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Metabolites, substrates or products of metabolic processes, are involved in
many biological functions, such as energy metabolism, signaling, stimulatory and
inhibitory effects on enzymes and immunological defense. Metabolomic phenotypes
are influenced by combination of genetic and environmental effects allowing for
metabolome-genome-wide association studies (mGWAS) as a powerful tool to
investigate the relationship between these phenotypes and genetic variants. The
objectives of this study were to estimate genomic heritability and perform mGWAS and
in silico functional enrichment analyses for a set of plasma metabolites in Canadian
crossbred beef cattle. Thirty-three plasma metabolites and 45,266 single nucleotide
polymorphisms (SNPs) were available for 475 animals. Genomic heritability for all
metabolites was estimated using genomic best linear unbiased prediction (GBLUP)
including genomic breed composition as covariates in the model. A single-step GBLUP
implemented in BLUPF90 programs was used to determine SNP P values and the
proportion of genetic variance explained by SNP windows containing 10 consecutive
SNPs. The top 10 SNP windows that explained the largest genetic variation for each
metabolite were identified and mapped to detect corresponding candidate genes.
Functional enrichment analyses were performed on metabolites and their candidate
genes using the Ingenuity Pathway Analysis software. Eleven metabolites showed
low to moderate heritability that ranged from 0.09 ± 0.15 to 0.36 ± 0.15, while
heritability estimates for 22 metabolites were zero or negligible. This result indicates
that while variations in 11 metabolites were due to genetic variants, the majority are
largely influenced by environment. Three significant SNP associations were detected for
betaine (rs109862186), L-alanine (rs81117935), and L-lactic acid (rs42009425) based
on Bonferroni correction for multiple testing (family wise error rate <0.05). The SNP
rs81117935 was found to be located within the Catenin Alpha 2 gene (CTNNA2)
showing a possible association with the regulation of L-alanine concentration. Other
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candidate genes were identified based on additive genetic variance explained by SNP
windows of 10 consecutive SNPs. The observed heritability estimates and the candidate
genes and networks identified in this study will serve as baseline information for
research into the utilization of plasma metabolites for genetic improvement of crossbred
beef cattle.

Keywords: candidate genes, crossbred beef cattle, functional enrichment analyses, metabolomics, single-step
GBLUP

INTRODUCTION

The metabolic phenotype (or “metabotype”) is a characteristic
metabolite profile that depends on the interactions between
genetic and environmental effects. Commonly, the metabolic
phenotype of an individual is measured from easily accessible
biofluids such as urine or blood (Nicholson and Lindon, 2008).
Additionally, blood metabolites have been shown to be powerful
tools for the indication of the nutritional and health status of
humans and animals. For example, in humans, several blood
metabolites have been identified as biomarkers for diseases
(López-López et al., 2018). In livestock species, associations
between metabolites and economically important traits such
as feed efficiency (Karisa et al., 2014), growth performance
(Widmann et al., 2013), and animal health (Montgomery et al.,
2009) have been reported.

Metabolome-genome-wide association study (mGWAS) is
a powerful tool for identifying genetic variants underlying
metabolic phenotypes and provides new opportunities to
decipher the genetic basis of metabolic phenotypes. Importantly,
mGWAS detect genetic variants that are functionally associated
with metabolic phenotype variation. For example, previous
studies have reported that single nucleotide polymorphisms
(SNPs) in the glutamine synthase 2 gene (GLS2) were associated
with glutamine in human serum, which provides a potential
biological association, as the enzyme GLS2 catalyzes the
hydrolysis of glutamine (Suhre et al., 2011; Kettunen et al., 2012).
Furthermore, genome-wide hits with unknown gene function
offer an opportunity to infer novel biological mechanisms of
the SNP-metabolite association. For instance, Suhre et al. (2011)
experimentally studied the association of the SNP rs7094971
inside the solute carrier family 16, member 9 gene (SLC16A9)
with carnitine and validated that the hitherto uncharacterized
protein was indeed a carnitine transporter in Xenopus oocytes.
Additionally, as metabolites lie between genomic and external
phenotypes, they could explain the variation of external
phenotypes by revealing biological mechanisms underlying
the associations between them. Recent application of GWAS
have successfully uncovered genetic variants that contribute
to variation in both the external phenotype (e.g., type 2
diabetes) and the metabolic phenotype (e.g., fasting glucose
levels) (Stranger et al., 2011).

