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Abstract

Background

Thrombocytopenia is a major side-effect of cytotoxic cancer therapies. The aim of precision

medicine is to develop therapy modifications accounting for the individual’s risk.

Methodology/Principle findings

To solve this task, we develop an individualized bio-mechanistic model of the dynamics of

bone marrow thrombopoiesis, circulating platelets and therapy effects thereon. Comprehen-

sive biological knowledge regarding cell differentiation, amplification, apoptosis rates, transi-

tion times and corresponding regulations are translated into ordinary differential equations.

A model of osteoblast/osteoclast interactions was incorporated to mechanistically describe

bone marrow support of quiescent cell stages. Thrombopoietin (TPO) as a major regulator

is explicitly modelled including pharmacokinetics and–dynamics of TPO injections. Effects

of cytotoxic drugs are modelled by transient depletions of proliferating cells.

To calibrate the model, we used population data from the literature and close-meshed

individual data of N = 135 high-grade non-Hodgkin’s lymphoma patients treated with CHOP-

like chemotherapies. To limit the number of free parameters, several parsimony assump-

tions were derived from biological data and tested via Likelihood methods. Heterogeneity of

patients was explained by a few model parameters. The over-fitting issue of individual

parameter estimation was successfully dealt with a virtual participation of each patient in

population-based experiments.

The model qualitatively and quantitatively explains a number of biological observations

such as the role of osteoblasts in explaining long-term toxic effects, megakaryocyte-medi-

ated feedback on stem cells, bi-phasic stimulation of thrombopoiesis by TPO, dynamics of

megakaryocyte ploidies and non-exponential platelet degradation. Almost all individual time

series could be described with high precision. We demonstrated how the model can be used

to provide predictions regarding individual therapy adaptations.

Conclusions

We propose a mechanistic thrombopoiesis model of unprecedented comprehensiveness in

both, biological mechanisms considered and experimental data sets explained. Our
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innovative method of parameter estimation allows robust determinations of individual

parameter settings facilitating the development of individual treatment adaptations during

chemotherapy.

Author summary

Chemotherapy is ubiquitously used to treat cancer diseases. Due to general toxicity of the

drugs, chemotherapy results in a number of side effects especially with respect to blood

formation. Here we study the loss of platelets during chemotherapy which is dose limiting

in many situations. However, this side-effect greatly varies between patients with respect

to both, severity and necessity of clinical countermeasures.We therefore developed a

mathematical model to predict the time course of platelets of patients under chemother-

apy and to propose possible treatment adaptations in cases of intolerable toxicity. The

model is based on available biological knowledge and data of platelet formation and thera-

peutic effects thereon. As a major result, we could describe individual time series data of

135 patients under chemotherapy. Conversely, the model can be used to make predictions

regarding alternative therapy schedules such as postponement of therapy or chemother-

apy dose reductions. Our model is intended to support clinical decision making on an

individual patient level.

Introduction

Reduced platelet counts, called thrombocytopenia, is a major dose-limiting side effect of many

dose-intense cancer chemotherapies [1,2]. Understanding thrombopoiesis during cytotoxic

chemotherapy is crucial for its amelioration by chemotherapy dose adjustments, therapy post-

ponement, platelet transfusion or growth factor applications such as thrombopoietin (TPO).

However, this is a non-trivial task since thrombocytopenia risk depends on several therapy-

based and individual factors such as dosing and timing of the cytotoxic drugs, application of

platelet concentrates, age, sex and individual chemosensitivity [1,3]. A major challenge of pre-

cision medicine is to take all of these factors into account for optimal risk management. Other-

wise, possibly small groups of patients with particularly worse outcome or side-effects impose

therapy constrains for large patient collectives. Due to the large number of factors influencing

therapy outcome and side-effects, we hypothesize that comprehensive models are required to

support the concept of precision medicine.

In the present paper, we construct a comprehensive biomathematical model of human

thrombopoiesis under chemotherapy, which allows prediction of time courses at an individual

level for the first time. Our model is based on an earlier proposed model of human thrombo-

poiesis under chemotherapy [4] constructed to explain median time courses of patients. We

call this model the ‘former model’ and propose a refinement here; based on the assumption of

heterogeneity of a few model parameters rather than mechanistic differences between patients.

Required additional model assumptions and corresponding adaptations of equations will be

presented and discussed in detail.

Some emphasis is placed on parametrizing the model on the basis of available time series

data of patients under therapy. We propose a Bayesian approach to include both, individual

data and population data into the model fitting. To avoid over-fitting, we successfully

addressed the problem of parameter identifiability, i.e. model selection is based on a generic,

data-driven tradeoff between parsimony and precision.

Individualized model of thrombopoiesis
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Individualized model predictions require a detailed clinical data base. We used data of

patients treated in the framework of randomized clinical trials of the German non-Hodgkin’s

lymphoma study group guaranteeing high quality of individual patient data. These comprise

therapy adaptations, supportive treatments, and most importantly, closely meshed time series

of blood counts. Hence, we do not only consider heterogeneity in individual model parameters

but also heterogeneity of treatment for the first time.

Materials and methods

Ethics statement

Ethics approval and consent to participate: Data were obtained from studies of the German

High-Grade Non-Hodgkin’s Lymphoma Study Group. All patients had given informed con-

sent and studieswere approved by responsible ethics committees and were carried out in

accordance with the principles of good clinical practice and the declaration of Helsinki. Details

on ethics committees and reference numbers can be found in the respective publications of the

studies used for our modelling [5,6].

The former model—Compartments and import regulatory feedbacks

The model proposed in the present paper is a modified and improved version of our previous

work [4], which we briefly summarize here. This ordinary differential equations (ODE) model

describes the dynamics of concatenated cell compartments of stem cells, colony-forming units

of megakaryocytes, megakaryocytes and platelets in spleen and circulation. It contains several

feedback loops where TPO is a major mediator. The model already considered the effect of

cytotoxic chemotherapy by assuming transient depletion of bone marrow cell compartments

after application. The principle structure is displayed in the figure in S1 Appendix. We briefly

present the major features of the model. Then, necessary adaptations are described in detail:

1. Bone marrow thrombopoiesis originates from proliferating pluripotent stem cells (model

compartment S), which commit to thrombopoietic lineage by differentiating into colony-

forming units of megakaryocytes (CFU-MK). These cells are still capable of cell divisions.

Examples are CD34+ precursors and promegakaryocytes, whose in vitro dynamics as well

as apoptotic reactions to chemotherapy were described in [7] and [8]. These cells are sum-

marized in model compartment CM.

2. In the former model, self-renewal of stem cells was represented by a probability p that a

stem cell stays in compartment S after division. With probability 1-p the cell enters CM.

Self-renewal is negatively regulated by the relative count of stem cells and positively regu-

lated by the relative number of differentiated cells representing the demand of mature cells.

3. CM differentiate to polyploid megakaryocytes (MKC). The former model does not distin-

guish between stages of MKC maturation, i.e. ploidy.

4. Platelet production rate was assumed to be proportional to the volume of megakaryocytes.

The mass is proportional to the number and ploidy of megakaryocytes.

5. Platelets are released from bone marrow compartment MKC to peripheral blood. Young

platelets (proplatelets) are preferentially sequestered in the spleen [9]. Platelets are age-

dependently released from the spleen to the circulation [10]. Platelets in circulation have

seven consecutive compartments (PLC) representing their aging.

6. The growth factor thrombopoietin (TPO) stimulates CM proliferation, increases the num-

ber of MKC endomitoses and accelerates MKC maturation.

Individualized model of thrombopoiesis
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7. TPO is actively consumed by MKC in bone marrow and platelets in blood resulting in a

negative feedback of the system. TPO is also cleared from the system via kidneys. TPO is

produced in the liver and the kidneys at constant rate [11–13].

8. Application of chemotherapeutic drugs induces a first order depletion of each bone marrow

cell stage for the duration of one day. The bone marrow damage is reversible. No long-last-

ing deterioration of hematopoiesis is assumed in the former model, specifically, the

dynamic parameters of the model are not affected by chemotherapy.

In our model, we also adopted the formalism developed in [14] regarding modelling of

delayed transitions between compartments. Briefly, this is achieved by introducing a number

of concatenated sub-compartments with first-order transitions mimicking a Gamma-distrib-

uted overall transition rate.

Revisions required for individualized modelling

Our former model correctly described median time courses of platelets of patients treated with

chemotherapy. Individual deviations from the standard therapy were neglected and heteroge-

neity of patient responses was not considered so far. To remove these restrictions, we present

an improved version of the model (Fig 1, description of model compartments, see Table 1).

