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Abstract: High compatibility and good rubber–filler interactions are required in order to obtain high
quality products. Rubber–filler and filler–filler interactions can be influenced by various material
factors, such as the presence of processing aids. Although different processing aids, especially the
plasticizers, and their effects on compatibility have been investigated in the literature, their influence
on rubber–filler interactions in highly active filler reinforced mixtures is not explicit and has not been
investigated in depth. For this purpose, the influence of treated distillate aromatic extract (TDAE)
oil content and its addition time on interactions between silica and rubber chains were investigated
in this study. Rubber–filler and filler–filler interactions of uncured and cured silica-filled SBR/BR
blends were characterized by using rubber layer L concept and dynamic mechanical analysis, whereas
mechanical properties were studied by tensile test and Shore A hardness. Five parts per hundred
rubber (phr) TDAE addition at 0, 1.5, and 3 min of mixing were characterized to investigate the
influence of TDAE addition time on rubber–filler interactions. It was observed that addition time of
TDAE can influence the development of bounded rubber structure and the interfacial interactions,
especially at short time of mixing, less than 5 min. Oil addition with silica at 1.5 min of mixing
resulted in fast rubber layer development and a small reduction in storage shear modulus of uncured
blends. The influence of oil content on rubber–filler and filler–filler interactions were investigated for
the binary blends without oil, with 5 and 20 phr TDAE content. The addition of 5 phr oil resulted
in a slight increase in rubber layer and 0.05 MPa reduction in Payne effect of uncured blends. The
storage tensile modulus of vulcanizates at small strains decreased from 13.97 to 8.28 MPa after oil
addition. Twenty parts per hundred rubber (phr) oil addition to binary blends caused rubber layer L
to decrease from 0.45 to 0.42. The storage tensile modulus of the vulcanizates and its reduction with
higher amplitudes were incontrovertibly high among the vulcanizates with lower oil content, which
were 13.57 and 4.49 MPa, respectively. When any consequential change in mechanical properties of
styrene–butadiene rubber (SBR)/butadiene rubber (BR) blends could not be observed at different
TDAE addition time, increasing amount of oil in blends enhanced elongation at break, and decreased
Shore A hardness and tensile strength.

Keywords: silica; SBR; BR; rubber–filler interactions; viscoelastic properties; mechanical properties;
Payne effect

1. Introduction

Silica-filled rubber blend technology is of interest to the elastomer industries, espe-
cially to the tire manufacturers due to its potential usage for tire tread formulations [1,2].
Chemical structure and microstructure of polymers, filler types, and filler characteristics
mainly determine the type and strength of polymer–filler and filler–filler interactions [3].
Silica is compatible to some degree with polar rubbers due to its highly polar structure, but
it is not naturally compatible with non-polar rubbers such as styrene–butadiene rubber
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(SBR), butadiene rubber (BR), and natural rubber (NR). The interfacial interactions between
polar silica and non-polar hydrocarbon polymers are weak, yet the compatibility can be
increased by the silica surface modification or the polymer chain functionalization. Cou-
pling agents are used for chemical modification of silica surface by reducing the polarity
difference between rubber and filler [4–9]. Previous studies have claimed that silane en-
hances interfacial interactions and improves dispersion of silica in rubber matrix [6–10].
The functionalization of polymer chains is likewise used to diminish polarity difference.
Based on the results of studies with chain-end-modified and backbone modified polymers,
modification of polymer chains can lead to an improvement of dynamic characteristics and
mechanical properties [11,12].

