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Summary

Immunoglobulin (Ig)A provides the initial immune barrier to viruses at mucosal surfaces. Spe-
cific IgA interrupts viral replication in polarized epithelium during receptor-mediated trans-
port, probably by binding to newly synthesized viral proteins. Here, we demonstrate by immu-
noelectron microscopy that specific IgA monoclonal antibodies (mAbs) accumulate within
Sendai virus—infected polarized cell monolayers and colocalize with the hemagglutinin—
neuraminidase (HN) viral protein in a novel intracellular structure. Neither 1gG specific for
HN nor irrelevant IgA mAbs colocalize with viral protein. Treatment of cultures with viral-
specific IgA but not with viral-specific 1gG or irrelevant 1gA decreases viral titers. These ob-
servations provide definitive ultrastructural evidence of a subcellular compartment in which
specific IgA and viral envelope proteins interact, further strengthening our hypothesis of intra-
cellular neutralization of virus by specific IgA antibodies. Our results have important implica-

tions for intracellular protein trafficking, viral replication, and viral vaccine development.
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M any pathogens commonly invade the body through
and replicate within mucous surfaces where 1gA, the
predominant antibody isotype found in mucosal secretions,
forms the first layer of immune defense (1, 2). The impor-
tance of mucosal antibody is suggested by the observations
that the synthetic rate of IgA exceeds that of all the other
classes of antibodies combined and that resistance to viral
infections correlates best with the presence of specific 1gA
antibody in mucosal secretions (3, 4). Traditionally, mu-
cosal antibodies are thought to function extracellularly
by complexing with viral envelope proteins, thereby pre-
venting attachment of virions to the epithelium (5-8). Yet
the unique active transport of polymeric immunoglobulins,
mediated by the polymeric immunoglobulin receptor (plgR)*
on the basolateral surface of secretory epithelium (9-11),
may afford IgA antibody the opportunity to interact with
intracellular antigens, including the synthetic products of
viral pathogens.

Abbreviations used in this paper: HN, hemagglutinin-neuraminidase;
MDCK, Madin Darby canine kidney; NP, nucleoprotein; plgR, poly-
meric immunoglobulin receptor.
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Sendai virus, a prototypical paramyxovirus, is a natural
respiratory pathogen of rodents. Similar to human parain-
fluenza viruses, Sendai virus contains a nonsegmented
RNA genome encoding six major structural proteins (12,
13). We have shown that during transport through infected
polarized epithelial cells, specific polymeric I1gA acts intra-
cellularly to interfere with virus replication, assembly, or
release, presumably by binding to newly synthesized viral
proteins (14-17). Such intracellular neutralization of virus
by 1gA might eradicate infection while avoiding cytolysis of
infected epithelial cells. If the integrity of the epithelium is
thus preserved, viral antigens would be prevented from
gaining access into the body, and systemic sensitization
would be forestalled.

The immunoelectron microscopy experiments described
in this report document novel intracellular structures that
are formed when specific polymeric IgA is added basolater-
ally to Sendai virus—infected polarized cell monolayers.
These structures are not seen when infected monolayers are
treated with specific 1gG or irrelevant IgA. Thus, this pre-
viously undescribed cellular structure appears to be the site
of intracellular neutralization of virus by specific IgA. The

J. Exp. Med. O The Rockefeller University Press « 0022-1007/98/10/1223/07 $2.00

Volume 188, Number 7, October 5, 1998 1223-1229

http://www.jem.org



site. of colocalization implies that optimal vaccination
should focus upon selected viral proteins that transit
through apical recycling endosomes.

Materials and Methods

Cell and Virus Culture. Madin Darby Canine Kidney (MDCK)
cells, stably transfected with the cDNA encoding plgR derived
from rabbit (obtained from Keith Mostov, University of Califor-
nia, San Francisco), were maintained in MEM containing 10%
fetal bovine serum (Hyclone, Logan, UT), 100 wM nonessential
amino acids, 2 mM glutamine, 20 wg/ml gentamicin, and 15 mM
Hepes (all from GIBCO BRL, Gaithersburg, MD), and were
grown in 5% CO, at 37°C. Cells were grown to confluence on
nitrocellulose filter inserts (Millicell; Millipore, Bedford, MA);
polarization of the cells was confirmed by the electric potential
determined by a Millicell ERS resistance meter (Millipore). Sen-
dai virus strain 52 was grown in 10-d-old chicken embryos and
the virus was harvested from allantoic fluid after extensive centri-
fugation (18).