This however required a number of adaptations of model hypotheses explained and motivated

in the following:

1. We revised the stem cell model according to recent experimental and theoretical results [15–

17]. In detail, we introduced a quiescent stem cells compartment. Its balance with the corre-

sponding proliferating compartment (active stem cells) is regulated by MKC. Thus, the for-

mer phenomenological feedback of differentiated cells on stem cells is now explicitly

modeled. We assume that higher MKC numbers increase the transition of active to quiescent

stem cells effectively limiting further production of megakaryocyte progenitors [18,19].

2. Osteoblasts maintain both, quiescent stem cells and quiescent megakaryocytes, and thus,

are necessary for their survival. For the first time, we consider osteoblasts as a capacity

parameter, i.e. higher osteoblast count implies a higher bone marrow capacity for both cell

types. Osteoblast dynamics are based on a complex autocrine and paracrine interaction

with osteoclasts. A simple model of this interaction was proposed by Komarova et al [20]

and is incorporated into our revised model.

3. Multi-cyclic chemotherapy induces not only a loss in proliferating bone marrow cells but

also in osteoblasts [21] and osteoclasts. This results in a long-term reduction of quiescent

stem cells and megakaryocytes, and with it, in cumulative toxicity of chemotherapy and a

delayed recovery.

4. We subdivided the compartment CM in order to model maturation.

5. We divided MKC into sub-compartments of different ploidies (from 2 to 128), which can

be either active or inactive.

6. The cytoplasm of megakaryocytes buds to proplatelets from which platelets are formed

[22–24]. We assume that MKC start emitting platelets if ploidy is greater than 4 and that

the total production is still proportional to megakaryocyte mass [25].

7. The effects of TPO on the regulation of CM and MKC were revised: TPO stimulates ampli-

fication of early CM, increases ploidy of MKC, activates quiescent MKC and suppresses

platelet formation.

Individualized model of thrombopoiesis
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Fig 1. Modified structure of the human cell-kinetic thrombopoiesis model. We present all model compartments (boxes) and cell or cytokine fluxes or actions

between them (arrows). Chemotherapy is modelled by a transient depletion of proliferating cell compartments. Syringes indicate possible injections. CM = colony

forming units of megakaryocytes, MK = megakaryocytes, TPO = thrombopoietin. TPO action is shown in blue, chemotherapy-induced damage is shown in red.

https://doi.org/10.1371/journal.pcbi.1006775.g001

Individualized model of thrombopoiesis
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8. We now consider external applications of peg-TPO by constructing and implementing a

corresponding pharmacokinetic (PK) / pharmacodynamics (PD) model.

9. Platelet degradation is now described by a more complex non-exponential mechanism in

accordance to Hanson and Slichter [26].

Model equations

In this section, we derive all model equations. Corresponding parameters, their values and

procedures for estimation are given in tables in S2 Appendix.

Chemotherapy model. Toxicity of chemotherapy plays a role in the majority of cell com-

partments. Therefore, we introduce corresponding model equations first. The former model

[4] assumed that chemotherapy applications result in a first order loss within the compart-

ments S, CM and MKC for the duration of 1 day. A later improvement of chemotherapy

modelling assumed a non-constant toxic effect with a peak at some time point after injection.

Toxic effects of multiple drug applications were added [4]. We adopt these principles in the

following. In our modeled scenarios (see below), four different drugs with relevant haemato-

toxic potential are considered, namely cyclophosphamide, doxorubicine, procarbazine and

etoposide. All cytotoxic drugs are assumed to affect the compartments S, CM, immature MKC

Table 1. (Description of model compartments). We describe the compartments of the model and their biological

meaning.

Compartment

name

Description

COB Osteoblast count

COC Osteoclast count

CS_act Active (proliferating) stem cells

Cs_dorm Dormant stem cells

CCM Compartment of megakaryocyte precursors, contains nCM sub-compartments {CCM,I}i. The

nCMe early compartments depend on TPO, the nCMl late compartments are TPO-independent

CMKC_act,PX Active megakaryocytes with ploidy X, X takes values from {2,4,8,16,32,64,128}

CMKC_dorm,PX Inactive (dormant) megakaryocytes with ploidy X, X takes values from {8,16,32}

CPP Compartment of proplatelets

CPLC Circulating platelets, contains n sub-compartments {CPLC,i} corresponding to age

CPLS The spleen platelets compartment, contains n sub-compartments {CPLS,i} corresponding to

age

Cl
PLC A compartment of labeled transfused circulating platelets, contains n age-compartments

{Cl
PLC;i}. This compartment was only introduced to explain the data of [26]. It is empty / not

required for all other scenarios and data sets

PL Sum of platelets from all circulating age-compartments

CTPO,endo Endogenous TPO

CTPO,peg Pegylated TPO. Consists of 3 sub-compartments: injection compartment CTPO,peg,0, lymphatic

absorption compartment CTPO,peg,1 and compartment CTPO,peg,2 representing TPO in

circulation.

DelTPO,rel Delay compartment of TPO action on MKCs

DelTPO,rel,2
5 A longer delay was necessary for activation of dormant MKC of ploidy 32

OSTloss Long-term cytotoxic effect on osteoblasts / osteoclasts

Ccyclo,1 Concentration of cyclophosphamide in the first compartment (blood)

Cdoxo,i Concentration of doxorubicine in the i-th compartment

Cetop,i Concentration of etoposide in the i-th compartment

Cprocar,1 Concentration of procarbazine in the first compartment (blood)

Individualized model of thrombopoiesis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006775 March 6, 2019 6 / 32

https://doi.org/10.1371/journal.pcbi.1006775


(ploidies 2–4), mature MKC (ploidies 8–128) and osteoblasts / osteoclasts but with different

strength. Consequently, the chemotherapy toxicity functions CY of the drug X and compart-

ment Y read as follows:

CY ¼
P

X;YpdX;Y � CX;1; ð1Þ

where CX,1 represents the concentrations of corresponding drugs in the central (first) compart-

ment considering pharmacokinetic models proposed for the drugs (see S3 Appendix for corre-

sponding equations). Parameters pdX,Y represent the contribution of the respective drug X to

the toxicity function of Y-th compartment (pharmacodynamic effect). We assumed the same

toxicity function for osteoblasts and osteoclasts indicating it with a subscript OST. We made a

number of parsimony assumptions to reduce the number of chemotherapy-related parameters

(see S4 Appendix).

Regulatory mechanisms. Amplification rates and transit times are regulated in a specified

range in dependence on TPO. Total amplification is split to the respective amplifications of

influx and efflux as proposed in the former model (see S5 Appendix). We used the following

(modified) sigmoidal Z-functions for that purpose:

Z X; ymin; ynor; ymax; bY ; Limsig

� �
¼ ymax � ymax � yminð Þ �

ymax � ynor
ymax � ymin

� �TranstanhðXbY ;LimsigÞ

; ð2Þ

Transtanh X; Limsig

� �
¼ exp Limsig � tanh

lnðXÞ
Limsig

 ! !

; ð3Þ

where X corresponds to TPO levels, ymin, ynor, ymax, to minimal, normal (steady-state) and

maximal values of the respective quantity Y and by to the steepness of the regulatory function.

This parameter requires restriction to avoid numerical issues. Therefore, we introduce the aux-

iliary function Transtanh which behaves like an identity function for X close to one. See S6

Appendix for a more detailed discussion of the properties of this class of sigmoid functions.

Cell-kinetic model. In this section, we establish the ODE system describing the dynamics

of bone marrow thrombopoiesis and platelets. Initial values for all state variables are set to the

corresponding steady-state values derived in S10 Appendix.

Osteoblasts, osteoclasts and capacity of bone marrow. Since osteoblasts are known to

support inactive bone marrow cells [21,27], we assume that the relative osteoblast count Crel
OB

determines the capacity of bone marrow to support different types of inactive cells. Likewise,

this capacity limits influxes of cells from active compartments. Dormant cells die if the capacity

is reduced.

To model the dynamics of osteoblasts, we adopt a model of Komarova et al [20] describing

the interaction of osteoblasts and osteoclasts. The model does not consider proliferating pre-

cursors of osteoblasts and osteoclasts, which are mainly affected by cytotoxic drugs. To avoid

further model complexity, we assume a delayed loss of osteoblasts and osteoclasts due to che-

motherapy with delay parameter DC. The delay is in the order of a few days. We further

assume that the chemotherapy effect Osteoloss is the same for both cell types:

d
dt

COC ¼ a1 � C
0:5

OC � C
� 0:5

OB � b1 � COC � Osteoloss � COC

d
dt

COB ¼ a2 � COC � b2 � COB � Osteoloss � COB

d
dt

Osteoloss ¼ COsteo � DC � Osteoloss

ð4Þ

Individualized model of thrombopoiesis
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with Osteoloss(0) = 0. For further simplification and due to lack of data, we assumed that the

toxicity function of precursors of osteoblasts and osteoclasts is proportional to that of the pro-

liferating precursors CM, i.e. COsteo = cPD,OsteoCCM.