Investigations of polymer–filler interactions are usually carried out by using different
concepts, such as bound rubber and wetting concept. Bound rubber is defined as the
structure formed by the attachment of polymer chains to the silica surface and this concept
is commonly used to investigate polymer–filler interactions in filled rubber systems [13–17].
In the previous studies, bound rubber mechanisms and the factors affecting the bound
rubber formation were extensively investigated [18–22]. Increase in bound rubber content
with the presence of silane, increasing filler content and mixing time was observed [21,22],
when it decreased at high extraction temperatures [20]. In binary and ternary rubber blend
systems, the wetting concept was widely used to identify filler localization and rubber–
filler interactions [23–26]. The bounded rubber principle lies under the wetting concept as
well; however, the calculations are carried out differently from the bound rubber concept.
Rubber layer L is calculated as a part of wetting concept and it provides information about
the bounded rubber layer on the filler surface due to physical and chemical interactions. In
the previous studies, it was claimed that rubber layer development continues until rubber
infiltrates filler completely, where rubber–filler interactions reach the maximum amount.
The rubber layer L remains constant at this maximum amount which is the plateau value
(LP), for a certain mixing time [24]. In addition to the concepts with bounded rubber
structure, dynamic mechanical analysis was used to analyze rubber–filler interactions
in rubber blends. Loss modulus (G”) was used to determine filler localization in binary
blends, in which the increase of the peak height of the loss modulus in a corresponding
phase was stated as an indicator of the filler localization in that phase [27,28]. In addition,
different models were studied to investigate the contributions of filler network and hydro-
dynamic effects to storage modulus in reinforced systems and rubber–filler interaction as a
contributor to dynamic modulus, was indirectly examined in these researches [29,30].

Processing oils are used in blends as plasticizers to improve flow properties and
processability. Processing oils provide lubrication between polymer chains and do not
cause any chemical changes. Nowadays, processing oils with high aromatic content are non-
utilizable due to the environmental concerns. They are mainly replaced by low aromatic
content oils, such as treated distillate aromatic extract oil (TDAE), and bio-oils. In the
previous studies, the compatibility of processing oils in different polymer systems were
studied and their influence on dynamic and mechanical properties were the main focus of
these studies considering the commercial applications [31–34]. Although a few studies on
TDAE oil in SBR blend systems are present in the literature, the localization and material
characterizations were focused on the unfilled blend systems [35,36]. The plasticizers are
commonly used with highly reinforced polymer systems in commercial applications, yet
there are not enough studies in the literature for these kind of systems. The plasticizer
influence on rubber–filler and filler-filler interactions in reinforced blends is not explicit
and detailed investigations are required in this topic. Therefore, the focus of this work is
on the TDAE influence in silica-filled SBR/BR blends.

In the present work, the influence of TDAE content and its addition time on rubber–
filler interactions were studied in silica-filled SBR/BR binary blends. Rubber–silica in-
teractions of the blends were examined by rubber layer L concept, whereas silica–silica
interactions and dynamic mechanical properties were investigated by rubber process ana-
lyzer (RPA) and dynamic mechanical analysis (DMA). Mechanical analysis and microscopy
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analysis were carried out as supportive methods to study rubber–filler and filler–filler
interactions and to estimate a possible correlation with rubber layer of silica-filled blends.

2. Experimental
2.1. Materials and Compounding

Solution styrene–butadiene rubber (S-SBR), SPRINTANTM SLR 4602 (Trinseo GmbH
Schkopau, Germany) which is functionalized for improved polymer-filler interaction with
carbon black and silica, and high cis-butadiene rubber (BR), BUNATM CIS 132 (Trinseo
GmbH Schkopau, Germany) were used for compounding of binary blends. The compound
formulation is given in Table 1. Rubber compounds were prepared by a laboratory internal
mixer Haake 300p (Corp. Thermo Fisher GmbH, Dreieich, Germany). Rotor speed and fill
factor were kept constant at 50 rpm and 60%, respectively. Mixing was carried out in two
steps. In the first stage of mixing, SBR and BR were mixed with all ingredients, except the
curatives. Silica ULTRASIL 7000 GR with CTAB surface area of 160 m2/g, (Evonik GmbH,
Essen, Germany) was divided into two parts and fed into the mixing chamber. In situ
silanization carried out by silane coupling agent, Si75 (Evonik GmbH, Essen, Germany)
in the temperature range from 130 to 150 ◦C. Starting mixing temperature of the first
stage of mixing was set to 130 ◦C considering to the optimized temperature of silanization
reaction. The dump temperatures of the blends without TDAE, and 5 and 20 phr TDAE
were 146, 144, and 140 ◦C, respectively. Processing oil, which includes reduced amount
of polycyclic aromatic carbons up to 2.8% weight percent [37], treated distillate aromatic
extract (TDAE) of the type Vivatec500 (Hansen & Rosenthal KG, Hamburg, Germany) was
added to the system in this step. In the second stage of mixing, curing additives were added
at 50 ◦C starting temperature. Sulfur (Carl Roth GmbH + Co. KG, Karlsruhe, Germany),
diphenyl guanidine (DPG) (Carl Roth GmbH + Co. KG, Karlsruhe, Germany), tertbutyl-2-
benzothiazolsulfenamide (TBBS) (Carl Roth GmbH + Co. KG, Karlsruhe, Germany), and
n-cyclohexylbenzothiazole-2-sulphenamide (CBS) (Carl Roth GmbH + Co. KG, Karlsruhe,
Germany) were mixed with silica-filled SBR/BR blends in the mixing chamber for 5 min.

