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g Research Centre and Memory Clinic, Fundació ACE Institut Català de Neurociències Aplicades – Universitat Internacional de Catalunya (UIC), Barcelona, Spain 
h Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, Barcelona, Catalonia, Spain   

A R T I C L E  I N F O   

Keywords: 
Individual variability 
Functional neuroimaging 
Illness duration 
Working memory 
Schizophrenia 
Bipolar disorder 

A B S T R A C T   

Background: Individuals with schizophrenia exhibit greater inter-patient variability in functional brain activity 
during neurocognitive task performance. Some studies have shown associations of age and illness duration with 
brain function; however, the association of these variables with variability in brain function activity is not 
known. In order to better understand the progressive effects of age and illness duration across disorders, we 
examined the relationship with individual variability in brain activity. 
Methods: Neuroimaging and behavioural data were extracted from harmonized datasets collectively including 
212 control participants, 107 individuals with bipolar disorder, and 232 individuals with schizophrenia (total n 
= 551). Functional activity in response to an N-back working memory task (2-back vs 1-back) was examined. 
Individual variability was quantified via the correlational distance of fMRI activity between participants; mean 
correlational distance of one participant in relation to all others was defined as a ‘variability score’. 
Results: Greater individual variability was found in the schizophrenia group compared to the bipolar disorder and 
control groups (p = 1.52e− 09). Individual variability was significantly associated with aging (p = 0.027), 
however, this relationship was not different across diagnostic groups. In contrast, in the schizophrenia sample 
only, a longer illness duration was associated with increased variability (p = 0.027). 
Conclusion: An increase in variability was observed in the schizophrenia group related to illness duration, beyond 
the effects of normal aging, implying illness-related deterioration of cognitive networks. This has clinical im-
plications for considering long-term trajectories in schizophrenia and progressive neural and cognitive decline 
which may be amiable to novel treatments.   

1. Introduction 

Schizophrenia constitutes a multidimensional psychiatric condition, 
exhibiting pronounced variability between and within-subjects (Bosia 
et al., 2019). The understanding of cognitive and neurobiological het-
erogeneity in schizophrenia has been bound by experimental designs 
that contrast patients’ performance to healthy controls, failing to 

consider within-group heterogeneity (Carruthers et al., 2019). Recent 
work has demonstrated that individual variability is a hallmark of 
functional task activity and connectivity (Gordon et al., 2017; Hawco 
et al., 2021; Miller et al., 2009), suggesting that applying a group-level 
map to individual subjects can dilute brain-behaviour associations that 
are crucial to understanding cognitive processes (Wang et al., 2020). 
Whereas there is an assumption that averaging mitigates the effects of 
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signal variance in the data, within-person variability is not strictly noise, 
but an important by-product of meaningful individual differences in 
brain structure, function, and neuromodulation (MacDonald et al., 
2006; Van Horn et al., 2008). Network variance found in fMRI studies 
are related to differences across individuals rather than transient factors 
like day-to-day fluctuations (Gratton et al., 2018; Poldrack et al., 2015), 
and a group description alone tends to fall short of adequately capturing 
functional brain activity at the level of precision needed to translate into 
a clinical impact (Gratton et al., 2018; Gratton et al., 2020). Differences 
between individual and group-average network descriptions carry 
important ramifications for analysis, as it is speculated that functional 
neuroimaging may not achieve its full potential until individual-level 
brain network estimates can be made (Michon et al., 2022; Gratton 
et al., 2022). Consequently, there is a need for a shift away from group 
aggregate averages and consider individual metrics that can better 
characterize variability. 

Neural networks governing working memory (WM) may be vulner-
able to the influence of aging (Elsabagh et al., 2009; Rajah and 
D’Esposito, 2005). Specifically, dysfunction in the prefrontal cortex, a 
central node within the WM network, has been well documented in in-
dividuals with schizophrenia (Jiang et al., 2015; Van Snellenberg et al., 
2016; Koike et al., 2013; Schneider et al., 2007) and with increasing age 
(Kawakami et al., 2014; Schultz et al., 2002). Likewise, illness duration 
may also have an effect on WM-related functional brain activity in in-
dividuals with schizophrenia (Elsabagh et al., 2009). Illness duration is 
defined as the time after the onset of a psychiatric disorder (Breitborde 
et al., 2009). Understanding the neurobiological effects of illness dura-
tion has clinical implications, given its robust associations with poorer 
real-world outcomes and significant role in predicting cognitive per-
formance (Altamura et al., 2015; Almeida et al., 2019; Bowie et al., 
2014). However, despite the influence of illness duration on patients’ 
functioning, this variable is often neglected in studies and rarely alluded 
to as a potential confounding factor (Altamura et al., 2015; Altamura 
et al., 2011). The majority of existing literature has investigated struc-
tural correlates of illness duration, relating volumetric loss in the frontal 
cortex to longer illness duration (Molina et al., 2004; Sapara et al., 2007; 
Premkumar et al., 2006; Premkumar et al., 2008). To our knowledge, no 
study to date has used age and illness duration as variables of interest 
while investigating idiosyncrasies of functional brain activity during 
WM performance in schizophrenia. 