The relative osteoblast count is assumed to correspond to the bone-marrow capacity of dor-

mant cells:

Capdor ¼ Crel
OB �

COB

COB nor
: ð5Þ

Stem cell compartment. The stem cell compartment is divided into two sub-compart-

ments: quiescent (Q) and actively proliferating stem cells (S). This is based on a well-estab-

lished model of stem cell regulation which was proposed a decade ago [16]. We assume that

quiescent cells are not affected by chemotherapy [15,16].

Recent studies [18,19] showed that megakaryocytes stimulate quiescence of stem cells and

are essential for their maintenance. Thus, we assume that megakaryocytes promote the transi-

tion from active to quiescent stem cell compartment. A bone marrow capacity Capdor is now

included into the equations limiting this transition:

d
dt

CS act ¼ 2p � 1ð Þ �
CSact

Tcycle
þ kact � CSdorm

� Capdor � kdorm � CSact
� CS � CSact

d
dt

CS dorm ¼ Capdor � kdorm � CS act � kact þ dOsteoloss
� Osteoloss � C

rel
OB

� �
� CSdorm

ð6Þ

kdorm ¼ kdorm;nor � C
rel
TTBðtÞ ð7Þ

Crel
TTB ¼

P7

i¼1
CMKC act;2i þ

P5

i¼3
CMKC dorm;2i

P10

i¼1
Cnor

MKC act;2i þ
P5

i¼3
Cnor

MKC dorm;2i
ð8Þ

Crel
TTB serves as a mediator of the MKC feedback on stem cells. The megakaryocytes sub-

compartments in (8) are explained in the related section below (see Eqs (14–19)). The parame-

ter kdorm represents the MKC-regulated transition of active cells to the dormant compartment.

As long as the number of MKCs is larger than in steady-state, there is an increased flux of

active towards dormant cells. The reverse transition rate kact is assumed to be MKC- indepen-

dent. Actually, megakaryocytes can control both directions, but the mechanism is less clear

[18]. Moreover, from the modelling perspective, it can hardly be distinguished whether one or

both directions are affected. An attempt to introduce the megakaryocytes-based control in

both directions led to overfitting during parameters estimations. An attempt to model kdorm as

a sigmoid function of Crel
TTB also leads to overfitting.

We assume that dormant stem cells die due to chemotherapy-induced loss of osteoblasts

with rate dOsteoloss
� Osteoloss � Crel

OB. However, if dOsteoloss
is small, chemotherapy mobilizes stem

cells and megakaryocytes due to reduced capacity Capdor in accordance with the observation

that small doses of cytotoxic drugs can activate stem cells.

Individualized model of thrombopoiesis
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Compared to our former model, we simplified the regulation of self-renewal probability p
which now depends only on the relative count of stem cells:

p ¼ pd � tanh
1

ðCrel
S actðtÞÞ

bS act
� ðCrel

S actðtÞÞ
bS act

 !

þ 0:5

Crel
S act ¼

CS act

Cnor
S act

: ð9Þ

It is assumed that pδ = pnor − pmin = pmax − pnor = 0.1, according to. The term in parenthesis

of (9) is a decreasing function of Crel
Sact

taking values in the interval (−1,1) for Crel
S ðtÞ 2

ð0;1Þ. Thus, in analogy to the former model, p is regulated in between [0.15,0.85] and equals

0.5 in steady state. The parameter bS_act is a new sensitivity parameter, which we use for fine-

tuning of this regulatory feedback.

According to [28] the typical cell cycle time of eukaryotic cell is about 24 hours. This also

applies for the human situation where the cell cycle is close to the circadian cycle [29]. Thus,

we assumed that Tcycle = 24 hours for active stem cells. According to animal data [17], stem cell

renewal takes 3–30 weeks on average (or once per 21–210 days). Since cell cycle lasts one day,

it follows that there are 20 to 209 dormant stem cells per active cell. We derive the following

steady state condition from (6):

CSact

CSdorm

¼
kdorm
kact
� rkdormact

2 20; 209½ �: ð10Þ

We estimate kdorm and rkdorm_act parameters and derive kact from this relation, i.e. the

above-mentioned considerations restrict the range of the ratio of kdorm and kact.
CM compartment. According to observations of megakaryocytes and its progenitors, we

assume that cells in CM cycle within a fixed time of 15 hours [22–24]. We assume that TPO

regulates the number of cell divisions in CM compartment. For this purpose, we divided the

compartment into nCM sub-compartments. The transit time TCM is the logarithm dualis of the

proliferation (amplification) ACM (see eq. (S.7.3) in the S7 Appendix). The latter increases with

TPO levels:

d
dt

CCM;i ¼ Ain
CM;i � C

out
X;i �

CCM;i

TCM;i
� CCM � CCM;i; i ¼ 1; � � � ; nCM ð11Þ

Cout
X;1 ¼ Cout

S ¼ 2 � 1 � pð Þ �
CS

Tcycle
; Cout

X;i ¼ Cout
CM;i� 1

¼ Aout
CM;i� 1

�
CCM;i� 1

TCM;i� 1

; i ¼ 2; � � � ; nCM: ð12Þ

It was observed by Harker et al. [30] that injection of pegylated TPO into healthy subjects

results in delayed peaks in the count of megakaryocytes and platelets (both at day 11 after peg-

TPO). Moreover, an artificially induced thrombocytopenia increases megakaryocytes ploidy in

rats [13]. Megakaryocyte size and ploidy rise to its maximum at days 2–4. In contrast, mega-

karyocyte number is highest after 10 days. In other words, endomitoses of megakaryocytes are

stimulated immediately by TPO increase while numbers increase with some delay. To explain

these observations, we assume that TPO stimulates proliferation of early CM sub-compart-

ments only. We distinguish between early and late CM sub-compartments for that purpose:

nCM ¼ ne
CM þ nl

CM: ð13Þ

Only in the ne
CM early sub-compartments, the amplification depends on TPO.

Individualized model of thrombopoiesis
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Since we assume fixed cell cycle times, the transit time for the sub-compartments of CM as

well as their amplifications are calculated from the number of cell divisions nCM. Detailed

equations can be found in S7 Appendix.

MKC compartment. We also improved our model of megakaryocyte dynamics. We pres-

ent the underlying biological observations in the following and explain how they are trans-

formed into model equations. According to Santillan et al. [25] we assume that

megakaryocytes of different ploidies mature in parallel to platelets. Most of the following

hypotheses regarding this process are derived from the data of Harker et al. [30] in which

dynamics of megakaryocyte counts as well as dynamics of ploidy frequency distributions after

injection of pegylated TPO were studied. In this study, the overall TPO peak occurred at day 2

and drops to endogenous TPO levels at days 7–9 after injection. We summarize the main

observations:

1. The authors detected ploidy frequencies ranging from 1 to 64 in steady state. A few mega-

karyocytes of ploidy 128 are detected at day 7 after TPO injection. All observed ploidies are

powers of 2.

2. Megakaryocyte count increases slightly until day 7, doubles until day 11 and decreases

slightly below initial values until day 17.

3. Ploidies performed differently after TPO injection:

a. Megakaryocytes of ploidies 2 and 4 have similar frequencies and dynamics. Their fre-

quencies reach peak levels at day 11 (8–11%) and return to slightly elevated frequencies

at day 17.

b. Ploidy 8 shows similar dynamics with a more prominent peak at day 11 and considerably

increased frequency (from 19% at steady state to 32% at the peak).

c. Megakaryocytes of ploidies 16 and 32 are dominant with baseline levels of 47% and 21%,

respectively. Their dynamics is opposite to the other ploidies: These ploidies almost

halves after TPO stimulation with minima at days 7 and 11, respectively. Percentages

returned to steady-state values at day 17.

d. Megakaryocytes of ploidy 64 are rare. Frequency increases from 0.6% to 3.5% at day 7

and drops below normal levels at day 11. Ploidy 128 is also rare, achieving a value of

0.22% at day 7. Since platelet production is roughly proportional to ploidy of megakar-

yocytes, even low frequencies of ploidies 64 and 128 contribute significantly to thrombo-

poiesis. Thus, these ploidies are also considered in our model.

4. Megakaryocyte count is strongly increased by TPO and doubles at day 11. Counts drop to

values slightly below normal at day 17.