Table 1. Compound formulation.

Components Content, phr Addition Time, min

Stage I Mixing

S-SBR 80 0
BR 20 0

Silica Ultrasil 7000 50 1 and 1.5
Silane Si75 4.2 1 and 1.5

TDAE 0/5/20 0/1.5/3
Zinc Oxide 0.5 0.5
Stearic Acid 3 0.5

End time: 10 min

Stage II Mixing

Sulfur 2.5 0
DPG 1.5 0
TBBS 1.5 0
CBS 1.5 0

End time: 5 min

2.2. Sample Preparation and Characterization

Investigation of rubber–filler interactions of unvulcanized silica-filled SBR/BR blends
was carried out by using rubber layer L concept. Approximately 1 g of samples started to be
taken out of the chamber after completing the addition of all compounds, except curatives.
Rubber samples were collected at different mixing times to examine the development of
rubber layer. 0.2 g uncured silica-filled samples were extracted in 100 mL toluene solvent
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for 1 week. The solvent was changed once after 3 days. After the extraction, rubber–filler
gel remained which is the undissolvable rubber structure consisting of rubber chains
bonded on the silica surface. The bonded rubber layer is assumed to be formed by the filler
network mediated or connected through the polymer chains and it cannot be extracted by
the solvent extraction. The gel was dried in an air-circulated oven at 70 ◦C for 2 h and the
samples were weighed. The numerical calculation of rubber layer L was carried out by
using the Equation (1) [23]:

L =
m2 − m1 cS

m2
(1)

In the Equation (1), L represents rubber layer L, where m1 is the mass of the SBR/BR
blend sample before toluene extraction and m2 is the mass of the dried rubber–filler gel
after the extraction. cS represents the weight fraction of silica in rubber–silica compounds.
The maximum calculated rubber layer L which stays constant at this plateau value and
known as LP, is used as an indicator of maximum achievable rubber–filler interaction of
the rubber blend.

Viscoelastic properties of unvulcanized blends were analyzed by rubber process
analyzer (RPA) (Scarabaeus Mess- und Produktionstechnik GmbH, Wetzlar, Germany).
Storage shear modulus was determined by amplitude sweeps between 0.1% and 100%,
with 10 Hz frequency, and at 80 ◦C test temperature.

Light microscopy analyses were carried out by an optical microscope (Leica Microsys-
tems GmbH, Wetzlar, Germany). Uncured silica-filled SBR/BR blends were analyzed
to have a general understanding on macro scale dispersion and distribution of silica in
rubber matrices.

Vulcanization characteristics of the silica-filled SBR/BR blends were characterized
at 160 ◦C by using a vulcameter Elastograph (Göttfert Werkstoff Prüfmaschinen GmbH,
Buchen, Germany) in accordance with DIN 5329-2 [38] and vulcanization time t90 was
determined for each compound. The compounds were vulcanized at 100 bar and at
160 ◦C as long as their t90 time by using a laboratory press PM 20/200 (Fa. Campana Ing.
Benedetto, Italy).

Crosslink density of SBR/BR vulcanizates were determined by swelling test. One gram
of rubber samples were immersed in toluene solvent for 72 h. The swollen samples
were taken out of the solvent and dried at room temperature for 4 days. The initial and
final weights were measured, and the value of swelling degree was calculated by the
Equation (2) [39,40]:

Qw =
msp −ms

m∗s
(2)

Qw is the equilibrium swelling, msp is the mass of swelling sample, and ms is the mass
of dried sample after swelling. m∗s is the mass of dried sample after swelling, corrected for
the filled sample by Equation (3):

m∗s = mo − (
mn

mc
) (3)

where mo is the initial mass of sample, mn is the mass of mineral substances contained in
the blend, and mc is the mass of all blend components.