In our recent study, we quantified individual variability of WM- 
evoked brain activation using mean correlational distance (Hawco 
et al., 2020), a recently developed metric representing deviation from 
the common group pattern, and demonstrated that those with schizo-
phrenia spectrum disorders exhibited greater overall individual vari-
ability than controls, indicating more idiosyncratic brain response 
patterns (Gallucci et al., n.d.). Variability was also found to increase 
with age in schizophrenia; however, information regarding illness onset 
or duration was not available, preventing us from disentangling the ef-
fects of aging as opposed illness duration. In this study, we used an 
existing large sample (n = 609) N-Back task fMRI dataset (Pomarol- 
Clotet et al., 2015; Fuentes-Claramonte et al., 2021) to investigate the 
separate impacts of age and illness duration on variability of functional 
brain activity in schizophrenia and determine whether findings were 
schizophrenia-specific, through the use of bipolar disorder as a 
psychiatric-control group. We hypothesized that a longer illness dura-
tion would be associated with greater variability uniquely in the 
schizophrenia group, due to the expected negative effects of psychosis- 
related morbidity on functional activity. Further, we anticipated the 
effects of aging on variability may be more pronounced in the schizo-
phrenia group compared to the bipolar disorder and control groups. Our 
study is intended to provide strong evidence which may lead to a clinical 
impact by improving the ability to understand the effects of progressive 
changes in brain function within schizophrenia, separating the effects of 
age and illness duration. We aim to confirm whether these factors play a 
role in the functional activation deficits seen in patients; where targeting 

such illness duration-related changes through personalized in-
terventions may demonstrate therapeutic benefit. 

2. Methods 

2.1. Participants 

Participant data was collected from datasets originating from hos-
pitals in Barcelona (Benito Menni CASM, Hospital Mare de Déu de la 
Mercé, Hospital Sagrat Cor de Martorell) (Fuentes-Claramonte et al., 
2021). To consider diagnostic specificity of age and illness duration, we 
examined a group of adults meeting the DSM-IV criteria for schizo-
phrenia, as well as a group with bipolar disorder as a ‘psychiatric control 
group’. Datasets followed a common participant eligibility criteria. Pa-
tients were excluded if they were younger than 18 or older than 65, had 
a history of brain trauma or neurological disease, had alcohol or sub-
stance misuse in the previous 12 months, and/or had undergone elec-
troconvulsive therapy in the previous 12 months (Fuentes-Claramonte 
et al., 2021). Patient symptom severity was evaluated using PANSS 
(Positive and Negative Syndrome Scale), YMRS (Young Mania Rating 
Scale), and HAMD (Hamilton Depression Rating Scale). Healthy controls 
were recruited through local advertisement. In addition to the exclusion 
criteria above, control participants were excluded if they reported any 
history of mental illness and/or treatment of psychotropic medication, 
had a first-degree relative with a major psychiatric disorder, and/or had 
received any form of in- or out-patient psychiatric care (Pomarol-Clotet 
et al., 2015). All participants gave written informed consent prior to 
participating in the study in accordance with the Declaration of Helsinki. 
Study procedures were approved by the local Clinical Research Ethics 
Committee (Fuentes-Claramonte et al., 2021). 

2.2. Illness duration 

Age of illness onset was determined based on the first appearance of 
psychotic symptoms, established through clinical information derived 
from case notes as well as information provided by the patient and close 
relatives. Illness duration was then quantified as the patient’s chrono-
logical age minus the age of onset, in accordance with previous studies 
(Elsabagh et al., 2009; Premkumar et al., 2008). It should be acknowl-
edged that this reflects an estimate of illness duration, as prodromal 
stages and potential delays in diagnosis cannot be fully accounted for. 
Furthermore, different medications can have a moderating effect on 
illness-related biological processes (Almeida et al., 2019), and progres-
sive changes in brain function may be related to the use of antipsychotic 
medication (Lesh et al., 2015) as well as the duration of untreated illness 
(Sarpal et al., 2017). As such, chronological considerations of illness 
duration cannot be fully separated from such processes, or other external 
social/personal factors (i.e., contact with clinical services and illness 
chronicity (Premkumar et al., 2008); potential changes in variability 
over time can be regarded as being related to a range of chronicity 
related determinants. 

2.3. N-Back task 

Individuals performed a letter-version of the N-Back task while in the 
scanner (Pomarol-Clotet et al., 2015). In an interleaved block design, 
two levels of WM load (1-Back and 2-Back) were presented for four 
blocks each. Each block consisted of 24 letters shown every-two seconds 
(one second on, one second off) with five targets occurring randomly 
within the blocks. A baseline stimulus was presented for 16 s in between 
blocks (an asterisk symbol shown at the same frequency as the letters). 
Participants were instructed to indicate targets by pressing a button. All 
participants underwent a training session prior to the scanner to famil-
iarize themselves with the task and reduce novelty-induced brain acti-
vation. Task performance was measured by response accuracy (D’=
ZHits- ZFalse alarms), which computes the ability to discriminate targets 
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from non-targets (Green et al., 1966) and was considered our primary 
behavioural measurement. 