5. Platelet counts decrease slightly during the first three days after TPO injection. It starts to

exceed baseline level after day 5 when the TPO level almost returned to its initial value.

Then platelet count is increased for several weeks.

There is an additional morphologically identifiable proplatelet stage [31], which consists of

platelets forming from the cytoplasm of megakaryocytes. This process was observed in real

time and has shown to be reversible to some extent [22–24]. These observations translate into

the following mechanistic model assumptions:

1. According to direct MKC observations in vitro [22–24], megakaryocytes endomitosis and

blast mitosis times are estimated to be about 15 hours irrespective of MKC ploidies. Thus,

Individualized model of thrombopoiesis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006775 March 6, 2019 10 / 32

https://doi.org/10.1371/journal.pcbi.1006775


the transit times of ploidy states are assumed to be equal. Certain MKC stop endomitosis

and die during 1.5–2 days.

2. Since frequencies of megakaryocytes of ploidies 8, 16 and 32 are considerably higher than

those of the other ploidies (point 3c from observation summary above), average endomito-

sis cycles are assumed to be slower for ploidies 8, 16 and 32. To model this phenomenon,

we assume that megakaryocytes can be either in active state undergoing endomitoses or in

passive (dormant) state, in which they cannot live without bone marrow support for more

than 1.5–2 days (in vitro conditions). Exchange rates between active and dormant states

determine their relative frequencies. Bone marrow support is modeled in analogy to the

stem cell compartment, i.e. via osteoblast support.

3. Cells from active MKC sub-compartments of ploidies 8, 16 and 32 have 3 possible fates:

a. move to the proplatelet compartment with respective probabilities pi,1

b. move to the next-ploidy compartment with respective probabilities (1-pi,1)� pi,2

c. move to the corresponding inactive compartment with respective probabilities (1-pi,1)�

(1-pi,2), i = 8, 16, 32. We fixed the transit time of this process Tdorm,MKC to 12h due to

lack of detailed biological data.

Cells from the (active) MKC sub-compartment of ploidy 64 have two possible fates:

a. move to the next-ploidy compartment with probability 1-p64,1 which exceeds zero only if

the TPO level is elevated.

b. move to the proplatelet compartment with probability p64,1.

4. Cells of inactive compartments of ploidies 8–32 can only return to active compartments of

the same ploidy or die due to lack of bone marrow support.

5. TPO-induced decrease in relative frequencies of megakaryocytes of ploidies 16 and 32 can

be explained by mobilization of dormant megakaryocytes and their subsequent elimination

during proplatelet formation. This TPO property is in accordance to the earlier assumption

that the megakaryocyte transit time is negatively regulated by TPO [32].

6. In addition to the above mentioned 10 sub-compartments of active and dormant megakar-

yocytes, we model the proplatelet sub-compartment CPP with short transit time TPP [22–

24]. Since dynamics of frequencies of megakaryocytes of ploidies 2 and 4 are similar and

since their frequencies are much lower than those of ploidies 8–32, we assume that these

megakaryocytes have no dormant state and cannot form proplatelets.

7. Since platelet counts drop immediately after TPO injection, we hypothesize that TPO stim-

ulation increases probabilities of endomitoses at the expense of proplatelet formation. This

regulation is indirectly supported by the above mentioned observation that proplatelet for-

mation is reversible.

8. We introduce a time delay of TPO action on MKC development in analogy to delayed

G-CSF action in our granulopoiesis models [33]. The delay is modelled by a lag compart-

ment DelTPO,rel with first order transition. The efflux of this compartment is the delayed

TPO action, which serves as the argument of our regulatory Z-functions.

9. Chemotherapy is assumed to affect active MKCs but not proplatelets. Chemotherapy affects

dormant MKC indirectly through elimination of supporting osteoblasts as in the case with

quiescent stem cells.
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According to these assumptions, the ODEs for the 10 MKC sub-compartments and 1 pro-

platelet compartment are as follows:

d
dt

CMKC;act;P2 ¼ Aout
CM;nCM

�
CCM;nCM

TCM;nCM

�
CMKC;act;P2

Tendo
� CMKCimm � CMKC;act;P2 ð14Þ

d
dt

CMKC;act;P4 ¼
CMKC;act;P2

Tendo
�

CMKC;act;P4

Tendo
� CMKCimm � CMKC;act;P4: ð15Þ

For k = 3, 4, 5 we obtain:

d
dt

CMKC;act;P2k ¼
p2k� 1 ;2 � ð1 � p2k� 1 ;1Þ

Tendo
� CMKC;act;P2k� 1þkrevdorm ;2k � CMKC;dorm;P2k �

p2k ;2 � ð1 � p2k;1Þ

Tendo
þ

p2k;1

TPP
þ kdorm;2k þCMKC

� �

� CMKC;act;P2k

ð16Þ

d
dt

CMKC;dorm;P2k ¼ kdorm;2k � CMKC;act;P2k �

ðkrevdorm ;2k � dOsteoloss
� Osteoloss � Crel

OBÞ � CMKC;dorm;P2k

: ð17Þ

For the case of k = 3, the term p4,2 � (1-p4,1) in (16) equals to 1, since we assume that MKC

of ploidy 4 can move neither to dormant nor to proplatelet compartments. In complete anal-

ogy to dormant stem cells, we assume, that dormant MKC die, due to elimination of support-

ing adjacent osteoblasts, with the corresponding death rate dOsteoloss
� Osteoloss � Crel

OB.

d
dt

CMKC;act;P64 ¼
p32;2 � ð1 � p32;1Þ

Tendo
� CMKC;act;P32 �

ð1 � p64;1Þ

Tendo
þ

p64;1

TPP
þΨMKC

� �

� CMKC;act;P64 ð18Þ

d
dt

CMKC;act;P128 ¼
ð1 � p64;1Þ

Tendo
� CMKC;act;P64 �

1

TPP
þCMKC

� �

� CMKC;act;P128: ð19Þ

In S8 Appendix, the dependencies of probabilities p2k,1 for k = 3,4,5,6 on TPO are described

in detail.

The transit rates from inactive to active MKC sub-compartments are given by:

kdorm;2k ¼
ð1 � p2k;1Þ � ð1 � p2k ;2Þ

Tdorm;MKC
� Capdor; k ¼ 3; 4; 5 ð20Þ

where Capdor is defined in (5). For the transit rates from the active to the inactive MKC sub-

compartments (only valid for k = 3, 4, 5) we assume an indirect proportionality to the bone

marrow support, i.e.

krevdorm;2k ¼
1

Capdor
� ZðDelTPO;rel;2k ; k

min
revdorm ;2k

; knorrevdorm;2k
; kmax

revdorm;2k
; brevdorm;2k

; LimsigÞ ð21Þ

where transit rates are the reverse of transit times:

knorrev dorm;2k ¼
1

Tnor
rev dorm;2k

; k ¼ 3; 4; 5: ð22Þ

Several parsimony assumptions were made for the MKC compartment to reduce the num-

ber of free parameters (see S4 Appendix for details). A longer delay for TPO induced activation
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of MKC of ploidy 32 is assumed (DelTPO;rel;2k , k = 5 as explained in S8 Appendix). For k = 3,4,

DelTPO;rel;2k is equal to DelTPO,rel.

Proplatelets compartment. All active MKC sub-compartments of ploidies 8–128 contrib-

ute to the proplatelet compartment in proportion to their ploidy. Proplatelets are then released

to circulation:

d
dt

CPP ¼
1

TPP
�
P7

k¼3
ð2k� 1 � CMKC;act;P2kÞ �

CPP

TPP;
ð23Þ

where TPP is the transit time of the proplatelet compartment.

The efflux of proplatelets to the circulating platelet compartment is:

Cout
PP ¼ nptpcu �

CPP

TPP
: ð24Þ

The parameter nptpcu is the number of platelets produced per ploidy unit of megakaryocytes

(i.e. per diploid chromosome set). It is roughly estimated that each megakaryocyte gives rise to

about 400–8000 platelets on average [34]. Since modal megakaryocyte is of ploidy 16 in steady

state [30], we estimate nptpcu to be in between 125 and 1000.

Endogenous and pegylated TPO. We now present our model assumptions and equations

for the production and degradation of endogenous TPO, pharmacokinetics of pegylated TPO

applications and corresponding effects on bone marrow thrombopoiesis:

1. In the previous model [4], only circulating platelets and MKC are supposed to consume

TPO. Here we assume also that spleen platelets consume TPO.