Vr which is the volume fraction of the polymer in the vulcanizate swollen was deter-
mined by using the Equation (4):

Vr =
1

1 + Qw ( dk
dr
)

(4)

In the Equation (4), dk is the density of rubber and dr is the density of of solvent.
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The crosslinking density according to the Flory–Rehner equation, given by the
Equation (5), was determined [41].

v = − ln(1−Vr) + Vr + χ V2
r

V0 (V
1
3

r − 2Vr
f )

(5)

Crosslinking density of vulcanizates (v) was calculated with the unit of mol/cm3,
where χ is Flory–Huggings interaction parameter which was taken 0.378 for SBR in toluene
and V0 is the molar volume of solvent, 106.9 cm3/mol for toluene. f is the functionality of
crosslinks, which was taken 4 by assuming the formation of tetra-functional crosslinks [42].

Dynamic mechanical analysis (DMA) of SBR/BR vulcanizates was performed in
tension mode by DMA GABO EXPLEXOR (Netzsch Gerätebau GmbH, Selb, Germany)
with a force head of 150 N according to DIN 53513 [43]. The specimens were tested by
strain sweeps between 0.01% and 11%, with 10 Hz frequency and at 60 ◦C test tempera-
ture. Evaluation of the tensile properties of the vulcanizates was performed by following
DIN 53504 standard by using S2 type specimens and the test speed of 200 mm/min [44].
Five specimens from each blend were tested for tensile test, and the average values were
taken as the indication of tensile properties. Shore A hardness of silica-filled SBR/BR
vulcanizates was determined according to DIN ISO 7619-1 [45]. Ten measurements from
each blend were carried out and the average values were used as Shore A hardness.

3. Result and Discussion
3.1. Influence of TDAE Addition Time on Mixing Behavior and Interfacial Interactions

Mixing regime can result in different bound rubber development of rubber blends [46].
In Figure 1, mixing behavior of silica-filled SBR/BR blends with 5 phr TDAE in, is shown
for different plasticizer addition time. Five phr oil content was chosen considering the
easy handling of low plasticizer contents in mixing. Each blend was mixed for 10 min,
after rubber fed to the mixing chamber which is shown as shaded areas on the graph.
To investigate the plasticizer addition at 0 min, TDAE was fed to the chamber together
with SBR and BR for 2 min to avoid sudden torque decreases. It is visible that mixing
torque is, to a minor extent, lower compared to other blends at the first minutes of mixing
and after feeding of silica at the second min. At the end of 10 min of mixing, torque is
observed at the same level with other blends and dump temperature is 143 ◦C. For the
investigation of plasticizer addition at 1.5 min, TDAE was fed to system after a short
pre-mixing with silica and silica addition caused a little higher torque increase than other
blends in the mixing. Dump torque and temperatures were 10 Nm and 144 ◦C, respectively.
Addition of plasticizer at 3 min was carried out by a syringe, similar to 1.5 min addition.
After the oil addition at 3 min, torque and temperature decreased slightly. Dump torque
and temperatures were observed a little higher than other blends, which are 12 Nm and
145 ◦C, respectively.

The rubber layer L in dependence on mixing time was determined for silica-filled
SBR/BR binary blends with different TDAE addition time, shown in Figure 2. The main
influence of plasticizer addition time was observed on rubber layer L development at
earlier stages of mixing. TDAE addition at 0 min showed the slowest rubber layer L
development compared to 1.5 and 3 min of oil addition time. The reason could be the
low viscosity by the addition of plasticizer at the beginning of mixing, that can influence
the filler dispersion [47] and can cause poor dispersion at short time of mixing. Retarded
reduction of agglomerates because of the small shear forces during mixing may delay
the completion of the rubber layer formation. The fastest rubber layer development was
observed for TDAE addition at 1.5 min with silica. On the other hand, any significant
difference could not be seen in the plateau values (LP) of binary blends, which are around
0.4 for each. Since LP represents the maximum achievable rubber layer in the blend, it can
be claimed that approximately 10 min of mixing is required in this mixer with the described



Polymers 2021, 13, 698 6 of 15

mixing parameters to achieve maximum rubber–filler interactions for the SBR/BR blends
without depending on the oil addition time.
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silica-filled SBR/BR binary blends.