2.4. MRI scan 

Scanning was conducted using a 1.5 Tesla GE Signa scanner (General 
Electric Medical System) (Fuentes-Claramonte et al., 2021). An echo- 
planar imaging (EPI) sequence depicting the BOLD contrast was used 
with the following parameters: TR = 2000 ms, TE = 20 ms, flip angle =
70◦, section thickness 7 mm, in-plane resolution = 3x3mm2 (Pomarol- 
Clotet et al., 2015). Prior to statistical analysis, functional data was 
smoothed using a 5 mm Gaussian kernel (FWHM), motion-corrected 
using MCFLIRT algorithm, and normalized to a common stereotactic 
space (Montreal Neurological Institute template) (Fuentes-Claramonte 
et al., 2021). Individual fMRI analysis was previously performed using 
the FEAT module in FSL (v4.19). General linear models were fit to 
generate individual activation t-maps for a contrast comparing the two 
regressors of interest (2-Back and 1-Back conditions) (Pomarol-Clotet 
et al., 2015). To reduce the potential effects of motion, movement pa-
rameters were included as confound regressors of non-interest in the 
model (six in total; three rotational, three translational) (Fuentes-Clar-
amonte et al., 2021). 

2.5. Individual variability in N-Back task activity via correlational 
distance: 

To assess individual variability in functional brain activity pattern, 
each participant’s unthresholded contrast t-map (2-Back – 1-Back) was 
used. A whole-brain approach was conducted in accordance with prior 
N-Back task activity variability literature (Hawco et al., 2020; Rieck 
et al., 2022). T-maps were parcellated using the Shen268 atlas to retain 
whole-brain findings while mitigating the effects of lower resolution 
during image acquisition. This parcellation was supported by a feasi-
bility analysis performed on a separate dataset of 3 Tesla schizophrenia 
and control t-maps that demonstrated a near-perfect correlation be-
tween whole-brain and atlas based parcellated-brain individual vari-
ability scores, implying results would not be significantly influenced by 
inter-individual spatial differences in network topography. T-map 
values for each of the 268 ROIs were loaded into RStudio v1.3 as a 
numeric vector; creating a spatial series with each point in the vector 
representing the t-statistic at a specific ROI for that individual. All ob-
servations were combined into a single matrix (participants × t-statistic) 
and pairwise correlational distances were calculated between each pair 
of participants. Correlational distance can be expressed as 1 – correla-
tion coefficient, in which increased distance is equivalent to a lower 
correlation; thus quantifying the similarity/difference of brain activity 
patterns between participants. Individual variability was defined as the 
mean correlational distance of a given participant in relation to all other 
participants, providing a unique value for each participant. Lower mean 
correlational distances represent individuals with patterns of N-Back 
task-evoked activation that are more similar to the overall group, and 
higher mean correlational distances represent individuals with more 
idiosyncratic brain response patterns (Hawco et al., 2020). This metric 
aimed to capture differences in which neural networks or systems are 
activated across individuals, as well as changes in the specific functional 
topography of individuals. 

2.6. Between-group variability analysis: 

Individual variability was calculated for the total sample as 
described above; the variability score for each participant was relative to 
the entire sample. A linear model was then used for the analysis. The 
model assessed the relationship between mean correlational distance 
and all potential explanatory variables or covariates of non-interest 
(group, sex, age, motion; defined by mean framewise displacement 
(FD) (Power et al., 2014), and 2-Back D’) as well as interactions of 

group*sex, group*age, group*FD, group*2-Back D’ and age*2-Back D’. 
Group*age was the interaction of interest, as we anticipated the effects 
of aging on variability to be more pronounced in the schizophrenia 
group compared to bipolar disorder and control groups. A hierarchical 
regression was performed to further evaluate the nonlinear effects 
(quadratic and cubic) of age on mean correlational distance. 