Due to the rapidly growing number of candidate biomarkers
and the increasing role of metabolites in genetic studies, the
knowledge of the genetic basis of metabolites is therefore a
prerequisite to evaluate new biomarkers and dissect the genetic
architecture of metabolites. Until now, however, knowledge

regarding the genetic level of metabolites in beef cattle has
been limited. Thus, the objectives of this study were to estimate
genomic heritability of 33 plasma metabolites in crossbred
beef cattle, to identify genetic variants, genomic regions and
candidate genes associated with metabolite variation, and to
understand the biological functions and gene networks linked to
these associations.

MATERIALS AND METHODS

Animal, Blood Samples and Nuclear
Magnetic Resonance (NMR)
Spectroscopy
All management and procedures involving live animals, where
applicable, conformed to the guidelines outlined by the Canadian
Council on Animal Care (1993); otherwise, existing data sets
from the various Canadian research herds were used.

The dataset used in this study was obtained from the
Phenomic Gap Project (McKeown et al., 2013). This project
started in 2008 aiming to generate feed efficiency, carcass and
meat quality phenotypes as well as genomic information for
Canadian crossbred beef animals as previously described by
Akanno et al. (2014). A total of 475 Canadian multibreed
composite and crossbred beef cattle was used in this study. The
animals comprised of bulls, slaughter steers, slaughter heifers and
replacement heifers submitted to a feedlot feeding test from 2009
to 2012 and the test groups were labeled as contemporary groups.
The population structure consisted of Beefbooster composite
breed (n = 224) which is predominantly Charolais-based with
infusion of Holstein, Maine Anjou, and Chianina1, Hereford-
Angus (n = 181) crosses, Charolais (n = 68), and Angus (n = 2).

Blood samples were collected in EDTA tubes from each animal
by jugular venipuncture on the first day of the feedlot feeding
test and immediately frozen at −80◦C which is considered
appropriate for storage. Our assumption is that all samples
were affected equally by the freezing process if at all. Therefore,
although the metabolite profiles may not be the same as those
obtained from fresh samples, the freezing process should not be
a source of variation for this study since all samples were frozen
the same way according to best practice. Frozen blood samples
were sent to the Metabolomics Innovation Center at University
of Alberta, AB, Canada in 2014 for analysis. The variation in
time of sample collection is expected to be captured under the

1http://www.beefbooster.com
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“contemporary group” variable applied in subsequent statistical
analysis. Each frozen sample was thawed at room temperature
then centrifuged at 10,000 rpm for 10 min to separate the
plasma then filtered through 3 kDa molecular weight cut-off
filters (Merck Millipore Ltd., Darmstadt, Germany) to remove
macromolecules, including lipids and proteins. As the filter tube
manufacturer treats the filter membranes with glycerol as a
preservative, filters were washed and centrifuged five times before
use. Samples made up of less than 570 µl after filtration were
diluted with HPLC water to ensure adequate volume for NMR
acquisition. A total of 5 mm NMR tube (New Era Enterprises
Inc., Vineland, NJ, United States) contained a total of 700 µl of
total volume of 570 µl filtered serum, 60 µl DSS and 70 µl D2O.
This mixture was vortexed and centrifuged shortly before it was
transferred to an NMR tube for data acquisition. All metabolite
concentrations obtained were adjusted by appropriate factors to
account for the above dilutions, and represent the contents of the
filtered samples, not the contents of the NMR tube.

Spectra were acquired on a 500MHz VNMRS spectrometer
equipped with a 5mm cold probe (Agilent Technologies, Santa
Clara, CA, United States). The pulse sequence used was a 1D-
noesy with a 990 ms presaturation on water and a 4 s acquisition
period. Spectra were collected with 256 transients and four
steady-state scans at 298K.

Spectra were zero filled to 64k points and Fourier transformed.
Spectral phasing was performed on the spectra along with
baseline correction. In total, 33 metabolites were identified and
quantified with a targeted profiling approach using the Profiler
and Library Manager modules in the same software which
contains a total of 304 metabolites. Each spectrum was peer
reviewed by a separate analyst and a final review pass was done
on all of the spectra before exporting concentration results.
Concentration measurements were adjusted to report metabolite
concentrations after the filtration of the samples.

Genotyping, Quality Control and
Prediction of Genomic Breed
Composition
Animals were genotyped using Illumina BovineSNP50 v2
BeadChip (Illumina Inc., San Diego, CA, United States) at Delta
Genomics, Edmonton, AB, Canada. The genotypes were coded
as 0, 1, and 2 and quality control was performed using the
Synbreed package (Wimmer et al., 2012) in R statistical software.
All markers on sex chromosomes and autosomal markers with
minor allele frequency <1%, call rate <90%, and severe departure
from Hardy-Weinberg equilibrium (P < 10−5) were removed.
Missing genotypes were imputed using Synbreed package. After
quality control, 45,266 SNPs on 29 bovine autosomes for 475
individuals remained and were used for this study.