Filler–filler interactions and flocculation behavior can be determined with the help
of viscoelastic property investigations. The storage shear modulus (G′) at low strain
amplitude is used as a measure for the filler–filler interactions and its decrease with
increasing dynamic strain amplitudes is used to characterize the reinforcing mechanism
of filler in rubber compounds [48]. G′ of uncured silica-filled SBR/BR binary blends with
different TDAE addition time is shown in Figure 3. The influence of plasticizer addition
time can be seen on G′ at low strain amplitudes. Although all uncured silica-filled blends
show a similar trend, plasticizer addition at 1.5 min of mixing results in slightly lower
G′ compared to others. When lower G′ at low strains is considered as a representation
of less silica flocculation [49], it can be said that the binary blend with TDAE added at
1.5 min forms less filler–filler networking and less flocculation. According to these results
combined with the rubber layer L analysis shown in Figure 2, it can be declared that TDAE
addition together with silica at 1.5 min of mixing provided advantages to achieve less
flocculation and more interfacial interactions between silica and SBR/BR matrices.
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3.2. Influence of TDAE Content on Rubber–Filler and Filler–Filler Interactions

In Figure 4, the development of rubber layer L in silica-filled SBR/BR blends can
be seen depending on TDAE concentration for different mixing times. The binary blend
without plasticizer showed fast rubber layer L development at early stages of mixing and
resulted in approximately same LP value with 5 phr TDAE added blend. It is known that the
development of rubber layer on the filler surface is not only depending on the rubber–filler
compatibility, but also mixing conditions [50]. High filler concentration and the absence
of processing oil result in pronounced increase in shear forces during mixing, which may
improve silica dispersion in rubber matrix by breaking down silica agglomerates [51].
SBR/BR blend with 5 phr TDAE showed the fastest rubber layer development. Low
oil content can improve the dispersion of silica in matrix by helping to lubricate rubber
chains [35,36] and in principle, improvement in dispersion during mixing can cause fast
development of the rubber layer and may result in more rubber–filler interactions. On the
other hand, the reason of the slow development with the addition of 20 phr TDAE can be
the plasticization effect of oil that leads to the decreased bulk viscosity [31]. It might delay
the filler dispersion and decelerate rubber layer development due to the small internal
shear forces during mixing with the presence of high oil content. The LP value of the blend
with 20 phr TDAE was observed slightly lower compared to other blends after 10 min of
mixing. It can be claimed that the presence of high content of plasticizer does not only delay
the rubber layer formation, but also it reduces the bonded rubber layer on silica surface.
A possible explanation for this could be the penetration of TDAE into interstices between
rubber and silica [32] that can partially block the interactions between polymer chains and
silica. According to the results of TDAE content influence in silica-filled SBR/BR blends,
it can be claimed that high plasticizer contents can require longer mixing time to achieve
maximum rubber–filler interactions in the system and result in reduction in bonded rubber
layer on fillers.

Microscopy analysis of macro-structures and micro-structures of fillers can be utilized
to examine rubber–filler interactions, beside filler–filler interactions. In high level of silica
loadings, qualitative analysis of micro-dispersion and micro-structures are difficult because
of the three-dimensional superposition of the aggregates inside agglomerates [52]. In
addition, the presence of oils and various components typically used in tire technology,
make the analysis more complex. Macro-scale investigations of uncured SBR/BR blends
were carried out by optical light microscopy to observe silica dispersion and distribution,
shown in Figure 5. Silica aggregates and agglomerates with different sizes can be seen as
dark regions in SBR/BR matrix, in Figure 5a. The spherical structures up to 40 µm diameter
which are marked with arrows, can be silica agglomerates and indicates poor dispersion. In
principle, the big silica agglomerates are destroyed under high shear forces during mixing
and the probability of presence of flocculated silica particles after long mixing time like
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10 min is low, however the silica can re-agglomerate after mixing. Considering to the high
tendency of re-agglomeration of silica after mixing [9], analyses can be influenced by the
re-agglomeration during storage time. The presence of 5 phr TDAE in the binary blend
caused a noticeable increase of the dark regions and the amount of spherical structures
in the images, seen in Figure 5b. The enhancement of dark regions is observed much
higher for 20 phr plasticizer added blend, beside blurred dark regions shown by arrows
in Figure 5c. It is hard to distinguish the regions belonging to silica agglomerates and
TDAE oil droplets in light microscopy images, since both silica agglomerates and TDAE
droplets appear dark under light microscopy. The presence of high amount of oil can
shield the silica aggregates as well and it is not possible to make a statement on filler
flocculation. These results demonstrate the need for other characterization methods for the
investigation of filler–filler interactions. For this purpose, Payne effect was investigated for
the unvulcanized binary blends.
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Rubber trapped in filler aggregates called occluded rubber, contributes to the filler
network behaving like filler. The breakdown of the filler network with increasing amplitude
may release the trapped rubber for energy dissipation and the released rubber can take
part in deformation again. It results a non-linear decrease in the shear modulus and this
decrease is named Payne effect [53,54]. It is often measured by the difference between
the low amplitude modulus and the high amplitude modulus [55]. In this work, Payne