2.7. Within-group variability analysis: 

To assess within group effects, individual variability was re- 
calculated separately within each diagnostic group; the variability 
score, is therefore relative to others within that diagnostic group rather 
than the sample as a whole. Following, a linear model was used for the 
analysis. For the control group, the model determined the relationship 
between mean correlational distance and sex, age, FD, and 2-Back D’, as 
well as an interaction of age*2-Back D’. For the bipolar disorder and 
schizophrenia groups, the model assessed the relationship between 
mean correlational distance and sex, age, illness duration, FD, and 2- 
Back D’ as well as interactions of age*2-Back D’ and illness 
duration*2-Back D’. Both age and illness duration were included as 
variables of interest, as we attempted to disentangle their effects; vari-
ance inflation factors (VIF) were calculated to identify potential multi-
collinearity (VIF > 5) (Chatterjee and Simonoff, 2013; O’brien RM, , 
2007). A hierarchical regression was performed to further evaluate the 
nonlinear effects (quadratic and cubic) of age and illness duration on 
mean correlational distance. In the schizophrenia group, the addition of 
Positive and Negative Syndrome Scale (PANSS) subscale scores, as well 
as interactions of PANSS General*illness duration, PANSS Neg-
ative*illness duration and PANSS Positive*illness duration were 
included in the hierarchical regression. To identify differences in func-
tional brain activity between higher and lower mean correlational dis-
tances, individuals were separated into equal groups by median split 
based on mean correlational distance; schizophrenia (nhigh = 116, nlow 
= 116), bipolar disorder (nhigh = 53, nlow = 54), and control (nhigh =

106, nlow = 106). A median split was justified through the use of uni-
variate clustering by mean correlational distance of the schizophrenia 
group with 2 clusters estimated, equal in size, replicating the median 
split. Such binning of the data was extended to other diagnostic groups 
for comparison. For descriptive purposes, group comparisons were 
conducted by averaging the parcellated contrast t-maps of individuals 
belonging to specific subgroups. Averages were then projected onto 
surface space for improved visualization. 

2.8. Code sharing 

Code used in the analysis of this dataset has been made available 
(https://github.com/juliagallucci/illness_duration_individual_variabili 
ty_SCZ). 

3. Results 

3.1. Participants 

Data was included for analysis based on a quality-control criteria. 
212 control participants, 107 individuals with bipolar disorder, and 232 
individuals with schizophrenia were included for analysis after 
removing 15 participants that did not have accompanying demographic 
information, 2 participants for excessive motion (FD > 0.5 mm repre-
senting well above the norm) (Power et al., 2012) and 41 participants 
that did not possess behavioural scores or had negative D’ values 
(reflecting subject did not perform the task (Pomarol-Clotet et al., 2015) 
(consort flow diagram shown in Fig. 1). Participant demographics, 
clinical and behavioural scores are shown in Table 1. 
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3.2. N-Back task activity via correlational distance between-groups 

The addition of nonlinear effects of age did not significantly 
contribute to the model (age2 ΔR2 = 0.0035p = 0.087; age3 ΔR2 =

0.0039p = 0.126) and thus was not included. Mean correlational dis-
tance of functional brain activity across schizophrenia (0.646 ± 0.049) 
was significantly higher than bipolar disorder (0.620 ± 0.050) and 
control (0.585 ± 0.036) (F(2,535) = 21.10, p = 1.52e-09) groups, 
indicating individuals with schizophrenia showed more idiosyncratic 
response to the N-Back task on average. Group differences in mean 
correlational distance are shown in Fig. 2A. Mean correlational distance 
was significantly associated with FD (F(1,535) = 26.71, p = 3.34e-07), 
however, a group by FD interaction was found non-significant (F(2,535) 
= 1.26,p = 0.28), indicating group differences in variability were not 
significantly influenced by differences in FD between groups. Addi-
tionally, older age was related to increased mean correlational distance 
(Fig. 2B; F(1,535) = 4.90, p = 0.027) and worse performance (lower 2- 
Back D’) was associated with increased mean correlational distance (F 
(1,535) = 100.32, p < 2.2e-16). A significant group by 2-Back D’ 
interaction was found (Fig. 2C; F(2,535) = 4.22, p = 0.015); mean 
correlational distance was significantly negatively correlated with 2- 
Back D’ in the schizophrenia (t = -7.19, p = 2.13e-12), bipolar disor-
der (t = -6.04, p = 2.89e-9) and control (t = -4.66, p = 3.97e-06) groups, 
however the strength of the relationship differed by group. Further, a 
significant age by 2-Back D’ interaction was found (Fig. 2D; F(1,535) =
4.05, p = 0.045) where the strength of the relationship between task 
performance and mean correlational distance increased with age (1 SD 
below mean age (t = -4.85, p = 1.65e-06), mean age (t = -6.04, p = 2.9e- 
09), 1 SD above mean age (t = -6.58, p = 1e-10). 

Fig. 1. Consort Flow Diagram. Participant data was evaluated for eligibility 
based on a quality-control criteria. The initial data from 222 control (Ctrl), 112 
bipolar disorder (Bip), and 275 schizophrenia (Scz) participants were assessed 
for demographics availability; 15 participants were excluded. Following, data 
was controlled for excessive motion; 2 participants were excluded. Lastly, data 
was controlled for task performance; 41 participants were excluded. The 
resulting data from 212 Ctrl, 107 individuals with Bip, and 232 individuals with 
Scz were included for analysis. 

Table 1 
Participant’s Demographics, Clinical and Behavioural Scores.  

