population growth with
density-dependent demographic stochasticity accurately pre-
dicted the chance of extinction, within the power of this
experiment to reject the null hypothesis of a difference, or
was only slightly biased (Figure 2). Adding environmental

stochasticity to the model for populations in the high-
variability treatment increased the predicted chance of
extinction, consistent with current theory [15–17] and
previous experiments [4]. A model in which demographic
stochasticity was assumed to be constant failed to predict
extinction rates in all experimental treatments, implying that
independent data on the structure of individual variation in
vital rates, including information about density dependence,
is required to reliably forecast extinction.
In this analysis, the accuracy of model predictions was

improved by relaxing the usual assumption that demographic
stochasticity is density-independent [21,25]. Since individual
fecundity is commonly altered in response to population size
or density [29,30], density-dependent demographic stochas-
ticity resulting from demographic covariation is probably not
exceptional in natural populations. Indeed, density-depend-
ent demographic stochasticity will result from any density
dependence in vital rates or interactions among individuals
that affect demography [19]. Presently, this aspect of
population biology is poorly understood (compare [18,27]).
Additionally, the accuracy and precision of these predictions
were facilitated by a relatively large, high-quality dataset (nlow
¼ 342, nmed ¼ 300, and nhigh¼ 280). In general, field data will
not be so abundant. Thus, an important goal for population
biology is to develop methods for obtaining reliable
predictions from sparse, low-quality datasets [31].
Planning for increasing threats to rare species from diverse

sources, including climate change, resource extraction,
habitat modification, and invasive species will require greater
and more precise estimates of extinction risk than ever
before. While the reliability of theoretical models for
predicting extinction in natural ecosystems remains to be
established, the results presented here show that accurate
predictions of population extinction in variable environ-
ments are indeed possible.

Materials and Methods

Experiment. Experimental microcosms (n ¼ 281) of D. magna were
maintained on a food resource of Selanastrum sp. for 104 d. The daily
food availability was experimentally varied at three levels (coefficient
of variation¼ 0, 1, 2), which are referred to as ‘‘low,’’ ‘‘medium,’’ and
‘‘high,’’ respectively, while the long-run average volume of food over
time was kept constant across all replicates in all treatments.
Extinctions were tabulated and populations were counted daily,
although populations with ten or more individuals were simply
marked ‘‘abundant.’’ With the exception of these observations,
sampling error is negligible. For more detailed methods, see [28].
Prior to this analysis, these data were filtered, retaining only
observations from every seventh day for days 1 through 99,
corresponding to the approximate generation time, resulting in
observations of change in abundance over up to 14 intervals for each
population. To achieve independence between data used for model
fitting and data used for model testing, populations were assigned to
separate datasets. Observations of ten or more individuals were
excluded from the dataset for model selection and parameter
estimation.

Exploratory graphical analysis. Because populations in the low-
variability treatment were not exposed to any experimentally
induced environmental variation, most variation in observed growth
rates in these populations should be attributable to demographic
stochasticity and is not confounded with environmental stochasticity.
Thus, only these data were used for exploratory analysis of density-
dependent demographic stochasticity. Estimates of the pairwise
multiplicative population growth rate k̂ðNtÞ between times t and t þ
s (s¼ 7) were obtained from the ratio Ntþs/Nt for observations in the
model-fitting dataset from the low-variability treatment. A scatter
plot of kðNtÞ versus Nt suggested that density dependence in expected
population size is approximately linear on a logarithmic scale

Figure 2. Simple Models Accurately Predict Extinction in Experimental

Populations

Estimates of the extinction rate in populations of D. magna reserved for
model testing at three levels of environmental variation were obtained
from the likelihood function of the binomial distribution (crosses, 95%
CI). Because there was no difference between extinction rates in the low-
and medium-variability treatments (see Materials and Methods), data
were pooled to obtain a more precise estimate, resulting in a more
conservative test (right of dashed line). Model-predicted estimates of
extinction rate obtained from models of density-dependent population
growth with density-dependent demographic stochasticity fit with
independent data (triangles) accurately predicted extinction of popula-
tions in the low- and medium-variability treatments, but not the high-
variability treatment. The addition of environmental stochasticity
(square) improved the prediction, although the chance of obtaining
the observed 33 extinctions (or more) out of 47 populations was only
3.3%. The standard model with constant demographic stochasticity
(stars) fails to predict extinction in all treatments.
DOI: 10.1371/journal.pbio.0030222.g002
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(unpublished data). To investigate the structure of deviation from this
expectation, data from this treatment were fit to a Ricker model
k̂ðNtÞ ¼ k0e�bNt using ordinary least squares and the squared residuals
(dj

2) were retained. To account for the scaling of demographic
variance with population size [15,16,18], the residuals were multiplied
by the population size at the start of the interval resulting in the
rescaled residuals ~d2j ¼ d2j Nt. A scatter plot of the rescaled residuals
shows clear dependence on population size even after the usual
scaling has been accounted for (see Figure 1), which is strongly
confirmed by two nonparametric tests for correlation (Spearman
rank-order and Kendall’s s). Relatively constant variation around the
mean and linear decrease on a logarithmic scale suggest using an
exponential function to model variation from demographic stochas-
ticity. Thus, for model selection and estimation, the function rd

2(N)¼
e�aNþb was used. Hyperbolic models of demographic stochasticity
were also explored, but these were poorly supported by formal model
selection criteria such as AIC, relative to the exponential model.