2. Pegylated TPO is applied to prevent thrombocytopenia. Polyethylene glycol (PEG) polymer

chains are attached covalently to TPO. PEG masks TPO for the host’s immune system, pre-

venting serious immune reactions occasionally caused by pharmaceutical TPO [35,36].

a. Because of this modification, pegylated TPO could have a longer life span compared to

endogenous TPO as well as a modified efficacy. However, our parsimony analysis

revealed that the same transit time and PD effects can be assumed as for endogenous

TPO.

b. We describe pegylated TPO dynamics after SC (subcutaneous) administration by two

delay compartments in order to fit the shape of blood TPO dynamics after injection

[30]. Fig 2 shows the assumed absorption model.

Based on these assumptions, we now construct the corresponding model equations. Sub-

scripts peg and endo were introduced in the following to describe pegylated and endogenous

TPO compartments.

Dynamics of endogenous and pegylated TPO. Pegylated TPO is assumed to be injected

into the subcutaneous tissue. The absorption is modelled by two transit compartments CTPO,

peg0 and CTPO,peg1 where CTPO,peg0 represents the compartment in which the drug is injected.

We assume that a fraction FrTPO,dir of TPO directly enters the central compartment due to the

force of the injection:

d
dt

CTPO;peg0 ¼ � qTPO � ð1 � FrTPO;dirÞ � CTPO;peg0

d
dt

CTPO;peg1 ¼ qTPO � 1 � FrTPO;dir
� �

� CTPO;peg0 � qTPO � CTPO;peg1

Inj ¼ qTPO � FrTPO;dir � CTPO;peg0 þ qTPO � CTPO;peg1

: ð25Þ
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The parameter qTPO describes the flux rate of pegylated TPO from compartment to com-

partment. The last term of the second equation describes the influx into the central pegylated

compartment CTPO,peg2 in which the drug is biologically active regarding thrombopoiesis. Inj is

the influx resulting from TPO injections into the central compartment. The overall relative

TPO concentration is given as:

Crel
TPO ¼

CTPO;endo þ CTPO;peg2

Cnor
TPO

¼ Crel
TPO;end þ Crel

TPO;peg2
: ð26Þ

TPO dynamics in the central compartment depends on endogenous TPO synthesis (Synth),

TPO influx (Inj) from injections and TPO degradation (Degr).
We assume no difference between degradation rates of normal and pegylated TPO. Thus,

TPO degradation is a function of total relative TPO concentration and degradation rates of rel-

ative endogenous and pegylated relative TPO concentrations are proportional to their respec-

tive fractions:

d
dt

Crel
TPO;end ¼

Synth
Cnor

TPO
�

CTPO;endo

CTPO;endo þ CTPO;peg2

� Degr Crel
TPO

� �

d
dt

Crel
TPO;peg2

¼
Inj
Cnor

TPO
�

CTPO;peg2

CTPO;endo þ CTPO;peg2

� Degr Crel
TPO

� �
: ð27Þ

According to Scholz et al., synthesis of TPO is constant with rate α and an unspecific degra-

dation with rate 1/TTPO is assumed. The specific, receptor-mediated degradation is based on a

Michaelis-Menten kinetic. Specific degradation is saturated regarding TPO and linear regard-

ing relative platelets and megakaryocytes counts:

d
dt

Crel
TPO;end ¼ qTPO �

CTPO;peg1

Cnor
TPO

þ a �
Crel

TPO

TTPO
� ðwPLC �

Pn
i¼1

CPLCi
þ
P7

k¼1
ðwMKC;k � CMKC;2kÞ þ wPP

� PPÞ �
Crel

TPO

1þ km;TPO � Crel
TPO

: ð28Þ

Fig 2. Absorption model of pegylated TPO injected as bolus subcutaneously. A fraction FrTPO,dir of the injection reaches the

circulation directly. The rest of an influx of subcutaneously injected TPO is delayed by two compartments.

https://doi.org/10.1371/journal.pcbi.1006775.g002
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A parameter km,TPO represents the saturation constant of the specific elimination regarding

TPO concentration. wPLC and wMKC,k, wPP are the maximum specific elimination rates by

platelets, megakaryocytes of ploidies 2k, k = 1,. . .128 and proplatelets, respectively. We assume

equal TPO consumption by active and dormant megakaryocytes. Relations between corre-

sponding eliminations are derived based on the receptor densities of platelets and megakaryo-

cytes (see S9 Appendix).

Considering Eq (28) in steady-state, i.e. Crel
TPO ¼ 1 yields:

a ¼
1

TTPO
þ
ðwPLC �

Pn
i¼1

Cnor
PLCi
þ
P7

k¼1
ðwMKC;k � Cnor

MKC;2kÞ þ wPP � PPnorÞ

ð1þ km;TPOÞ
: ð29Þ

Thus, the constant production is not a free parameter but given by the steady-state condi-

tion and other parameters.

Platelet compartments. The former model assumed that young platelets are preferentially

sequestered in the spleen. They were age-dependently released to the circulation and were

eventually degraded. These mechanisms are preserved in the present model. The compart-

ments of spleen and circulating platelets are subdivided into n age compartments. The former

model also assumed that platelet survival in circulation is approximately Gamma-distributed

[37]. SR Hanson and SJ Slichter [26] studied platelet kinetics in patients with injured bone

marrow function using platelet labeling. They observed that patients with thrombocytopenia

have faster platelet turnover. Overestimation of the platelet levels occurs when a classical expo-

nential decay is assumed. Therefore, a small constant consumption of platelets for vessel sup-

port was postulated [26]. A mathematical model of platelet survival based on these

observations was later developed by another group [38]. This model assumed constant con-

sumption by the blood system combined with linear loss and quadratic loss due to the capacity

of the system. We adopted this model and combined it with our cell-kinetic model. It revealed

that the quadratic loss term is badly identifiable and can be neglected. The constant elimina-

tion E is problematic for low platelet levels since it can result in negative ODE solutions. Con-

sequently, we replaced it by a quasi-constant sigmoid function (i.e. a sigmoid function with a

small range)
ks�Circp

Circpþhps
, where Circ is the sum of all circulating platelet compartments, ks is the

maximum of the quasi-constant term and hs is a platelet count corresponding to the half-maxi-

mal quasi-constant consumption. The power p is assumed to be larger than 1. Thus the quasi-

constant consumption term is close to a constant for large p and platelet counts much greater

than hs. For simplicity and due to a lack of data, we assume that the consumption is indepen-

dent of the age of platelets, i.e. it is proportional to the relative content. Thus, for the i-th com-

partment we have the following quasi-constant elimination:

Ei Circð Þ ¼
CPLCi

Circ
ks � Circp

Circp þ hp
s
: ð30Þ

The linear term of the Hersh et al model roughly corresponds to transitions between the

age-related sub-compartments of platelets with a corresponding transit time Tsub
PL ¼

TPL
n , where

TPL is the overall transit time. Thus, the balance equations of the platelet compartments read as

follows (i = 1,. . .,n):

d
dt

CPLC1
¼ kcirc � C

out
PP �

CPLC1

Tsub
PL

þ kSC
1
� CPLS1

� E1 Circð Þ ð31Þ
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d
dt

CPLS1
¼ 1 � kcircð Þ � Cout

PP �
CPLS1

Tsub
PL

� kSC
1
� CPLS1

ð32Þ

d
dt

CPLCi
¼

CPLCi� 1 � CPLCi

Tsub
PL

þ kSCi � CPLSi
� Ei Circð Þ ð33Þ

d
dt

CPLSi
¼

CPLSi� 1 � CPLSi

Tsub
PL

� kSCi � CPLSi
; i ¼ 2; � � � ; n ð34Þ

We remind that Cout
PP is the efflux from the proplatelet compartment (24) while kcirc denotes

the percentage of newly formed platelets entering circulation rather than sequestration in the

spleen. The parameters kSCi denote transition of aged platelets from spleen to circulation and

are derived in S11 Appendix in complete analogy to our previous model [4]. All parameters of

the model are listed in the tables of S2 Appendix.

To model the labelling data of Hanson et al. [26], we temporarily introduced a compart-

ment of labeled platelets as shortly described in S12 Appendix. Patients with bone marrow

hypoplasia were now considered as patients with low steady-state platelet counts.

Clinical and biological data used for modelling

Simulation results of the model are compared with clinical data in order to verify the model

assumptions and to estimate parameter settings. Data were either taken from the literature or

are provided by the German non-Hodgkin’s lymphoma trial group (PI: Michael

Pfreundschuh). These data comprise individual therapy settings and time series data of

platelets.

Biological data

Here we briefly present the literature data used for our model development. Typically, only

averaged data are available.

Data of Harker et al [30]. Single doses of 3 μg/kg of pegylated TPO were injected subcuta-

neously into 16 healthy subjects. Total TPO concentrations and platelet counts were measured

daily between day 0 and day 28. MKC counts and percentages of MKC ploidies were deter-

mined at days 0, 7, 11 and 17 after TPO injection.