Genomic breed composition was predicted for all individuals
using ADMIXTURE software (Alexander et al., 2009). To predict
breed composition for each animal, a 10-fold cross-validation
procedure was performed to find the best possible number of
ancestors or breeds (K value). The value of K = 4 was chosen
because it had the smallest cross-validation error and yielded
the most accurate breed composition prediction based on prior

knowledge. The four postulated ancestral breeds were Hereford,
Angus, Charolais and Beefbooster TX line. The distribution of
predicted genomic breed composition is shown in Figure 1.
Estimates of genomic breed composition were fitted as covariates
in the various statistical models to correct for population
stratification and breed effects.

Phenotypic Quality Control
Phenotypic records included 33 plasma metabolite
concentrations quantified from blood samples of 475 animals.
A linear regression model implemented in R statistical software
was used to assess the significance of all systematic effects
associated with variation in plasma metabolites. Fixed factors
found to be significant (P <0.05) included contemporary
groups (herd and birth year), animal type (bulls, slaughter
steers, slaughter heifers, and replacement heifers) and genomic
breed composition. These factors were subsequently included
in the mixed model used for estimating heritability and
GWAS. Contemporary group and animal type were fitted
in the model as fixed class effect whereas breed fractions
were fitted as fixed covariates. Residual values of the linear
regression model were checked and those residuals with
more or less than 3 standard deviations from the mean of
residuals were considered as outliers and the associated records
were excluded. The distribution of residuals after excluding
outliers was close to a normal distribution (i.e., a bell shape
without a big tail). The summary statistics of all metabolites
after phenotypic quality control are given in Table 1. In
general, the concentration of plasma metabolites ranged from
20.72 µM (L-methionine) to 5,024.04 µM (L-lactic acid), on
average.

Variance Components and Heritability
Estimation
Variance components and heritability of 33 metabolites were
estimated using a single-trait animal model and genomic
relationship matrix. The genomic relationship matrix was
constructed based on total filtered SNP markers (i.e.,
45,266 SNPs) and using one of VanRaden’s formulations
ZZ
′

/2
∑

pi(1− pi), where Z contains centered genotypes codes
and pi is the minor allele frequency for locus i (VanRaden,
2008). The following mixed effect model (1) implemented
in ASReml version 4.1 (Gilmour et al., 2015) was applied:

y = Xb+Wa+ e (1)

Where y is a vector of phenotypic observation; X is the
design matrix that relates the fixed effects to the observation
and b is a vector of fixed effects of contemporary groups,
animal type and genomic breed composition. W is a design
matrix relating observations to random animal genetic effects;
a is a vector of random additive polygenic effects that
is assumed to be normally distributed as: a ∼ N

(
0, Gσ2

a
)
,

where G is genomic relationship matrix and σ2
a is the

additive genetic variance, e is a vector of random residual
effects that is assumed to be normally distributed as e ∼
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FIGURE 1 | Distribution of predicted genomic breed composition of crossbred beef cattle population (n = 475). Beefbooster is red, Angus is yellow, Hereford is
green, Charolais is blue.

N
(
0, Iσ2

e
)
, with I being an identity matrix and σ2

e is the
residual error variance.

Metabolome-Genome-Wide Association
Study
The genomic heritability obtained from model (1) was used to
screen all metabolites for metabolome genome wide association
analyses. Metabolites with zero or near zero heritability were
excluded from mGWAS. Here, the SNP P values for 11
metabolites with non-zero heritability were determined using
a single-step genomic BLUP (ssGBLUP) approach as described
by Aguilar et al. (2019) and followed by the estimation of the
proportion of additive variance explained by 10 consecutive SNP
windows using a Weighted ssGBLUP (WssGBLUP) approach
(Wang et al., 2012). Both approaches were implemented in the
BLUPF90 programs (Misztal et al., 2002). The mGWAS model
used was similar to model (1) above except that a was assumed to
follow N

(
0, Hσ2

a
)
, where H is the matrix that combines genomic

and pedigree information (Aguilar et al., 2010). The inverse of H
for mixed model equations is:

H−1
= A−1

+

[
0 0
0 G−1

− A−1
22

]

A is the pedigree-based numerator relationship matrix for all
animals, A22 is the numerator relationship matrix for genotyped
animals, and matrix G is the genomic relationship matrix, where
G was weighted as described by Wang et al. (2012) for the
WssGBLUP method.