Polymers 2021, 13, 698 9 of 15

effect of uncured blends was calculated by the difference between storage shear modulus
at 0.1% and 100% strain amplitudes (∆G′0.1%–100%). Storage modulus can also be utilized
to understand the occluded rubber and rubber–filler interactions. At high strains, filler-
filler network breaks and the storage modulus becomes strain independent. The strain
independent modulus consists of different contributions such as hydrodynamic effect and
in-rubber structure, which is emphasized as a direct measure for the occluded rubber [56].
For this purpose, the storage modulus at 100% strain (G′100%) in which the filler–filler
network was completely broken, was examined additionally in this study. In Figure 6,
∆G′0.1%–100%, G′100% and the rubber layer LP, dependence on TDAE content were shown
for silica-filled SBR/BR blends. Reduction in Payne effect and G′100% were observed with
increasing TDAE content in blends. Decrease in Payne effect and slight increase in LP
may be an indication of better silica dispersion [57,58] and less flocculation. However, it is
important to emphasize that occluded rubber is not considered for the comments on rubber–
filler interactions calculated by rubber layer L. In addition, the presence of oil influences
the behavior of G′ and all contributions should be calculated to understand the amount of
occluded rubber by G′100%. Highest reduction in Payne effect and G′100%, beside LP were
observed after 20 phr oil addition, which may not indicate better silica dispersion. In this
case, the plasticization effect of oil which causes a reduction in storage modulus, can be
considered as the reason of decreasing Payne effect. As high oil concentrations decrease the
viscosity, the reduction of silica agglomerates into aggregates is not highly probable during
mixing due to the less shear forces. In addition, good filler dispersion is not expected in
less viscose matrix, considering to high agglomeration tendency of silica. Another possible
explanation can be the location of TDAE between rubber chains and silica. For high oil
concentrations, it was claimed that the penetration of oil into interstices between rubber
chains and fillers can influence the interactions between mutual filler particles and cause
weaker interactions [32]. In this case, reduced Payne effect can be observed. Parallel to
this result, LP of 20 phr oil added blend was the lowest which indicates a reduction in
rubber–filler interactions.
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Figure 6. Difference between storage shear modulus at 0.1% and 100% strain amplitudes
(∆G′0.1%–100%), the storage shear modulus at 100% strain amplitude (G′100%) and the plateau value
of rubber layer (LP) relation of uncured silica-filled SBR/BR blends depending on TDAE content.

3.3. Investigation of Dynamic Mechanical and Mechanical Properties of SBR/BR Vulcanizates and
Their Relation to Rubber Layer L