Data of Hanson and Slichter 1985 [26]. Autologous 51Cr-labeled platelets were transfused

to 16 normal subjects and 27 patients with stable, untreated thrombocytopenia secondary to

bone marrow failure. Platelet counts range between 12,000 and 70,000/μL. Dynamics of labeled

platelets were determined during 5 days after injection. Compared to normal subjects, platelet

life span was slightly reduced in patients with platelet counts in between 50,000 to 100,000/μL

but was markedly reduced for patients with platelet counts below 50,000/μL.

Data of Li et al [21]. Ten cancer patients received four chemotherapy cycles in median

(range 3–6 cycles). Their bone marrow niches have been examined before and after treatment.

The number of osteoblasts per bone surface was markedly reduced after chemotherapy.

Individual data of poly-chemotherapy-treated patients

Data of Engel et al [39]. Three patients with Hodgkin’s or aggressive non-Hodgkin lympho-

mas were considered in this study. Patients received intensified multi-cycle poly-chemothera-

pies. Close-meshed time series data of endogenous TPO and platelet counts were determined.
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All three patients showed clear long-term effects of the therapy:

1. Average platelet levels gradually decrease from cycle to cycle.

2. Average TPO levels increases from cycle to cycle.

3. Platelet decline in first cycle is clearly less severe than in subsequent cycles.

Data of NHL-B study [1,5,6]. The NHL-B study is a randomized clinical trial of elderly

patients with aggressive non-Hodgkin’s lymphoma. Patients were randomized to one of the

four arms 6xCHOP or 6xCHOEP with either 14 or 21 days of cycle duration. Schedules with

14 day cycle duration were supported by G-CSF injections. Thrombopenia was treated with

platelet transfusions, postponement of therapy or reduction in chemotherapy dose.

Close meshed time series data of blood cell counts are available for these patients as well as

individual information regarding the course of the therapy (i.e. individual risk factors, dosing

of drugs and growth factors, therapy delays, supportive care, outcome). We selected 135 from

1600 patients, whose platelets counts were measured during 4 or more cycles with at least 5

measurements per cycle to obtain sufficiently detailed individual time series data.

Model implementation and parameter estimation

Our ODE model (1–34) was implemented in Matlab and numerically solved with the 15s

solver [40,41]. Simulation settings of specific therapy scenarios are explained in S3 Appendix.

Parameter estimation is based on the optimization of the agreement of model and data as mea-

sured by fitness functions. Only a few parameters were assumed to differ between individuals

explaining patient heterogeneity. These parameters are determined by optimizing individual

fitness functions. In order to overcome the overfitting problem, each individual fitness func-

tion includes both, individual data as well as averaged data from the literature (called biological

data in the following). This is equivalent to a virtual participation of a patient in the literature

studies from which the data were retrieved. Details of the parameter estimation procedure and

measures to avoid model overfitting are explained in detail in S13 Appendix. We performed a

step-wise fitting process starting with Engel et al. data and including literature data. Finally,

individual time course of patients from the NHL-B study are fitted.

Steps of parameter estimation

We performed a stepwise fitting procedure to estimate the parameters of our model:

1. We first fitted available biological data and Engel et al. data simultaneously. Prior constrains

were imposed only on parameters rPL,0,nor and rTPO,nor,0 (see Table 1 in S13 Appendix) to

ensure that the distribution of initial values matches that of the steady state values. The fol-

lowing steps were performed:

a. We assume different parameter settings (inter-individual variability–IIV) for the three

patients considered in Engel et al. In particular, we initially assumed IIV for all parame-

ters. We performed a backward selection process by gradually dropping IIV assumptions

of parameters showing high uncertainty until minimum BIC was achieved. For model

parsimony, we optimized the more conservative BIC rather than AIC.

b. We performed parsimony analysis of parameter sets to reduce the number of free

parameters as much as possible. Parameters with very large relative error were fixed to

biologically meaningful values. We used BIC (Bayesian Information criterion) for the

choice of the parameter set for which patient heterogeneity is assumed. Parameters with

related biology and low identifiability were set to the same values (for example,
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chemotherapy PD effects of S and CM compartments, PD effects of cyclophosphamide

and doxorubicin, parameters of transition probabilities of MKC of ploidies 8, 16 and 32,

transit times from inactive to active MKC of ploidies 16 and 32) in analogy to other

models [42,43].

c. We re-estimated the remaining free parameters, in total, 22 parameters without patient

heterogeneity (population parameters) and 9 parameters (see Table 1 in S13 Appendix)

with assumed patient heterogeneity. Free parameters were selected by applying Bayesian

Information criterion.

2. To fit the individual data of the 135 patients of the NHL-B study, we used the population

and individual parameters estimated at step 1.c. The distributions of the individual parame-

ters serve as priors for the NHL-B patients. Since no TPO data are available for these

patients, the individual parameter of TPO steady-state rTPO,nor,0 is not required anymore to

fit these data. This results in a total of 8 parameters assumed to be heterogeneous.

All parameters are described in tables from S2 Appendix. Further details of the fitting pro-

cess can be found in S14 Appendix.

Results

The results section is organized as follows: We first present the simultaneous fits of Engel et al

and biological data and analyze their goodness of fits. We then compare parameter estimates

between scenarios and analyze their identifiability. After these initial fittings of literature data,

we proceed with the individual patient data of the NHL-B study. We modelled the individual

platelets dynamics including long-term follow up for a few selected patients developing strong

thrombocytopenia. Finally, we considered a number of possible individual therapy adaptations

and predict their thrombopoenic outcome to demonstrate the clinical utility of our model. All

parameter estimates are presented in S15 Appendix and S16 Appendix.

Comparison of model simulations and data of Engel et al, Harker et al,

Hanson et al and Li et al

Here, we present the agreement of our model with biological data and the individual patient

data of Engel et al. First, we consider the three patients studied in Engel et al. Comparisons of

model and data can be found in Fig 3. We observed a good agreement of the model with all

individual time series of TPO and platelets. In particular, the long-term platelet decrease

accompanied with stronger long-term TPO increase could be explained by the model.

During parameter fitting, it is assumed that these three patients virtually participated in the

study of Li et al. [21], which measured relative counts of osteoblast prior to and after chemo-

therapy. Results for the three patients are shown in Fig 4C. All patients are in agreement with

these data.

As described in the methods section, we assumed that the three patients (virtually) also

took part in the studies of Hanson et al and Harker et al. Results are shown in Fig 4A and 4B,

respectively. Our model successfully explains the non-exponential dynamics of platelet elimi-

nation observed in Hanson et al. As the initial platelet level becomes smaller, platelet degrada-

tion curve becomes more concave and the half-life reduced from 3.5–4.5 days to 2 days.

Patient 3 was estimated to have shorter transit time of platelets than normal patients, which

explains the rapid chemotherapy-induced oscillations.

In summary, all three individual parameter sets resulted in a good fit of the dynamics of

platelets count, total TPO and MKC ploidies for most of the data points from Harker et al
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study. Only counts of MKC ploidy 64 are slightly underestimated at day 7 and the total count

of MKC is slightly underestimated at day 11. However, since standard errors are large, almost

all simulations are within the 95% confidence interval of the average. Table 4 in S15 Appendix

shows a good agreement of data and the simulated steady state distributions of MKC of differ-

ent ploidies.

Identifiability of parameters and sensitivity analysis

Most of the parameters showed good identifiability. The estimated population and individual

parameters values and their relative standard errors are shown in Tables 1 and 2 in S15 Appen-

dix. In S17 Appendix, we present parameters with poorer identifiability. Situations in which

poor identifiability corresponds to correlated parameter estimates are summarized in Table 3 in

S15 Appendix. We present only the strongest of these correlations having respective absolute

values larger than 0.8. Procarbazine PD effect was unidentifiable, and thus, assumed to be zero.

We compared distributions of the individual parameter estimates of NHL-B with the corre-

sponding priors derived from Engel et al. No significant differences were detected (see S18

Appendix).

Comparison of individual parameter estimates

Here we discuss the parameters assumed to be heterogeneous between patients (with IIV) and

compare corresponding estimates for the three patients of Engel et al. A total of 9 parameters

Fig 3. Fitting of platelets and TPO dynamics of three patients from Engel et al study Engel et al study with our

newly developed biomathematical model of thrombopoiesis. Patient 1 treated with CHOEP-21, patient 2 treated

with BEACOPP-21, patient treated with BEACOPP-14.

https://doi.org/10.1371/journal.pcbi.1006775.g003
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were assumed to express IIV. Of those, two parameters are related to chemotherapy namely

pdcyclo (toxicity of cyclophosphamide), and dOsteoloss
(elimination rate of dormant stem cells and

megakaryocytes due to loss of supporting osteoblasts). pdcyclo is the only individual parameter

of a direct effect of chemotherapy on active precursors. Consequently, its value basically influ-

ences the depth of the nadir during the first treatment cycle. Patient 2 has the largest pdcyclo
value corresponding to the deepest platelet nadir at the first chemotherapy cycle.