Group 1. Ctrl (n = 212) 2. Bip (n = 107) 3. Scz (n = 232) P-value Unadjusted P-value Adj Tukey Comparisons 

Sex 
Male 
Female  

109 (51.4 %) 
103 (48.6 %)  

49 (45.8 %) 
58 (54.2 %)  

178 (76.7 %) 
54 (23.3 %) 

2.53e-10a Ctrl-Bip 0.57 
Scz-Bip 1e-07* 
Scz-Ctrl 1e-07*  

Age (years) 37.1 ± 11.23 [18–64] 42.1 ± 10.01 [22–62] 37.9 ± 11.58 [18–65] 0.00066a Ctrl-Bip 0.00054* 
Scz-Bip 0.0049* 
Scz-Ctrl 0.69  

Motion (FD) 0.055 ± 0.02 0.091 ± 0.06 0.108 ± 0.07 <2e-16a Ctrl-Bip 1e-07* 
Scz-Bip 0.024* 
Scz-Ctrl < 2e-16*  

Illness Duration (nBip = 104 nScz = 213) – 15.35 ± 9.54 [0 – 42] 15.14 ± 11.45 [0 – 43] 0.87b – 
YMRS (nBip = 95) – 1.00 ± 1.65 – – – 
HAMD (nBip = 94) – 2.52 ± 2.43 – – – 
PANSS (nScz = 191)     – 
Positive – – 16.69 ± 6.19 –  
Negative – – 21.20 ± 7.52 – – 
General – – 34.09 ± 9.69 – – 
N-Back Task      
Response Accuracy (D’) 2-Back 3.42 ± 0.94 2.80 ± 0.81 2.22 ± 0.91 <2e-16a Ctrl-Bip 1.33e-08* 

Scz-Bip 5.82e-08* 
Scz-Ctrl < 2e-16*  

Response Accuracy (D’) 1-Back 4.34 ± 0.73 3.99 ± 0.87 3.40 ± 1.07 <2e-16a Ctrl-Bip 0.0011* 
Scz-Bip 2e-07* 
Scz-Ctrl < 2e-16* 

Note. Where appropriate variables are presented as Mean ± SD, square brackets demonstrate ranges. Ctrl = controls, Bip = bipolar disorder, Scz = schizophrenia, 
YMRS = Young Mania Rating Scale, HAMD = Hamilton Depression Scale, PANSS = Positive and Negative Syndrome Scale a = ANOVA performed, b = 2-sample T-test 
performed. 

J. Gallucci et al.                                                                                                                                                                                                                                 



NeuroImage: Clinical 36 (2022) 103269

5

Fig. 2. Mean correlational distance across all participants. A) The schizophrenia (Scz) group had a significantly higher mean correlational distance than the bipolar 
disorder (Bip) and control (Ctrl) groups. Dots represent individual data points. B) Higher mean correlational distance was associated with older age. Dots represent 
individual data points. Ribbon surrounding the regression line indicates a 95% confidence interval. C) The strength of the negative association between mean 
correlational distance and 2-Back D’ differed by group. Dots represent individual data points. Ribbons surrounding the regression lines indicates a 95% confidence 
interval. D) The strength of the negative association between mean correlational distance and 2-Back D’ increased with age. Dots represent individual data points. 
Ribbons surrounding the regression lines indicates a 95% confidence interval. 
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3.3. High and low variability subgroups 

To visualize the effects of individual variability on functional brain 
activity, participants were separated by median split based on mean 
correlational distance into equal groups of high and low variability 
(schizophreniamedian = 0.66, bipolar disordermedian = 0.61, controlmedian 
= 0.58). In line with our previous work, the low variability patient 
subgroups did not appear to differ from the control group in 2-Back – 1- 
Back activity, whereas the high variability patient subgroups, in 
contrast, seemed to show substantially less activity overall (particularly, 
less activation in WM networks, and less suppression within the default 
mode network)(see Fig. 3). This can further be interpreted as high 
variability patients having a shift in functional topography, aligning 
with recent literature surrounding greater individual variations in the 
spatial organization of brain networks and psychiatric disorders (Dickie 
et al., 2018; Nawaz et al., 2021). 

3.4. N-Back task activity via correlational distance Within-Groups: 

3.4.1. Control group: 
The addition of nonlinear effects of age did not significantly 

contribute to the model (age2 ΔR2 = 0.0015, p = 0.241; age3 ΔR2 =

0.0017, p = 0.296) and thus was not included. Mean correlational dis-
tance of functional brain activity across control participants was 
significantly associated with 2-Back D’ (F(1,206) = 28.54, p = 2.42e-07) 
and FD (F(1,206) = 10.59, p = 0.0013). 

3.4.2. Bipolar disorder group: 
Multicollinearity was not present between age and illness duration 

(VIF < 5). The addition of nonlinear effects of age and illness duration 

did not significantly contribute to the model (age2 ΔR2 = -0.0063, p =
0.740; age3 ΔR2 = -0.0078, p = 0.638; illness duration2 ΔR2 = -0.0019, 
p = 0.393; illness duration3 ΔR2 = -0.0079, p = 0.643) and thus were 
not included. Mean correlational distance of functional brain activity 
across individuals with bipolar disorder was significantly associated 
with 2-Back D’ (F(1,96) = 34.06, p = 7.23e-08) and FD (F(1,96) = 4.89, 
p = 0.029). 