A rejection threshold based on Bonferroni correction for
multiple testing (0.05/45,266) was applied, which is equal to 5.96
in the −log10 scale. The quantile–quantile (Q–Q) plots of P
values for each SNP were used to compare observed distributions
of −log (P value) to the expected distribution under the null
hypothesis for each metabolite. Manhattan plots of P values for
each SNP were also used to illustrate significant associations at
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TABLE 1 | Descriptive statistics for 33 plasma metabolites: number of animals per
metabolite (n), mean, standard deviation (SD), coefficient of variation (CV),
minimum (Min.) and maximum (Max.).

Trait n Mean SD CV Min. Max.

1-Methylhistidine 435 56.26 22.71 0.40 15.34 136.31

2-Hydroxybutyrate 460 41.23 17.02 0.41 12.26 94.48

Acetic acid 462 264.60 256.05 0.97 33.40 2,056.21

Betaine 448 111.67 52.97 0.47 29.62 298.33

Creatine 451 127.59 44.39 0.35 41.98 262.67

Citric acid 448 120.27 65.38 0.54 15.61 338.45

Choline 456 346.37 173.98 0.50 61.35 960.08

Ethanol 404 61.38 84.91 1.38 13.53 560.94

D-Glucose 452 837.40 692.11 0.83 68.42 3,731.80

Glycine 451 378.65 162.32 0.43 90.38 896.70

Glycerol 452 511.10 354.71 0.69 15.68 1,532.64

Fumaric acid 300 23.85 8.48 0.36 10.75 66.11

Formic acid 454 30.34 28.25 0.93 9.46 370.87

L-Tyrosine 475 65.51 19.32 0.29 22.88 119.90

L-Phenylalanine 454 67.54 19.54 0.29 27.53 125.61

L-Alanine 446 390.34 148.99 0.38 104.46 852.47

L-Proline 465 129.58 41.02 0.32 42.09 257.82

L-Isoleucine 465 52.85 19.88 0.38 15.11 120.63

L-Histidine 450 76.09 28.57 0.38 23.35 150.45

Lysine 460 70.34 26.19 0.37 15.24 154.49

L-Lactic acid 450 5,024.04 2,790.01 0.56 885.17 15,976.05

Pyruvic acid 321 87.56 81.42 0.93 14.23 395.75

Succinic acid 448 58.47 34.46 0.59 14.86 280.58

3-Hydroxybutyric acid 457 86.65 41.66 0.48 18.29 272.70

Creatinine 451 132.14 57.85 0.44 30.77 308.61

L-Glutamine 441 58.97 23.00 0.39 14.35 119.97

L-Leucine 475 93.08 39.48 0.42 25.63 302.17

L-Methionine 193 20.72 4.49 0.22 12.08 33.77

3-Hydroxyisovaleric acid 155 32.38 13.02 0.40 11.70 79.06

L-Valine 454 147.16 49.58 0.34 49.88 313.97

Acetone 260 35.97 19.84 0.55 12.47 125.08

Methanol 447 135.47 76.28 0.56 31.35 383.19

Dimethyl sulfone 449 46.86 19.41 0.41 15.31 128.60

Unit:µM.

the level of each chromosome for the metabolites. All plots were
completed using the R package qqman (Turner, 2014).

Candidate Gene Identification
To identify a candidate gene, the surrounding region of each
significant SNP was surveyed by expanding 100-kbp upstream
and downstream, respectively. The 200-kbp region was defined
based on the average linkage disequilibrium (r2) between pairs of
syntenic SNPs within this distance which is known to be 0.20 in a
related beef cattle population (Lu et al., 2012).

Further, additional candidate genes associated with the top 10
SNP windows that explained the largest proportion of genetic
variance for each metabolite from the WssGBLUP approach were
identified. Positional candidate genes within 200-kbp regions
and those inside the top 10 SNP windows were mapped on Bos
taurus genome view in Biomart available at the Ensembl database
UMD 3.1 version (Zerbino et al., 2018). The functions of all

identified genes were manually searched from the literature to see
if they had a previously identified relationship with the associated
metabolites under investigation.