mADbs.  Viral-specific IgA and IgG antibodies were produced
and purified as previously described (14, 16, 19, 20). In brief,
mice were immunized, twice intraduodenally and once orally by
feeding tube with 100 wg of whole virus plus 5 pg of cholera
toxin (List Laboratories, Campbell, CA). Mice were boosted by
intravenous injection of 30 g of antigen, and splenocytes of im-
munized animals were fused with SP2/0 cells as per published
protocols (14, 16, 19, 20). Clones secreting antibody to the spe-
cific antigen were selected, subcloned, expanded, and frozen. Se-
lected hybridoma cells were injected into BALB/c mice primed
with 2,6,10,14-tetramethylpentadecane (Pristane; Sigma Chemi-
cal Co., St. Louis, MO) for the production of ascites.

Gold Labeling of Antibodies. Gold particles (BB International,
Cardiff, UK) were dialyzed in PBS before use. Antibody to be la-
beled was dialyzed at a concentration of 1 mg/ml against a 2 mM
borax (Sigma Chemical Co.) buffer (pH 7.2) and centrifuged at
100,000 g for 1 h. After addition of antibody to the gold, BSA
was added to a final concentration of 1% and the gold-antibody
slurry was centrifuged at 60,000 g for 1 h. The sediment was
washed twice by resuspending in Tris-buffered saline (TBS) with
1% BSA, (pH 7.2), followed by recentrifugation. The final pellet
was resuspended in TBS/1% BSA/0.1% sodium azide and stored
at 4°C until used.

Incubations and Immunoelectron Microscopy.  When confluent, polar-
ized cell monolayers were apically infected with 10-30 PFU/cell
of Sendai virus. 4 h later, ascites containing equivalent ELISA
titers of 1gA specific for the viral hemagglutinin—neuraminidase
(HN) protein, 1gG specific for the viral HN protein, or an irrele-
vant IgA (mineral oil plasmacytoma line 315) were added to the
basolateral surface. 24 h after inoculation, cells were fixed in 2%
paraformaldehyde for 30 min at 4°C and permeabilized by subse-
quent incubation in 0.25% saponin for 1 h at room temperature.
To detect viral HN, monolayers experimentally treated with IgA
were stained with a primary biotin-conjugated murine mAb for 1 h
at room temperature and then 20 h at 4°C, followed by 5 nm
gold-labeled sheep anti-biotin for 1 h at room temperature before
embedding (Amersham Pharmacia Biotech, Arlington, IL); the
primary antibody (murine IgG) was directed against a different
epitope on the viral HN protein than the IgA antibody added to
the basolateral surface during the experiment. Experimentally
added IgA was detected by staining, initially with the IgG fraction
of rabbit anti-mouse IgA for 1 h at room temperature and 20 h at
4°C, followed by 15 nm gold-labeled goat anti—rabbit IgG for 1 h
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at room temperature (Amersham Pharmacia Biotech). Similarly,
detection of viral protein in cells experimentally treated with IgG
used staining with a murine monoclonal IgA directed against a
different epitope on the HN protein than the original 1gG applied
basolaterally to the cells. This was followed by treatment with the
1gG fraction of rabbit anti-mouse IgA for 1 h at room tempera-
ture and 20 h at 4°C and 15 nm gold-labeled goat anti—rabbit 1gG
for 1 h at room temperature. 1gG was detected by staining with 5
nm gold-labeled goat anti-mouse IgG for 1 h at room tempera-
ture. The monolayers were then embedded in Epon 812, ultra-
thin sectioned, and counterstained with uranyl acetate and lead
citrate. Sections were then examined with an electron micro-
scope (Zeiss CEM 902; Carl Zeiss Inc., Thornwood, NY). In
other experiments, polarized MDCK monolayers were apically
infected with 30 PFU/cell and 4 h later incubated with 15 nm
gold-labeled IgA anti-HN or IgG anti-HN or irrelevant IgA ap-
plied basolaterally. Additional control polarized MDCK cultures
were also infected with 30 PFU/cell apically, but 4 h later were
treated basolaterally with unlabeled IgA anti-HN or apically with
15 nm gold-labeled IgA anti-HN.