3.4.3. Schizophrenia group: 
Multicollinearity was not present between age and illness duration 

(VIF < 5). The addition of nonlinear illness duration effects as well as 
PANSS subscales did not significantly contribute to the model and thus 
were not included. However, cubic effects of age significantly improved 
the model and were included (see Table 2 for hierarchical regression). 
Mean correlational distance across individuals with schizophrenia was 
significantly associated with FD (F(1,203) = 8.88, p = 0.0032) and 
lower 2-Back D’ (F(1,203) = 39.97, p = 1.61e-09). Additionally, a sig-
nificant relationship between mean correlational distance and age3 was 
found (F(1,203) = 4.85, p = 0.029)(Fig. 4A); such finding was not 
present in bipolar disorder or control groups(Fig. 4B). Notably, mean 
correlational distance was significantly associated with illness duration 
(F(1,203) = 4.93, p = 0.027)(Fig. 4C) even when age was included in the 
model. 

4. Discussion 

The present study leveraged an existing large sample to examine the 
impact of age and illness duration on individual variability in functional 
brain activity during an N-back WM task, in controls and individuals 
with schizophrenia or bipolar disorder. Contrary to our first hypothesis, 

Fig. 3. Parcellated T-map activity during the N-Back task. Within-group averages for the parcellated contrast t-maps are presented for all control (Ctrl) par-
ticipants, individuals with bipolar disorder (Bip), and individuals with schizophrenia (Scz) (top row left to right). Low variability (middle row) and high variability 
(bottom row) subgroups are also presented for each diagnostic category. Results are projected onto surface space and thresholded from t = -2 to 2 for improved 
visualization. Low variability patient subgroups did not appear to differ in their functional activity from the control subgroup. High variability patient subgroups 
showed substantially less activity. 
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the relationship between age and variability in brain function did not 
differ between groups. This finding suggests a relationship between age 
and brain function variability that is not related to diagnosis. In support 
of our second hypothesis, increased variability in brain function was 
associated with illness duration in the schizophrenia group, but not the 
bipolar disorder group, even after age was accounted for in the model. 
This suggests alterations in brain function driven by a longer illness 
duration in schizophrenia beyond the effects of normal aging. 

Recent work has shown that illness duration in schizophrenia may be 
related to cognitive deterioration (Altamura et al., 2015) and brain ab-
normalities (Altamura et al., 2011). The majority of the existing litera-
ture has investigated structural correlates of illness duration (Molina 

et al., 2004; Sapara et al., 2007; Premkumar et al., 2006; Premkumar 
et al., 2008). However, as structural abnormalities do not have a clear 
relationship with functional deficits (Diwadkar et al., 2011; Fornito 
et al., 2012; Ikuta et al., 2014) and functional and structural changes 
may contribute independently to the neurobiology of schizophrenia 
(Diwadkar et al., 2011; Zhuo et al., 2017), the functional implications of 
structural brain changes are ambiguous. The effects of illness duration 
may be greater in regions associated with cognition (Antonova et al., 
2004). The frontal lobes in particular have been shown to be vulnerable 
to the progressive effects of schizophrenia-related morbidity (Molina 
et al., 2004; Premkumar et al., 2006), with regional dysconnectivity 
(Woodruff et al., 1997) as well as a decline in structural integrity and 

Table 2 
Hierarchical regression for schizophrenia model.   

F-Values P-values Adjusted R2 ΔR2 Model significance 

Step 1   0.2947   
Age  5.40  0.021* 
Age:2-Back D’  1.76  0.186 

Step 2   0.3049 0.0102 Anova (Step1, Step2) 
p = 0.022* Age  1.38  0.242 

Illness Duration  6.92  0.009* 
Age:2-Back D’  1.72  0.191 
Illness Duration:2-Back D’  0.83  0.363 

Step 3   0.3099 0.005 Anova(Step2, Step3) 
p = 0.117 Age  4.14  0.043* 

Age2  2.48  0.117 
Illness Duration  6.91  0.009* 
Age:2-Back D’  1.72  0.191 
Illness Duration:2-Back D’  0.65  0.421 

** Step 4   0.3226 0.0177 Anova(Step2, Step4) 
p = 0.0267* Age  6.27  0.013* 

Age2  5.52  0.012* 
Age3  4.85  0.029* 
Illness Duration  4.93  0.027* 
Age:2-Back D’  2.15  0.144 
Illness Duration:2-Back D’  0.90  0.344 

Step 5   0.3213 − 0.0013 Anova(Step4, Step5) 
p = 0.436 Age  7.10  0.008* 

Age2  5.94  0.016* 
Age3  5.06  0.026* 
Illness Duration  3.51  0.062 
Illness Duration2  0.61  0.436 
Age:2-Back D’  1.77  0.185 
Illness Duration:2-Back D’  0.57  0.451 