Analysis of Least Square Means for
Significant SNP
The least square mean of SNPs significantly associated with
metabolites were assessed based on model (2) and implemented
in R where applicable, to see how different allele combinations
for these SNPs resulted in observed differences in the metabolite
concentration.

y = Xb+ SNP + e (2)

Where y, X, b, and e are the same as in model (1) and (2); SNP is
a vector of genotype class 0, 1 and 2 fitted as a classification factor.

Functional Enrichment Analyses
The interpretation of mGWAS using metabolite concentrations
as the target phenotype is a complicated task, because
their concentrations are influenced indirectly by mRNA and
protein expression as well as directly by several environmental
effects. Pathway analysis using prior knowledge improves the
interpretation of mGWAS data and provides insight from the
genetics of biochemical conversions and biological functions.
Functional analyses for the genes associated with each metabolite
were performed using Ingenuity Pathway Analysis software2

(IPA). Several lists including metabolites (PubChem CID) and
candidate genes (Bovine Entrez gene IDs) in Supplementary
Table S1 were imported in IPA for biological function analysis
and network construction. Biological functions were considered
significantly enriched if the P value for the overlap comparison
test between the input list and the knowledge base of IPA for
a given biological function was less than 0.05. Identification
of significant pathways in biological processes was described
in detail by Calvano et al. (2005). The analysis was performed
following IPA default setting and parameters were set to allow
the network to show indirect relationships for the imported
metabolite and gene lists. Indirect relationships assist in the
identification of other metabolites/genes that were not among
the ones in the input list but may be associated with them based
on the IPA biological reference. In addition, the resulting gene
networks are scored and then sorted based on the score not
based on P value, as multiple testing for this sort of analysis
is not feasible.

RESULTS

Heritability Estimates
Eleven metabolites showed low to moderate heritability that
ranged from 0.09 ± 0.15 (succinic acid) to 0.36 ± 0.15
(choline), while heritability estimates for 22 metabolites were
zero or negligible. Table 2 shows the results of all metabolites
with heritability.

2www.Ingenuity.com
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TABLE 2 | Estimates of additive variance (σ2
a ), residual variance (σ2

e ), heritability
(h2) and their standard error (SE) for 11 plasma metabolitesa.

Trait σ2
a σ2

e h2 SE

Choline 6,598.90 11,545.80 0.36 0.15

Creatinine 1,051.67 1,947.73 0.35 0.17

Betaine 402.10 783.09 0.34 0.16

Pyruvic acid 1,027.32 2,007.84 0.34 0.24

L-Lactic acid 639,240 2,268,490 0.22 0.16

Citric acid 477.13 1,719.37 0.22 0.15

Creatine 160.55 843.99 0.16 0.15

D-Glucose 17,497.10 100,579.00 0.15 0.14

Acetone 29.39 185.01 0.14 0.21

L-Alanine 768.05 7,824.22 0.09 0.13

Succinic acid 78.47 838.28 0.09 0.15

aMetabolites with zero or near zero heritability estimates were not listed.

SNP Association, Candidate Genes and
Genetic Effects
Three significant SNP associations were detected for betaine
(rs109862186), L-alanine (rs81117935), and L-lactic acid
(rs42009425) based on Bonferroni correction for multiple testing
(family wise error rate <0.05) (Table 3 and Figures 2–4). The
SNPs were located on chromosome 5, 11, and 22, respectively.
The SNP rs81117935 was found within the catenin alpha 2 gene
(CTNNA2), while the other two SNPs were not mapped to any
known candidate gene (Table 4).

In addition to the identified significant SNPs, the WssGBLUP
method also identified more genomic regions associated
with heritable metabolites based on additive genetic variance
explained by SNP windows of 10 consecutive SNPs. The
proportion of additive genetic variance explained by top 10
SNP windows and genes mapped in these windows are shown
in Supplementary Table S1. The SNP window (107,403,824–
107,704,991 bp) located on chromosome 5 was found to be
associated with citric acid and explained the highest proportion
of additive genetic variance (4.21%) while the SNP window
(35,619,632–36,428,58 bp) with the lowest proportion of additive
genetic variance (0.62%) was located on chromosome 26 and
associated with L-lactic acid. A total of 368 unique genes were
identified within the selected SNP windows (Supplementary
Table S1). Further, five SNP windows showed pleiotropic effects
on two or more metabolites and were mapped to 17 candidate
genes (Table 5).

The least square means of the genotypic classes are given in
Figure 5. All three significant SNPs (rs109862186, rs81117935,
and rs42009425) showed characteristics of additivity with

the associated metabolite as concentration either increased
or decreased with the number of “B” alleles for the three
genotypic classes.