Morphometric Analysis of Cytoplasmic Viral Protein and Antibody,
and Assessment of Colocalization. A total of 100 coded electron
micrographs from four separate experiments were subjected to
morphometric analysis with computer assistance (Image Il pro-
gram; National Institutes of Health, Bethesda, MD; running on a
Centris 650; Apple Computer, Cupertino, CA). For each micro-
graph, the area of the field of view, excluding extracellular area
and areas occupied by cell nuclei or grid bars, was determined by
digital planimetry; the cytoplasmic area depicted on each print
was then calculated from the calibrated magnification of the par-
ticular micrograph (ranging from 7,000 to X30,000) and the
print magnification (calibrated at X2.6). Next, the total number
of small (5-nm) and large (15-nm) gold particles were enumer-
ated separately in each micrograph; these values were then di-
vided by the cytoplasmic area in that micrograph to determine
total particle density (expressed as particles/square micrometer).
Finally, the number of small particles within a 225-nm radius of
at least one large particle, and the number of large particles within
a 225-nm radius of at least one small particle, were enumerated;
again, the density of “small particles near to large particles” and of
“large particles near to small particles” was calculated by dividing
the number of each category of colocalized particle on each print
by the cytoplasmic area within that print. The morphometric
density data were subjected to two-way analysis of variance, clas-
sified according to the incubation conditions of the cells and the
particular experiment; since interexperimental variation was not
significant, the data of the four individual experiments were
pooled, and a one-way classification (according to incubation
conditions) is reported. In addition to expressing the morpho-
metric data normalized to cytoplasmic area (particle densities),
colocalization was also assessed by the fraction of all antibody la-
bel that lies in proximity (within 225 nm) to virus label, and vice
versa, expressed as percentages of the total particles of the appro-
priate size in that micrograph. Two-way analysis of variance (clas-
sified by experiment and by incubation) of the percentages indi-
cated no significant difference among experiments; all four
experiments were pooled, and the results of a one-way classifica-
tion are reported.

Results and Discussion

Although our previous data support an intersection of
IgA antibody with a viral envelope glycoprotein (14-17),
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we here document definitively an intracellular interaction
between IgA and viral proteins by immunoelectron mi-
croscopy (Figs. 1-3). The HN glycoprotein, which is re-
sponsible for adherence of virions to host epithelial cells, is
synthesized in infected cells on the rough endoplasmic

W

Figure 1. Treatment with
specific IgA, but not specific 1IgG
or irrelevant IgA, reduces the ap-
pearance of viral protein on the
cell surface. Polarized monolay-
ers of MDCK cells in culture
well inserts, stably transfected
with the pIgR derived from rab-
bit, were infected with Sendai
virus at 10 PFU/cell. 4 h later,
ascites containing  equivalent
ELISA titers of IgA specific for
the viral HN protein (clone 37
HN; A), IgG specific for the vi-
ral HN protein (clone 20 HN;
B), or an irrelevant IgA (mineral
oil plasmacytoma line 315; C)
were added to the basolateral
surface as previously described
(6). Productive viral infection is
apparent in cells treated with
specific 1gG (B) or irrelevant IgA
(C), with dense accretions of vi-
ral protein in patches on the api-
cal portion of the cytoplasmic
membrane (arrows), sometimes
forming domed buds containing
fibrillar chromatin-like material
(arrowheads). Note that in A and
C, small (5 nm) gold particles la-
bel the viral proteins, whereas in
B, viral protein is detected by
large (15 nm) gold particles. Es-
sentially no intracellular Ig is
identified in these latter speci-
mens. By contrast, infected cells
treated with specific IgA (A)
show little viral protein at the
cell surface and no accretions of
viral protein or bud formations.
Bar = 0.5 pm.

reticulum, glycosylated, processed through the Golgi appa-
ratus, and finally transported to the apical surface, where it
is inserted into the host cell membrane in anticipation of
virion assembly and budding (21-23). As shown in Fig. 1,
basolateral addition of IgA anti-HN (A), but not 1gG anti-

Table 1. Morphometric Assessment of Colocalization of 1g and Viral HN Protein

Ig label Viral HN protein label

Virus Colocalized Percentage Percentage
Ig added added density colocalized Total density colocalized
specific IgA yes 113.7 *= 36* 40.1 = 1.9* 0.50 + 0.14 22.0 + 1.6*
irrevelant IgA yes 0.17 = 0.2 0.28 = 0.3 3.61 = 0.78* 1.8+18
specific 19G yes 11.7 = 8.1% 9.3 £1.98 1.90 = 1.2% 6.2 + 1.58
specific IgA no 0+0 0=+0 0=+0 0+0
none no 0x0 0x0 0x0 0x0

*Significantly (F > 4.8, P < 0.002) higher than all other groups.