Material properties of rubber blends are highly influenced by the density of crosslinks
within the vulcanizates. The crosslink densities of silica-filled SBR/BR vulcanizates were
quantitatively analyzed with the swelling test and Flory–Rehner equation, shown in
Figure 7. Vulcanizates with 5 phr TDAE content showed the highest crosslink densities
independent of their addition time, and they are followed by 20 phr TDAE content. When
TDAE addition at 0 and 1.5 min had the crosslinking densities around 3.5 × 10−5 mol/cm3,
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addition at 3 min resulted in a slightly higher value, 3.8 × 10−5 mol/cm3. The enhanced
crosslink density with 5 phr oil addition indicates dense internal structure in the vulcan-
izates, in which silanized silica and polymer chains bonded with sulfur more efficiently
compared to the other blends. High density of crosslink may be an indication of high
rubber–filler interactions [59], which fits to the previous rubber layer and viscoelasticity
results of unvulcanized blends after 5 phr oil addition. 20 phr TDAE addition resulted
in smaller crosslink density compared to 5 phr oil content. It agrees that the high oil
concentrations can block the interfacial interactions and formation of crosslinks. On the
other hand, the crosslink density of the 20 phr TDAE added vulcanizate was higher than
the vulcanizate without oil, which are 2.6 × 10−5 mol/cm3 and 1.3 × 10−5 mol/cm3,
respectively.
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Dynamic mechanical properties were characterized to investigate the influence of
TDAE content and addition time on SBR/BR vulcanizates. In Figure 8, storage tensile
modulus (E′) and loss tensile modulus (E”) of silica-filled SBR/BR vulcanizates are shown
for different TDAE contents and addition time. It can be seen in Figure 8a that the absence
of TDAE resulted in the highest E′, 13.97 MPa, and was followed by 20 and 5 phr TDAE
addition, 13.57 and 8.28 MPa, respectively. Reduction in storage modulus is expected
with increasing oil contents due to their viscous nature and a certain softening effect,
nevertheless 20 phr oil addition to vulcanizate caused a small reduction in E′ and more
pronounced storage modulus decrease with increasing strains, 4.49 MPa. It is the indication
of high silica flocculation in the vulcanizate, even though the unvulcanized blend showed
smaller Payne effect under shear forces, as an indicator of less filler flocculation (see
Figure 6). TDAE may indirectly affect the curing efficiency and can cause differences
in behavior of SBR/BR vulcanizates compared to unvulcanized blends. The presence
of high oil contents may fill the moieties of filler surface and cause the penetration into
interstices between filler and rubber. In this case, TDAE oil can influence the silanization
efficiency [60]. Further, the silanization efficiency which affects the amount of free sulphur
bonds, influences the curing efficiency [61]. Five parts per hundred rubber (phr) oil added
vulcanizates exhibited low E′ in Figure 8a, and TDAE addition at 1.5 min of mixing resulted
in the least E′, similar to the previous results. An inversely proportional relationship
between E′ and LP which is given in Table 2, was observed for all 5 phr TDAE added
blends. It indicates that at same amount of oil content, less filler–filler networking in
blends were resulted in higher LP and more rubber–filler interactions. The possibility of
improvement in filler dispersion can be supported by both Payne effect and LP values.
Decrease in Payne effect and slight increase in LP may be an indication of less filler–filler
networking and more rubber–filler interactions. E” of silica-filled SBR/BR vulcanizates
were shown depending on oil content and addition time in Figure 8b. Twenty parts per
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hundred rubber (phr) oil added vulcanizate exhibited the highest energy dissipation due
to its high oil content. SBR/BR vulcanizate without oil showed higher energy dissipation
than 5 phr oil added vulcanizates. It can be simply explained with the higher amount of
immobilized rubber with higher molecular friction, and thus higher energy dissipation [62].
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Table 2. Rubber layer LP values of silica-filled SBR/BR binary blends and mechanical parameters of
the binary vulcanizates.

TDAE Content & Addition Time

Properties without
TDAE

5 phr,
0 min

5 phr,
1.5 min

5 phr,
3 min

20 phr,
1.5 min

LP 0.45 0.47 0.46 0.43 0.42
σ100%(MPa) 5.83 ± 0.11 5.22 ± 0.18 5.06 ± 0.28 5.21 ± 0.22 3.27 ± 0.05
σ200%(MPa) 13.6 ± 0.16 12.4 ± 0.12 11.4 ± 0.96 12.2 ± 0.13 7.55 ± 0.09
σM(MPa) 12.9 ± 2.57 12.4 ± 1.25 12.7 ± 1.14 13.2 ± 1.37 12.3 ± 0.96
εR(%) 191 ± 31.6 200 ± 14.0 218 ± 16.7 210 ± 17.5 281 ± 14.8