Functional Enrichment Analyses
The eleven heritable metabolites and their candidate genes
were significantly enriched (P < 0.05) for biological functions
related to cellular, tissue, and organ development, cell-to-
cell signaling and interaction, molecular transport, small
molecule biochemistry, lipid metabolism, carbohydrate
metabolism, and cellular growth and proliferation. All
significant biological functions and their P values for each
metabolite are provided in the Supplementary Table S2.
Additionally, the IPA software produced 33 networks with the
input metabolite and candidate gene lists (Supplementary
Table S3) and one of the most informative networks
(Figure 6) was related to lipid metabolism and cell-to-
cell signaling and interaction with betaine and some of its
candidate genes.

DISCUSSION

Heritability Estimates
Metabolites have the potential to serve as biomarkers for
production traits and diseases in livestock (Montgomery et al.,
2009), and the concentration of biomarkers should not vary
too much over the short term within an individual because
such variation could undermine the predictive association in a
single sample (Nicholson et al., 2011b). Most highly conserved
metabolites are also highly heritable (Yousri et al., 2014) and
less influenced by the environmental changes. In this study,
we performed a baseline investigation into the heritability
of plasma metabolites in crossbred beef cattle and identified
potential associations between heritable metabolites and SNP
markers. As certain metabolites are essential for growth and
health, knowledge of the genetic parameters of these important
metabolites could trigger directional selection toward regulating
their concentration in metabolic processes. For instance, alanine
is an essential amino acid for T cell activation (Ron-Harel
et al., 2019) which affects immunity level. Here, a total of
11 metabolites out of 33 showed low to moderate heritability,
suggesting their potential as biomarkers for genetic selection.
Betaine and choline which showed moderate heritability in this
study have been previously identified to be associated with
residual feed intake in beef cattle (Karisa et al., 2014), thus,
they could potentially be used as biomarkers for improving feed
efficiency in beef cattle. The majority of the metabolites with

TABLE 3 | SNPs significantly associated with metabolites: chromosome (Chr), position of SNP on chromosome (bp), minor allele and minor allele frequency (MAF),
nucleotide of SNP, P values of significant test and Bonferroni correction of P values.

Trait SNP Chr Position (bp) Minor allele and MAF Nucleotide (major/minor allele) P Bonferroni correction

Betaine rs109862186 5 118,820,845 B (0.18) T/C 7.63E-07 0.03

L-Alanine rs81117935 11 54,765,154 A (0.45) T/C 9.10E-07 0.04

L-Lactic acid rs42009425 22 41,109,447 A (0.19) A/G 9.94E-07 0.04
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FIGURE 2 | Manhattan plot (A) and QQ plot (B) for betaine, significant SNPs
were determined by Bonferroni correction (red line).

negligible heritability may be largely influenced by environmental
effects such as age, gender, nutrition, medication, and possibly
underlying diseases (Beuchel et al., 2019). The non-heritable
status of these metabolites may be used as a guide to animal
management. For example, ruminants fed silage-based diets
are likely to ingest ethanol because of ethanol production in
fermented feeds (Nishino and Shinde, 2007) and the process of
ethanol detoxification in liver could affect splanchnic nutrient
metabolism (Obitsu et al., 2013). Ethanol showed a negligible
heritability in this study, which suggests that the variation of
ethanol concentration may be mainly affected by management
factors such as feed.

In a related study that utilized milk metabolites from dairy
cattle, Buitenhuis et al. (2013) found heritability estimates that
were similar to estimates observed for five metabolites from
the current study. Although, these studies are not completely
comparable, this finding corroborates the possible existence of a
genetic basis for plasma metabolites. In addition, the negligible
heritability or large standard error observed for some of the
metabolites may be due to the limited number of animals
utilized. Thus, further study may be warranted as this is the first

FIGURE 3 | Manhattan plot (A) and QQ plot (B) for L-alanine, significant SNPs
were determined by Bonferroni correction (red line).

attempt to characterize the genetic basis of plasma metabolites in
crossbred beef cattle.