*Significantly (F = 6.4, P < 0.001) higher than infected cells treated with specific IgA and higher than both groups of uninfected cells.
8Significantly (F > 4.8, P < 0.002) lower than infected cells treated with specific IgA and higher than all other groups.
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HN (B) or irrelevant IgA (C), reduces the expression of
immunodetectable HN protein on the apical host cell
membrane, and virion budding after 24 h. Collaterally,
there is a reduction in the density of total immunostainable
viral HN protein (Table 1) and in viral titer in the apical
supernatant (data not shown) only if IgA anti-HN is added
to the cells.

As seen in Fig. 2, specific IgA (A), but not specific 1gG
(B) or irrelevant IgA (C), colocalizes with viral HN protein
within multilamellar membrane-bound inclusions in the
cell cytoplasm. Indeed, quantitative morphometry reveals a
10-fold higher density of specific IgA colocalized with viral
protein relative to colocalized specific 1gG (Table 1).
Moreover, when expressed as a percentage of total Ig label,
colocalized specific IgA was four times more abundant than
colocalized specific 1gG (Table 1). As these data imply, the
total density of detectable intracellular specific IgA (430 =
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Figure 2.

23 particles/100 pwm?) was more than three times that of
specific 1gG (127 = 83 particles/100 wm?). In contrast, ir-
relevant 1gA did not accumulate within infected cells (total
density = 27.7 = 9.4 particles/100 pm?), and did not
colocalize to viral label (Table 1).

In parallel experiments using antibodies labeled directly
with gold particles before application to the basolateral sur-
face of the cell (Fig. 3), infected cells treated with IgA anti-
HN demonstrate massive accumulation of gold particles
within innumerable membrane-delimited inclusions (Fig. 3
A) that contain multiple palisaded layers (Fig. 3 A, inset).
This technique obviates the need for permeabilization of
the cells. Smaller but similar organelles are rarely visible in
infected cells treated with irrelevant IgA (Fig. 3 B), specific
IgG (data not shown), or no antibody (data not shown).
The relative abundance of these structures in cells treated
with specific IgA indicates that IgA anti-HN promotes
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Colocalization of specific IgA and viral protein within the cytoplasm of Sendai virus—infected cells. In polarized MDCK cells infected with

Sendai virus and treated by basolateral application of IgA anti-HN 4 h later (A, a replicate culture of Fig. 1 A), there is colocalization of numerous large
(15 nm) gold particles labeling IgA (large arrows) and numerous small (5 nm) gold particles labeling viral protein (small arrows) to form multilamellar mem-
brane structures, located deep within the cytosol. In infected cells treated with specific 1gG (B) or irrelevant IgA (C), budding virions arising from the cell
surface (indicated by asterisks) are identified by anti-viral HN protein staining (15-nm gold particles in B, large arrow; 5-nm gold particles in C, small ar-
row). The intracellular inclusions which develop in infected cells treated with specific IgA are only rarely identified in cells treated with specific 19gG, and
Ig does not frequently colocalize with viral protein. Neither infected cells treated with irrelevant 1gA nor uninfected cells ever contain these structures.

Bar = 0.25 pm.
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their formation. These inclusions are not the result of intra-
cellular gold, since they are visible to a similar degree in in-
fected cells treated with unlabeled IgA anti-HN, albeit
without the gold particles (Fig. 3 C). To determine if accu-
mulation of IgA results from endocytosis of free antibody
or immune complexes formed on the apical cell surface by
transported antibody, gold-labeled IgA anti-HN was added
to the apical supernatant of infected cells. As shown (Fig. 3
D), only a few gold particles accumulate within the cells.
The large quantities of gold and palisaded bodies seen in
Fig. 3 A are not visualized, indicating that specific IgA is
retarded in the infected cell during transcytosis, rather than
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Figure 3. Specific IgA pro-

motes the formation of mem-

5 brane-delimited inclusions of

& multiple palisaded layers. Polar-

ized MDCK cells were infected

with 30 PFU/cell and 4 h later

were incubated with 15 nm

gold-labeled IgA anti-HN (A),

19gG (data not shown), or irrele-

vant IgA (B), applied basolater-

ally. Other (control) polarized

MDCK cells were also infected

with 30 PFU/cell but 4 h later

were treated basolaterally with

unlabeled IgA anti-HN (C) or

apically with 15 nm gold-labeled

IgA anti-HN (D). Cells treated

basolaterally with gold-labeled

IgA anti-HN contain aggregates

of numerous gold particles within

numerous vesicular structures (A)

that contain multi-lamellar struc-

tures (A, inset). In contrast, al-

though a few gold particles are

seen within vesicles in cells

treated with 1gG anti-HN (data

not shown) or irrelevant IgA (B),

the massive aggregates of gold as-

sociated with multilamellar struc-

tures, seen in A, are not visible.