Step 6   0.3183 − 0.0043 Anova(Step4, Step 6) 
p = 0.707 Age  5.13  0.025* 

Age2  4.20  0.042* 
Age3  3.58  0.060 
Illness Duration  0.62  0.431 
Illness Duration2  0.01  0.911 
Illness Duration3  0.09  0.766 
Age:2-Back D’  1.77  0.185 
Illness Duration:2-Back D’  0.58  0.445 

Step 7   0.3022 − 0.0204 Anova(Step4, Step7) 
p = 0.868 Age  6.89  0.009* 

Age2  6.44  0.012* 
Age3  5.79  0.017* 
Illness Duration  3.26  0.073 
PANSS General  0.03  0.873 
PANSS Negative  1.42  0.235 
PANSS Positive  0.01  0.931 
Age:2-Back D’  2.60  0.109 
Illness Duration:2-Back D’  0.88  0.350 
PANSS General: Illness Duration  0.01  0.915 
PANSS Negative: Illness Duration  0.03  0.874 
PANSS Positive: Illness Duration  0.08  0.784 

Note. A hierarchical regression was performed to evaluate the linear and nonlinear effects (quadratic and cubic) of age (Step 1, 3 and 4) and illness duration (Step 2, 5 
and 6) on mean correlational distance. Additionally, Positive and Negative Syndrome Scale (PANSS) subscale scores, as well as interactions with illness duration were 
included (Step 7) to determine the effect of symptom severity on mean correlational distance. Sex, 2-Back D’, and FD are included as covariates in all models. ANOVA 
performed to compare models and determine the model that best represents the data (** =chosen model). 
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function as illness persists (Elsabagh et al., 2009; Premkumar et al., 
2008). Consistently, illness duration is a significant predictor of cogni-
tive deficits (Irani et al., 2011), with deterioration in cognitive abilities 
over the course of illness (Altamura et al., 2015; Almeida et al., 2019; 
Wood et al., 2002; Mathes et al., 2005). Our findings suggest illness 
duration-related changes in brain function that may lead to greater 
variability in patterns of brain activity. Such idiosyncratic activity could 
be a consequence of deterioration of core cognitive regions with 
concomitant compensation from other networks. This is further sup-
ported by our current and prior findings of high variability individuals 
demonstrating lower activation in task-relevant networks (Gallucci 
et al., n.d.). 

Compensation for greater heterogeneity following decreased neural 
circuit function related to illness duration is supported by general aging 
literature. Healthy aging is associated with alterations in WM neural 
networks (Grady and Craik, 2000), in which the recruitment of addi-
tional brain regions may reflect a compensatory mechanism to coun-
teract age-related neurocognitive decline (Vermeij et al., 2012). For 
instance, studies have found that older individuals demonstrate more 
bilateral patterns of activation in frontal regions of the WM circuit 
compared to younger individuals, where contralateral recruitment is 
needed during task performance (Vermeij et al., 2012; Reuter-Lorenz 
et al., 2000; Cabeza et al., 2004). Notably, despite normal aging and 
illness duration being closely related (Premkumar et al., 2008), there is 
only relatively small literature to date specifically examining the influ-
ence of both age and illness duration on neural activation during 
cognitive performance in individuals with schizophrenia (Elsabagh 
et al., 2009). A recent investigation regarding the influence of disease 
progression and aging on cognition in individuals with schizophrenia 
revealed that performance is more strongly affected by illness duration 
than aging (Kaneda et al., 2013). Our study was able to assess changes in 
variability related to age and illness duration, suggesting an additive 
consequence of illness duration beyond the normal effects of aging. In 
contrast to studies that solely examined age effects and suggested an 
‘advanced aging’ mechanism (Hawco et al., 2017; Kochunov et al., 
2013), our results imply the increased influence of age in schizophrenia 
may be further explained by illness-related determinants. The nonlinear 
relationship found between mean correlational distance and aging could 
perhaps reflect a normative phase or stabilization in early life prior to 
long-term functional disturbances, though this interpretation remains 
speculative as the available data was cross-sectional as opposed to 
longitudinal. 

In contrast to studies that found a greater decline in structural and 
functional correlates of aging in individuals with schizophrenia than 

controls (Kawakami et al., 2014; Hawco et al., 2017; Wang et al., 2021), 
our findings suggest normal aging processes with regards to functional 
brain activity when illness duration effects are accounted for. Several 
aspects of cognitive processing become less efficient with increasing age 
(Salthouse, 1996), including an age-related decline in fluid cognition 
(Park et al., 2002) which is particularly prevalent in domains with high 
processing demands, such as WM (Salthouse, 1990). Evidence has sug-
gested the decline in WM experienced in older individuals is related to 
the failure of core cognitive brain regions to modulate activity when 
faced with increased cognitive demand (Rieck et al., 2022). Age-related 
region recruitment may also reflect a difficulty in engaging specialized 
neural systems (Logan et al., 2002). Studies have demonstrated nonse-
lective activation of frontal regions persists in older adults during 
memory tasks, in which additional recruitment is needed due to diffi-
culties in engaging typically activated brain regions during the task 
(Grady and Craik, 2000; Park et al., 2001). Our results align with the 
existing literature, where greater individual variability may be due to 
older individuals relying on alternative regions and potentially simpler 
cognitive strategies due to age-related deficits in their task-relevant 
networks. 