Hardness
(Shore A) 73.7 ± 1.1 71.6 ± 0.6 70.6 ± 0.5 68.8 ± 0.4 65.2 ± 0.6

The loss factor tan δ at 60 ◦C was calculated as the ratio of loss modulus (E”) to storage
modulus (E′). It is known that lower values of tan δ indicate lower hysteresis, which results
in less energy dissipation [53]. Figure 9 shows the tan δ at 60 ◦C values of the silica-filled
SBR/BR vulcanizates depending on TDAE content and addition time. It can be seen that
the SBR/BR blends without TDAE and with 5 phr TDAE added at 0 and 3 min of mixing,
show quite close hysteresis and the value is lower than the blend with 20 phr oil content.
The highest hysteresis belongs to 20 phr TDAE content due the contribution of its high E”
to tan δ, shown in Figure 8b. In addition, the interfacial slippage between rubber and filler,
which is a source of energy dissipation [63] may be another reason. With the presence of
high oil content in blends, the slippage of entanglements can be more and result in higher
energy dissipation. On the other hand, the presence of 5 phr TDAE which was added at
1.5′ resulted in the lowest tan δ at 60 ◦C. This decrease in the hysteresis may be attributed
to a less developed filler–filler network [53].
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Good compatibility and homogeneous dispersion and distribution of filler in rubber
blends affect the mechanical properties of materials [33–36]. The results of the mechanical
property analysis of silica-filled SBR/BR blends with different TDAE content and addition
time are presented in Table 2. It can be seen that increasing oil concentration caused an
increase in elongation at break (εR) which indicates an improvement in elasticity. This
behavior can be explained simply by plasticization effect of oil and the increasing flexibility
of polymer chains [36]. Tensile stress of silica-filled SBR/BR binary blends with different
oil contents showed a directly proportional relationship with LP. Tensile strength (σM),
tensile stress at 100% elongation (σ100%) and 200% elongation (σ200%) did not show any
consequential change after 5 phr oil addition to the blend; however, it decreased with
20 phr oil content. Considering low LP values of 20 phr oil content, it can be claimed that
presence of less bounded rubber structure and less rubber–filler interactions resulted in
low tensile strength. Similar tensile behavior of high TDAE content was observed in the
previous studies [32] and it can be explained by the dilution of the contact points between
polymer chains with the presence of oil, which causes less resistance of filler aggregates and
materials to the deformation. Shore A hardness showed a decreasing trend with increasing
oil content. Due to the mechanical property analysis, TDAE addition time did not cause a
remarkable difference in mechanical properties of materials and any structural relation to
the mechanical properties could not be stated for 5 phr oil added blends.

4. Practical Applications and Future Research Perspectives

The silica-filled SBR/BR blends are mainly used for treads of passenger car tires [2].
The replacement of the carbon black by silica provides the improvement in rolling resis-
tance and wet grip; however, the biggest challenge of these systems are the flocculation
of silica and the compatibility of the fillers with polymers [1]. As in this study, high filler
concentrations are used in commercial applications and modified SBR types, coupling
agents and processing aids are used to overcome the problem of low compatibility. In
large scale productions, high concentrations of plasticizers are used to reduce the viscosity
and the energy cost, which complicate the system more. Complexity in tire formulations
due to the presence of high amount of filler and processing aids, cause some difficulties
and limitations in characterization techniques. Development of new qualitative and quan-
titative characterization methods for these systems is still open to research. In addition,
development of ecofriendly plasticizer alternatives and their optimum usage to achieve a
better compatibility and energy and cost effectiveness can be another research direction.
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5. Conclusions

The influence of TDAE oil content and its addition time on rubber–filler interactions in
silica-filled SBR/BR blends were investigated in this study. It was found that the addition
time of TDAE influences the development of bounded rubber structure and the interfacial
interactions at short time of mixing. Presence of 5 phr oil, especially its addition together
with silica at 1.5 min of mixing, provided advantages to achieve less flocculation and
more interactions between silica and SBR/BR matrices. Increase of oil content resulted in
delayed rubber layer formation and reduction in its maximum value which indicates less
rubber–filler interactions. Likewise, filler networking was observed stronger due to the
dynamic mechanical analysis of binary vulcanizates. The presence of oil and its increasing
concentration in blends enhanced elongation at break, while Shore A hardness and tensile
strength decreased.
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