Estimating extinction rates in experimental populations. Because
populations were independent, each population represents a
Bernoulli trial for which the possible outcomes were extinction or
persistence. Thus, the chance of extinction for a population in
treatment level i is binomial with parameter pi. For ni populations in
the model-testing dataset, of which xi were observed to go extinct, the
maximum likelihood estimate of pi and 95% CIs on the chance of
extinction were determined from the likelihood function for the
binomial distribution.

Initially, it was unclear if there was an effect of experimental
treatment. Using regression on pooled observations from the entire
experimental dataset, Drake and Lodge [28] reported no significant
effect of environmental variation on the chance of extinction ( p ¼
0.0877). Logistic regression was performed on the testing half of the
dataset using treatment as a categorical covariate. The global null
hypothesis was rejected by the likelihood ratio test ( p ¼ 0.0450) but
not by Wald’s test ( p¼0.0523), with no coefficients being significantly
different than 0 (intercept, p ¼ 0.060; b0, p ¼ 0.174; b1, p ¼ 0.236).
Visual inspection of the data suggests that there might be no
difference between the low- and medium-variability treatments
(Figure 2), but a difference between these and the high-variability
treatment. Repeating logistic regression after pooling observations
from the low- and medium-variability treatments unambiguously
showed an effect of high variation on the chance of extinction
(likelihood ratio test, p ¼ 0.013; Wald’s test, p ¼ 0.015). Therefore, to
compare observed extinction rates with model-predicted extinction
rates, observations from the low- and medium-variability treatments
were pooled for both model fitting and model testing.

Model selection. The theoretical variance in k is given by re
2(N)þ

re
2(N)/N, while the mean can be given by any familiar population

dynamical model such as Ricker, h-Ricker, h-logistic, or Gompertz
growth. Using the exponential model for demographic variation and
approximating the unknown distribution of k with the first two
moments, the negative log-likelihood function for the h-Ricker model
of population growth k̂ Ntð Þ ¼ k0e�bN

h
t is

NLLða; b; k0; b; hjyÞ ¼

�
XN¼9
N¼1
� 1
2
nN logeð2pÞ � nN logeð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eaNþb=N

q
Þ �

X
k

ðyi � ðk0e�bN
h ÞÞ2

2ðeaNþbÞ=N ð2Þ

where k0 and h can be interpreted as governing the intrinsic rate of
increase and the severity of density dependence in the expected
growth rate, respectively, and nN is the number of observed intervals
beginning at population size N. The negative log-likelihood for this
model with the addition of constant environmental stochasticity is
NLL a;b; k0; h; b;rejyð Þ ¼

�
XN¼9
N¼1
� 1
2
nN loge 2pð Þ � nN loge

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
e þ eaNþb

�
N

q� �
�

P
k

yi � k0e�bN
h

� �� �2

2 r2
e þ eaNþb

�
N

� � ð3Þ

where re is a parameter representing the average level of variation
from environmental stochasticity. Models were fit to data in the
model-fitting dataset by minimizing the negative log-likelihood

function using the Nelder-Mead simplex. Goodness of fit was
quantified using AIC ¼ 2NLL(ŵjy) þ 2k where ŵ is the vector of
maximum likelihood estimates of all parameters, and k is the number
of parameters estimated. The model with the lowest AIC score is the
best fit after accounting for model complexity, while the relative
support for a model with the lesser of two AIC scores differing by
greater than two is substantial [32].

Overall, the inclusion of the parameter h (which allows for
flexibility in the severity of density dependence in expected
population growth rate) did little to fit the model and was fixed (h
¼ 1) for the remainder of the analysis, reducing the number of
parameters to be estimated by one. AIC scores for remaining models
are shown in Table 1. Interestingly, the estimates of re for data from
all experimental treatments were not significantly different from 0,
even for the treatment with a high level of experimentally induced
variation.

Accuracy of model-predicted extinction rate. Predicted extinction
rates were obtained by simulating 100,000 iterations of the Ricker
model with density-dependent demographic stochasticity at max-
imum likelihood estimates of all parameters for populations in the
pooled low- and medium-variability treatments and populations in
the high-variability treatment separately using Euler’s method [22].
Since predicted extinction rates for populations in the high-
variability treatment were biased, and the model without environ-
mental stochasticity was only weakly supported for these populations
(Table 1), 100,000 iterations of the Ricker model were also simulated
with density-dependent demographic stochasticity and environmen-
tal stochasticity for populations in the high-variability treatment.

The model for stochastic population growth considered here
accounts for two factors commonly ignored when predicting the
chance of population extinction: density-dependent changes in
expected population size and density-dependent demographic
stochasticity. Although the effect of density-dependence in E[k] on
population persistence has been documented [25,33], the effects of
density-dependent demographic stochasticity have not been as
extensively studied [18,27]. Therefore, the chance of extinction that
would have been predicted had the incorrect assumption been made
that demographic stochasticity was density-independentwas also
determined. An estimate of density-independent demographic
variance rd

2(N) ¼ a was obtained by fitting data from the pooled
low- and medium-variability and high-variability treatments to the
Ricker model by minimizing the negative log-likelihood function

NLLða; k0; bjyÞ ¼

�
XN¼9
N¼1
� 1
2
nN logeð2pÞ � nN logeð

ffiffiffiffiffiffiffiffiffi
a=N

p
Þ �

X
k

ðyi � ðk0e�bN ÞÞ2

2a=N
ð4Þ

As above, model predicted extinction rates were obtained by
simulating 100,000 iterations of the population growth process at
maximum likelihood estimates of all parameters.
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