SNP Association, Candidate Genes and
Genetic Effects
Genetic profiling of plasma metabolites has been previously
studied in other species to assess their value as biomarkers
for disease prediction (López-López et al., 2018). Recently,
metabolomics GWAS was performed to identify genomic regions
associated with variation in milk metabolites in dairy cattle
(Buitenhuis et al., 2013). To the best of our knowledge, this
study is the first attempt at profiling the genetic basis of plasma
metabolites in crossbred beef cattle. The SNPs and candidate
genes identified here revealed the potential association between
metabolomics and genetics, which could help fill the knowledge
gap that exist between genetic level and external phenotype.
The possible signals detected in this study were associated
with betaine, L-alanine and L-lactic acid, and the peaks for
significant additive SNPs including rs109862186, rs81117935,
and rs42009425 were on chromosome 5, 11, and 22. Two of
the SNPs rs109862186 and rs42009425 showed no evidence
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FIGURE 4 | Manhattan plot (A) and QQ plot (B) for L-lactic acid, significant
SNPs were determined by Bonferroni correction (red line).

of a candidate gene within 200-kbp distance, however, SNP
rs42009425 associated with L-lactic acid was reported to be
associated with clinical mastitis in French Holstein cattle (Marete

et al., 2018). The SNP rs81117935 associated with L-alanine was
found to be located within the candidate gene CTNNA2 which is
one of three human alpha-catenin genes. Alpha-catenin functions
as a linking protein between cadherins and actin-containing
filaments of the cytoskeleton (Cooper and Hausman, 2000),
however, it is not known whether CTNNA2 gene may regulates
the concentration of L-alanine in bovine blood. The least square
mean results (Figure 5) showed that the concentration of L-
alanine was significantly (P < 0.05) greater in individuals that
are homozygotes for the “A” allele of SNP rs81117935 while
no significant differences existed for the other two genotypic
classes. Our finding suggests that CTNNA2 gene may play a
role in the regulation of plasma L-alanine which requires further
investigation.

Further, several candidate genes associated with heritable
metabolites were mapped inside the selected SNP windows
of 10 consecutive SNPs based on WssGBLUP analyses. Here,
choline kinase alpha gene (CHKA) which is associated with
choline was mapped inside the SNP window (46,143,465–
46,796,930 bp) on chromosome 29. This gene encodes an enzyme
called choline kinase alpha (Hosaka et al., 1992) which catalyzes
the phosphorylation of choline to phosphocholine (Aoyama
et al., 2004) as a first step in the biosynthesis pathway of
phosphatidylcholine (Lacal, 2001). Phosphatidylcholine is one
of the most abundant phospholipids in all mammalian cell
membranes (van der Veen et al., 2017) and plays a critical
role in membrane structure and also in cell signaling (Lacal,
2001). The importance of phospholipid metabolism in regulating
lipid, lipoprotein and whole-body energy metabolism has been
reviewed by van der Veen et al. (2017). Lipid metabolism has
been previously identified as an important biological function
in relation to beef cattle residual feed intake (Chen et al., 2011;
Alexandre et al., 2015; Mukiibi et al., 2018). Therefore, the
relationship between CHKA gene and choline metabolite used
in this study have potential value for improving feed efficiency
in beef cattle. Interestingly, several overlapped SNP windows
were also identified, which indicates that either two metabolites
were controlled by the same gene or by different genes within a

TABLE 4 | 200-kpb regions around the significant SNPs: chromosome (Chr), position of the region on chromosome (bp), gene in the regions and the location of the gene
compared to SNP location.

Trait Chr Position (bp) Gene name Gene location compared to SNP location

Betaine 5 118,720,845–118,920,845 – –

L-Alanine 11 54,665,154–54,865,154 CTNNA2 SNP is within gene

L-Lactic acid 22 41,009,447–41,209,447 – –

TABLE 5 | Chromosome (Chr) and position of overlapped windows (bp) and genes in the overlap windows.

Traits Chr Position (bp) Gene name

Acetone, L-lactic acid 1 28,675,718–29,049,389 GBE1

L-Alanine, choline 7 13,336,301–13,632,174 IER2, STX10, TRMT1, LYL1, NACC1, NFIX, CACNA1A

L-Alanine, betaine 19 24,357,241–24,917,540 RAP1GAP2, SPATA22, OR1G1, ASPA, TRPV1, TRPV3

L-Alanine, creatine 21 49,290,972–49,623,230 GEMIN2, PNN

Creatine, choline 28 15,916,594–16,124,333 ANK3
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FIGURE 5 | Least square means for the genotypic classes of significant SNPs
associated with betaine (A), L-alanine (B), and L-lactic acid (C), respectively.
All three significant SNPs (rs109862186, rs81117935, and rs42009425)
showed characteristics of additivity with the associated metabolite.

SNP window (Table 5). The substantial polygenic and pleiotropic
nature of the metabolite variation observed in the current study
have been previously reported in human metabolomics studies
(Hu et al., 2018; Gallois et al., 2019).