Infected cells treated with unla-

beled IgA anti-HN (C) demon-

- e . & strate vesicles similar in appear-

A £ : ance to those in cells receiving

: gold-labeled specific I1gA (A) but

without gold particles, indicating

» that the formation of these struc-

: - ’ tures is not due to the presence of

L 3 gold. Although infected cells api-

P cally treated with gold-labeled

IgA anti-HN exhibit a few gold

5 particles in vesicles (D), large ag-

gregates of gold and inclusions

. containing lamellae are not visu-

) alized, indicating that the initial

e s reaction between IgA antibody

# ¥ and viral protein occurs within

the cell during transcytosis and

not near the cell surface after re-

lease into the apical supernatant

upon subsequent re-uptake. Bars:

A, 1 pm; inset to A, 0.25 pm;
B-D, 0.5 um.

being subject to significant re-uptake after release into the
apical medium.

Scanning laser confocal microscopy with fluorescent an-
tibodies discloses colocalization of antibody and viral HN
protein in essentially all infected cells treated with poly-
meric IgA anti-HN applied basolaterally. The colocaliza-
tion of specific IgA antibody and HN protein is seen only
in the apical third of the polarized monolayer (data not
shown), suggesting that the multilamellar inclusions arise
from apical recycling endosomes (24-28). Colocalization is
never observed in uninfected cells, nor in infected cells
treated with irrelevant polymeric IgA or IgG anti-HN.



Finally, additional studies compared IgA mAbs directed
against the HN viral envelope protein to those against the
viral nucleoprotein (NP). In contrast to the HN protein,
which is synthesized in the endoplasmic reticulum, the syn-
thesis of NP occurs on free cytoplasmic ribosomes (29, 30).
Upon addition to the basolateral surface, IgA anti-HN but
not IgA anti-NP colocalizes with the respective viral pro-
tein by immunoelectron microscopy (data not shown) de-
spite the fact that both IgA antibodies undergo effective
transcytosis. Furthermore, the addition of 1gA anti-HN re-
duces viral titers in the apical supernatants from infected
monolayers, whereas IgA anti-NP does not (data not
shown). These differences between IgA anti-HN and anti-
NP antibodies are consistent with the different sites of syn-
thesis and processing of the two viral proteins relative to
the transcytotic pathway of the IgA antibody.

The current observations, in conjunction with our prior
findings (14-17), strongly support the hypothesis that dur-
ing transcytosis, specific IgA can complex with some viral
proteins within polarized epithelial cells and thereby pre-
vent virion assembly and release. The exact nature and site
of this intracellular interaction remain to be defined. The
current model of epithelial transcytosis does not postulate a
unique receptor-ligand endosomal pathway for the trans-
port of IgA from the basolateral to the apical cell surface.
Rather, the plgR-IgA complex travels through common
endosomal compartments with other recycling proteins

that undergo endocytosis (24-28). Initially, the plgR-IgA
complex is delivered to early basolateral endosomes, but is
later routed to apical recycling endosomes, which are
thought to be a key site of protein sorting. Thus, apical re-
cycling endosomes are a potential location for IgA to inter-
cept viral proteins, a view compatible with our confocal
microscopic observations.

As demonstrated by these studies, the ability of specific
IgA to interrupt viral replication depends on the mode of
replication of the particular virus in question, and the viral
protein that is recognized by the antibody. Viral glycopro-
teins that are synthesized on the rough endoplasmic reticu-
lum and subsequently transported to the apical cell surface
are probably most vulnerable to intracellular neutralization.
Prevention of virion assembly and budding by IgA acting
intracellularly may potentially forestall cytopathic effects
and spare the cell, at least during some viral infections.
Preservation of the integrity of the mucous membrane in
this manner could maintain the epithelial barrier and retard
systemic dissemination of viral antigens. Thus, the ability of
IgA antibody to act within epithelial cells would synergisti-
cally reinforce its traditional extracellular function in af-
fording humoral antiviral defense. These issues impact
upon the strategy to develop mucosal vaccines and argue
for continued investigation into humoral immune defense
mechanisms in the mucosa.
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