Fig 4. Simulations of the virtual participation of the three patients from Engel et al in other studies a. Dynamics of labeled platelets transfused to patients with different

initial platelets counts from Hanson and Slichter study. The black horizontal line shows the half of the initial labeled platelet counts in Hanson et al. b. Dynamics of

TPO, platelets, total MK count as well as of MKC fractions of different ploidies after peg-TPO injection at day 0 from Harker et al study. c. Relative osteoblasts counts

after 3–6 chemotherapy cycles from Li et al study.

https://doi.org/10.1371/journal.pcbi.1006775.g004
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The parameter dOsteoloss
determines whether dormant cells are preferentially mobilized to the

respective active compartments (small values) or die (large values) when supporting osteo-

blasts are eliminated by chemotherapy. Activation of dormant stem cells and MKC contribute

to the delayed peak of platelets about 10 days after chemotherapy application. This peak is also

influenced by the strength of feedback, in particular by sensitivity parameter bS_act (self-

renewal probability of active stem cells) for which we also assume IIV.

All patients have small bS_act values indicating weak feedback on self-renewal of stem cells

resulting for example in the absence of the predicted increase in total megakaryocytes counts

during days 0–17 after a hypothetical stimulation with pegylated TPO (see agreement with

Harker data). However these average data have large standard deviation limiting their infor-

mative value.

Patient 1 has the largest value of bS_act as well as the smallest value of dOsteoloss
resulting in the

largest platelet peaks during recovery. Patient 3 has low recovery peaks due to the estimated

strong osteoblast reduction (large dOsteoloss
), large PD effect pdcyclo and smallest value for bS_act.

The above considerations show that a complex interplay between parameters pdcyclo, bS_act

and dOsteoloss
determines the depth of platelet nadirs, dynamics of platelet recoveries and severity

of cumulative toxicity during multicycle therapy.

Explanation of individual data from the NHL-B study

We simulated 135 patients of the NHL-B study separately, considering individual therapy

adaptations such as dose reduction, therapy postponement or application of platelet concen-

trates. Likewise, we determined individual parameter estimates of the subset of parameters for

which we assume patient heterogeneity. Ten parameters were assumed to show IIV for this

patient population. All population-based parameters determined in the previous fitting steps

were kept constant.

In Fig 5 we show the agreement of model and data for 9 selected individuals of the 135

patients. All other patients are presented in figures of S16 Appendix. We obtained a good

agreement for most of the patients. The individual parameter estimates are presented in the

Table 1 in S16 Appendix, their relative standard errors as well as residual errors are shown in

the Table 2 in S16 Appendix. No general overfitting was observed.

We observed inferior fitting results for a few patients with small initial toxicity (e.g. patient

numbers 2, 52 and 313). In these cases, platelet dynamics were often noisy, i.e. similar to

dynamics of healthy untreated patients from Schulthess et al study [44]. In two cases, unex-

pected jumps in platelet dynamics spoiled the fits (patients 1693, 1696). Errors within clinical

records such as missing information regarding platelet transfusions cannot be excluded in

these cases.

In Fig 6A, 6B and 6C we show how the resulting 135 individual parameter sets reproduce

the averaged data from Hanson et al, Harker et al and Li et al studies with a precision similar

to that of the three patients of Engel et al. Standard deviations of the simulated biological data

are often smaller than those of the observed data except for relative osteoblasts from Li et al

study, whose respective virtual fits are more variable than the observed ones.

Model application: Simulation of possible therapy adaptations of the sixth

chemotherapy cycle of CHOP-like chemotherapies and prediction of long-

term follow-up

We used our model to simulate possible effects of a shift of the last chemotherapy cycle for

patients, who developed significant thrombocytopenia at the late stages of the treatment. Fig
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7A, 7B, 7C and 7D show platelet dynamics corresponding to patients 15, 20, 677 and 1463

respectively. For all patients we simulated treatment shifts of -5 (an earlier start of the last

cycle), 0, 5, 10 days postponement, and finally, omission of the last cycle with subsequent tree-

months follow up. All simulations show that it takes nearly two-four months after the last

Fig 5. Individual model and data comparisons for nine patients from NHL-B study [1] receiving either CHO(E)P-14 or CHO(E)P-21. Strong inter-individual and

inter-cycle variability of responses are observed. The model is in good agreement with the data for almost all time points.

https://doi.org/10.1371/journal.pcbi.1006775.g005
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chemotherapy application to damp platelet oscillations sufficiently so that sever thrombopenia

grades 3 or 4 is no longer observed. Interestingly, therapy postponement or earlier starts did

not always result in ameliorated thrombopenia compared to the original schedule (patients 20,

677 and 1463). Sensitivity of patients regarding change of treatment schedule is predicted to be

highly variable from almost no effect (patient 677) to strong nadir differences and respective

thrombopenia grades (patients 15, 20 and 1463).

Discussion

Dose-intense cytotoxic chemotherapies improved the outcome of several cancer entities

[2,5,6] but is limited by the general toxicity of the drugs. However, this toxic response is highly

Fig 6. Distribution of virtual simulations (green) of 135 selected patients from NHL-B trial. a. Dynamics of labeled platelets transfused to patients with different

initial platelets counts from Hanson and Slichter study. The black horizontal line shows the half of the initial labeled platelet counts in Hanson et al. b. Dynamics of

TPO, platelets, total MK count as well as of MKC fractions of different ploidies after peg-TPO injection at day 0 from Harker et al study. c. Relative osteoblasts counts

after 3–6 chemotherapy cycles from Li et al study.

https://doi.org/10.1371/journal.pcbi.1006775.g006
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heterogeneous between patients so that general therapy constrains are caused by a possibly

small subset of patients with high risk. It is a major goal of precision medicine to identify these

patients early and to introduce chemotherapeutic regimen adapted to individual risks. Here

we study thrombocytopenia in the context of the treatment of aggressive non-Hodgkin’s lym-

phoma where it is frequently dose-limiting [1,3]. Current statistical risk models [1,3] have low

precision since even in the lowest risk groups a significant amount of patients develop high

toxicity, i.e. the statistical model cannot unambiguously identify the group of patients at high

Fig 7. Simulation of four different scenarios for the timing of the last chemotherapy cycle for four different patients of NHL-B. We simulated omission

of last cycle (green), application per protocol (dick blue), earlier application (red), 5 day postponement (magenta) and 10 day postponement (cyan).

Omission of last cycle always results in higher nadirs of subsequent oscillations. a. Patient 15 treated with CHOEP-21. Earlier application of last cycle results

in much stronger thrombopoenia; b. Patient 20 treated with CHOEP-21. Here, thrombopoenia increases with therapy postponement c. Patient 677 treated

with CHOEP-14. The patient shows low sensitivity regarding postponement of therapy d. CHOP-14 treated patient 1463. Earlier start of the next therapy

cycle does not influence nadir while treatment postponement increases thrombopenia from grade III to IV.

https://doi.org/10.1371/journal.pcbi.1006775.g007
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risk. Therefore, there is an urgent need to develop individualized mechanistic models of

thrombocytopenia, which not only can explain long-term effects of multi-cyclic poly-chemo-

therapy but can also update their predictions based on available patient data. This is a major

requirement for establishing model-based individual treatment adaptations such as individual-

ized supportive treatments by platelet transfusions or growth factor applications or by post-

ponement or dose-reduction of chemotherapy.

Several other complex mechanistic and semi-mechanistic models of animal and human

thrombopoiesis were proposed in the past [4,24,25,45–50]. So far, only a few of them include

chemotherapy applications [4,47,48] and only one of them assumes inter-individual variability

of parameters [47]. This model includes biologically well-established TPO-mediated feed-

backs, although without detailed description of dynamics of megakaryocytes of different ploi-

dies. Moreover, this model does not consider dynamics of the early precursors (blast and stem

cells) nor long-range effects of multi-cyclic chemotherapy.