Several reasons may lead to the few significant SNPs identified.
Firstly, variation in metabolite concentrations may be due to the

polygenic nature of the genes underlying the variation. Polygenic
inheritance for primary metabolites have been reported in plants
(Rowe et al., 2008; Chan et al., 2010; Wen et al., 2014) and
could potentially exist in beef cattle as evident in our study
that utilized primary metabolites. Secondly, the crossbred nature
of our studied population could lead to inconsistent linkage
disequilibrium across multiple populations (De Roos et al., 2009).
Thirdly, the ability to identify SNPs and quantitative trait loci
with large effects on any of the metabolites depends partly on
the amount of variation in metabolite concentration that can be
attributed to genetic source. Here, low to moderate heritability
were observed for some of the metabolites studied. Marker
density is another factor that may lead to identification of fewer
significant SNPs associated with variation in metabolites. In
this study, 50K SNP panel was used for mGWAS, however,
some causative SNPs may not be included in this panel and
thus, would likely not be detected. Studies involving other
beef cattle traits have shown that increasing marker density
from 50K to 7.8 million SNPs can capture more additive
genetic variance and can detect additional or novel significant
SNPs (Wang et al., 2020; Zhang et al., 2020). Therefore, high-
density SNP marker panel or whole-genome sequence data
are suggested for future studies. Lastly, a stringent significance
threshold based on Bonferroni correction for multiple testing
was imposed to identify significant SNPs and exclude false
positive results. However, compared with traditional GWAS,
metabolites are highly correlated to other similar metabolites
and often cannot be considered as independent. The traditional
multiple testing methods may therefore eliminate some valuable
SNPs. Some groups have computed the Bonferroni correction
by counting all the metabolites (Gieger et al., 2008; Illig et al.,
2010; Suhre et al., 2011), while a few other groups have
adopted a less stringent strategy by taking into account the
number of independent metabolites as determined by a principal
component analysis to adjust for multiple test correction
(Demirkan et al., 2012).

Functional Enrichment Analyses
A one-to-one metabolite-to-gene correspondence is not known
a priori (Nicholson et al., 2011a) but functional enrichment
analyses could provide enriched functions and networks of
metabolites and identified candidate genes to give a whole picture
of gene-metabolite associations. Some biological functions that
are significantly enriched may help us improve understanding
of molecular factors for some important traits, such as feed
efficiency. The eight most significantly enriched biological
functions for beef cattle feed efficiency included lipid metabolism,
amino acid metabolism, carbohydrate metabolism, energy
production, molecular transport, small molecule biochemistry,
cellular development, and cell death and survival (Cantalapiedra-
Hijar et al., 2018). Our results supplement the part played
by genetic and molecular factors for these functions, thus,
available data with both information (i.e., metabolite data
and feed efficiency related traits) could be used to elucidate
this hypothesis. Detailed insight into the specific pathways
that are affected by variation in metabolites is a useful first
step to select the most likely hypotheses. A good example is
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FIGURE 6 | The enrichment network for betaine and associated genes, and the molecules in IPA database. The enriched pathway predicted by IPA showed a
potential relationship between betaine, insulin, and phospholipids.

betaine which is widely distributed within the animal body
(Xia et al., 2018) and was reported to enhance the synthesis
of methylated compounds such as phospholipids as well as
directly influence lipid metabolism (Huang et al., 2008). In
addition, a recent study showed that insulin was associated
with phospholipid alterations, but the mechanism is still not
clear (Chang et al., 2019). Interestingly, the enriched pathway
constructed by IPA showed a relationship between betaine,
insulin and phospholipids and provides new insight into the
connection between them (Figure 6), however, this connection
requires experimental validation.

CONCLUSION

This study estimated heritability of 33 plasma metabolites for
crossbred beef cattle and found low to moderate heritability
for 11 metabolites, which provides evidence for the genetic
basis underlying the variation of metabolite concentrations.
Three significant SNP associations were detected for betaine
(rs109862186), L-alanine (rs81117935), and L-lactic acid
(rs42009425) which suggest that the genetic effects may be

largely polygenic. The SNP rs81117935 was found to be within
CTNNA2 gene which is possibly associated with the regulation of
L-alanine concentration in bovine blood. Other candidate genes
were identified based on additive genetic variance explained by
SNP windows of 10 consecutive SNPs. The observed heritability
estimates and candidate genes and networks identified in this
study will serve as baseline information for further research into
the utilization of plasma metabolites for genetic improvement of
crossbred beef cattle.
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