Illness duration effects were not found in the bipolar disorder group, 
indicating that findings were specific to schizophrenia. The inclusion of 
bipolar disorder as a ‘psychiatric control group’ with some similarities 
with regard to biological factors (Janssen et al., 2008), based on high 
rates of comorbidity (Laursen et al., 2009), overlapping etiology 
(Laursen et al., 2007), and clinical symptoms (Misiak et al., 2016) made 
it possible to disentangle effects that are specific to schizophrenia as 
opposed to non-specific effects of psychiatric illnesses. As previous 
studies examining brain age have found structural alterations most 
prominent in psychosis compared to bipolar disorder (Shahab et al., 
2019; Nenadić et al., 2017; Hajek et al., 2019), our results align with 
such literature and support findings regarding schizophrenia-specific 
biological changes which may be related to poorer long-term func-
tional outcomes (Altamura et al., 2015) and reduced lifespan (Moradi 
et al., 2018). 

Several limitations of our study should be noted. Illness duration was 
quantified as an individual’s chronological age minus the age of onset. 
Despite improvements in diagnostic procedures, a recent meta-analysis 
revealed an estimated six-year delay in diagnosis of bipolar disorder 
(Dagani et al., 2017), in comparison to that of 8–48 weeks for psychosis 
(Dell’Osso et al., 2016). Diagnostic delays have been associated with 
factors such as absence of a family history (Tondo et al., 2014), lack of 
accessibility to mental health services (Murru and Carpiniello, 2018), 
and misdiagnosis due to the presence of previous depressive episodes 

Fig. 4. Mean correlational distance associated with age and illness duration in schizophrenia. A) Cubic relationship between age and mean correlational distance in 
the schizophrenia (Scz) group. B) Such relationship was not found in bipolar disorder (Bip) or control (Ctrl) groups. Dots represent individual data points. The ribbon 
surrounding the regression line indicates a 95% confidence interval. C) Mean correlational distance was significantly associated with illness duration in the Scz 
group, but not in the Bip group. Dots represent individual data points. The ribbons surrounding the regression lines indicate a 95% confidence interval. 
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(Fico et al., 2021). As such, illness duration is considered an estimate, 
where the time span from disorder onset to proper diagnosis cannot be 
accounted for. Additionally, as detailed medical history was not avail-
able, conclusions that can be drawn from this study are limited by po-
tential effects of medication (Almeida et al., 2019) or other secondary 
effects such as sedentary lifestyle, social isolation, etc. that may play an 
important moderating role. Motion is also an ongoing challenge in many 
studies of brain structure and function (Savalia et al., 2017), where 
micro-movements of the head strongly affect neuroimaging outcomes 
(Parkes et al., 2018). Our study aimed to account for this confound by 
correcting for motion at several stages of the analysis (inclusion of 
movement regressors in the GLM, and FD as an explanatory variable in 
the linear models). Further, data was taken from a pre-existing larger 
sample that utilized a 1.5 Tesla scanner for image acquisition. Although 
3 Tesla is more often used in research settings due to improvements in 
signal-to-noise ratio, the included sample size of 551 and robust N-Back 
task effects provided sufficient power to compensate for lower sensi-
tivity. Lastly, as functional brain activity during WM performance was 
explored, findings cannot be extended to cognition in general. Future 
work utilizing datasets with many fMRI tasks across multiple cognitive 
domains may aid in determining whether variability in functional ac-
tivity is generalizable across different cognitive facets. 

To our knowledge, this was the first study that assessed the impact of 
illness duration on idiosyncratic functional brain activity during a 
neurocognitive task in schizophrenia. These findings attempt to disen-
tangle the effects of aging as opposed to illness duration. Here, greater 
individual variability observed specifically within schizophrenia may be 
a result of adverse effects associated with longer illness duration, beyond 
aging. There is opportunity for future studies to solidify this tentative 
differentiation, as it may be beneficial to look at the neurobiological 
variability in age-matched individuals with schizophrenia that have 
different times of onset. If greater idiosyncrasy of functional brain ac-
tivity in schizophrenia is indeed a negative implication of illness dura-
tion, one may expect separable neurobiological profiles between early vs 
late-onset, regardless of similarities in age. Additionally, subsequent 
research should investigate the role that antipsychotic medication plays, 
where the type of treatment and length of exposure may influence the 
relationship between individual variability and illness duration. Finally, 
new treatments could be tested in relation to effects on idiosyncratic 
brain function as a potential proxy that might serve to index illness ef-
fects over time. 
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