A major goal of our model development is to allow model-based predictions regarding indi-

vidual therapy adaptations. To serve similar purposes in the case of granulopoiesis, a model-

based dose adaptation tool has been proposed earlier [51,52]. This tool is based on a simplistic

pharmacodynamical hematopoiesis model of Friberg and Karlsson [42,43] assuming inter-

individual variability of parameters. This model was applied to different hematopoietic cell

lines subjected to chemotherapy including thrombopoiesis [49,50]. The model of Friberg and

Karlsson assumes one proliferation compartment vulnerable to chemotherapy, three equal

transit compartments and one circulating compartment, imposing a single negative feedback

on the first compartment. This simplicity enables straightforward clinical data fitting for dif-

ferent hematopoiesis processes under chemotherapies. On the other hand, the oversimplifica-

tion could obscure the connection of individual model parameters with underlying biological

mechanisms such as TPO action on dynamics of maturating components CM and MKC. The

model ignores the fact that chemotherapy affects all replicating compartments. Known biologi-

cal feedback mechanisms of thrombopoiesis are not considered [32]. Moreover, the model is

typically applied to single clinical data sets without validation of the parameter settings on the

basis of other data. By our model proposal, we aim at improving this situation by building our

model on biologically plausible assumptions and for several clinical and biological data sets in

parallel.

To develop a reliable, comprehensive and individualized mechanistic model of thrombo-

poiesis under multi-cyclic poly-chemotherapy, we comprehensively revised our former model

[4]. We introduced new model compartments and feedbacks in order to describe features not

covered previously. The data on dynamics of megakaryocyte ploidy grades during TPO stimu-

lation [30] allowed us to model complex parallel maturation of platelets in a much more mech-

anistic way as has been done so far [25]. We introduced a dormant stem cells compartment

established earlier by agent-based models [15,16] but modelled here in a simpler ODE form.

We modelled osteoblast support of dormant stem cells and dormant megakaryocytes. For this

purpose, we integrated a mathematical model proposed by Komarova et al [20] describing the

interaction of osteoblasts and osteoclasts. Chemotherapy effects were added to this model.

This also allowed us to describe osteoblast dynamics during multi-cyclic chemotherapy mea-

sured by Li et al. [21]. Combined with an indirect elimination of dormant stem cells and

MKCs due to lack of support, this gives a mechanistic explanation of frequently observed

cumulative or late time toxicity which is not covered by statistical risk models [3]. We also

integrated a non- exponential model of platelet degradation proposed by Hersh et al. [38] and

revised it here.

We included a number of new biological evidence and considered additional experimental

data to improve our model. For this purpose, we established and applied an innovative way of
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parameter fitting for our individualized model. At this, available population data and individ-

ual time courses are combined by a Bayesian approach assuming that an individual virtually

participated in all experiments for which population data are available. This kind of simulta-

neous consideration of individual and biological (prior) data exploits all available information

in a more reliable and complete way than separate estimations of groups of parameters on lim-

ited data sets. A caveat of this approach is, however, that one needs to assume comparability of

patient collectives across different studies. Our approach is novel in the field since most of PK/

PD modelers do not use prior information from other studies but fit exclusively clinical data of

interest [42,49,50]. Heterogeneity is then addressed by mixed effects modeling [53] where

parameters estimation is based on likelihood maximization for the entire population. In this

case, assessment of algorithm’s convergence and overfitting are controlled exclusively for pop-

ulation parameters determining the distributions of individual parameters. Consequently,

mixed effects modeling derives individual parameter estimates as a by-product implying high

probability of insufficient fitting quality for a significant number of subjects. Moreover, pre-

assumptions on the parameter distributions could spoil individual fits as well. This limits the

usefulness of these models to develop individualized therapies. In contrast, our approach maxi-

mizes individual fitting precision without making any pre-assumptions on the underlying

parameter distributions. We controlled convergence of fitting algorithm and reported stan-

dard errors on the individual level. We believe that such an individualized control of goodness

of fit is much more appropriate for the purpose of individualized treatment management.

Our model has 102 parameters in total of which only 31 are estimated. Four parameters

were directly be taken from the Komarova model [20], 28 are fixed and 28 reduced through

parsimony assumptions, as described in the Table 4 of the S2 Appendix. We took 11 PK

parameters as well as structural assumptions for PK models of etoposide, cyclophosphamide,

doxorubicin and procarbazine from other studies [57,58] as described in S3 Appendix and

Table 7 of S2 Appendix. Most of the fixed or reduced parameters correspond to chemotherapy

effects or behavior of megakaryocytes of different ploidies. This can be explained by the lack of

detailed data, e.g. regarding relative cytotoxic contribution of the chemotherapy drugs applied.

To improve this situation, separate as well as joint individualized in-vitro studies of cytotoxic

effects of cyclophosphamide, doxorubicine, etoposide and procarbazine would be helpful such

as those proposed in Zeuner et al [8]. For the sake of parsimony, we did not consider potential

chemotherapy drug interactions. Such interactions are not uncommon (e.g. carboplatin and

paclitaxel [54]). However, for the drugs considered in the present study, no interactions could

be detected based on the available data. Drug combinations of different doses of cyclophospha-

mide and doxorubicine would be required to unravel any interaction effects.

Moreover, for deeper understanding of the TPO-mediated regulation of megakaryocytes,

one would require observations of megakaryocytes in analogy to Zeuner et al [8,22–24]. A

caveat is, however, that this group studied cord blood (CB) megakaryocytes which differ signif-

icantly from bone marrow megakaryocytes by much less ploidy [24] and by their ability to fre-

quently undergo mitoses in polyploidy state [22]. These facts leave open the question to which

extend CB megakaryocytes observations could be applied to the modeling of BM

megakaryocytes.

Another open question is to which extent thrombopoiesis in young healthy subjects as stud-

ied in Harker et al [30] can be compared to that of elderly patients with aggressive non-Hodg-

kin’s lymphoma studied in NHL-B study [1,5,6]. It is conceivable, for example, that the lack of

MKC peak at day 11 after TPO injection observed in the simulations of patients from Engel

et al and NHL-B (Figs 4B and 6B) can be attributed to reduced TPO responsiveness of elderly

patients compared to young healthy subjects. This issue can only be resolved by studying TPO
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and megakaryocyte dynamics in chemotherapy-treated elderly patients, which, however, is

problematic from the ethical point of view.

To derive precise estimates of individual parameters, closely meshed time series data of

patients under therapy are required including full information regarding therapeutic interven-

tions (dosing and timing of cytotoxic drugs, application of platelet concentrates or growth fac-

tors). Our major resource of individual therapy data, the NHL-B study, only partly fulfils this

requirement since from the 1600 available patients only 8.4% met our inclusion criteria

regarding data quality (participation in at least 4 chemotherapy cycles with at least five mea-

surements per cycles). Moreover, only numbers but not exact time points of platelet transfu-

sions within cycles were documented. For our modelling purpose, we assumed that

transfusions occurred immediately after the smallest value and prior to an abrupt platelet

increase.

To evaluate the quality of our data fitting procedure, we compared the residual errors of

subjects with natural fluctuations measured in healthy subjects [44]. Residual errors appeared

to be about twice the natural fluctuations implying existence of some effects unexplained by

our model. Especially individual platelet dynamics with high irregularity despite of regular

(cyclic) treatment are difficult to explain by our model. Irregular time series are more often

observed in the 14 day regimen compared to the 21 day regimen suggesting a possible interac-

tion with G-CSF treatment. Indeed, G-CSF can induce thrombocytopenia in healthy patients

[55]. On the other hand, it is well known that G-CSF stimulates stem cells to start differentia-

tion to blast cells [56], which are precursors for both thrombocytes and granulocytes. Thus,

G-CSF has both, stimulatory and inhibitory effects on thrombopoiesis which might be relevant

to explain irregular behavior. Other reasons of inferior agreement of model and data could be

bleeding events, platelet consumption by infection episodes or platelet destruction by addi-

tional medications. However, in general our model predictions fitted well to the population

based data and to the vast majority of individual patient data, also covering long range effects

of chemotherapy.

As a possible field of clinical application, our simulations showed a strong impact of shifting

the start of the next treatment cycle on the resulting thrombocytopenia. This demonstrates the

importance of individual next-cycle management for chemotherapy treated patients. We cur-

rently develop a medical tool supporting dosing and timing adaptations of chemotherapies in

dependence on the individual therapy response. A prototype can be found elsewhere (https://

www.health-atlas.de/shiny-public/apps/thrombopenia/). It revealed that two cycles are suffi-

cient to derive individual parameter estimates for 21-day schedules while three cycles are

required for 14-day schedules.

In summary, we propose a mechanistic thrombopoiesis model of unprecedented compre-

hensiveness in both, biological mechanisms considered and experimental data sets explained.

Our innovative method of parameter estimation allows robust determinations of individual

parameter settings facilitating the development of individual treatment adaptations in the

course of cytotoxic chemotherapy as an ultimate goal of systems-medicine.
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