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Constructive influence of the 
induced electron pairing on the 
Kondo state
T. Domański1, I. Weymann2, M. Barańska1,3 & G. Górski4

Superconducting order and magnetic impurities are usually detrimental to each other. We show, 
however, that in nanoscopic objects the induced electron pairing can have constructive influence on 
the Kondo effect originating from the effective screening interactions. Such situation is possible at low 
temperatures in the quantum dots placed between the conducting and superconducting reservoirs, 
where the proximity induced electron pairing cooperates with the correlations amplifying the spin-
exchange potential. The emerging Abrikosov-Suhl resonance, which is observable in the Andreev 
conductance, can be significantly enhanced by increasing the coupling to superconducting lead. We 
explain this intriguing tendency within the Anderson impurity model using: the generalized Schrieffer-
Wolff canonical transformation, the second order perturbative treatment of the Coulomb repulsion, 
and the nonperturbative numerical renormalization group calculations. We also provide hints for 
experimental observability of this phenomenon.

Correlated quantum impurity immersed in the Fermi sea usually develops the spin-exchange interactions1, that 
cause its total (or partial) screening below some characteristic (Kondo) temperature TK 2,3. This effect is mani-
fested in the quantum impurity spectrum by the Abrikosov-Suhl peak appearing at the Fermi level. It has been 
predicted4,5 and experimentally confirmed6,7 that in a correlated quantum dot (QD) embedded between metallic 
electrodes, such effect enhances the zero-bias tunneling conductance8. This situation changes, however, if one (or 
both) external electrode(s) is (are) superconducting because of the proximity induced electron pairing9,10. 
Depending on the energy level εd, Coulomb potential Ud and the coupling Γ S to superconducting reservoir, the 
ground state may evolve from the spinful configuration σ  (where σ =  ↑ , ↓ ) to the spinless BCS-type state 

− ↑↓u v0d d
11. Such quantum phase transition (QPT) has a qualitative influence on the spin-screening mech-

anism10. In this work we show that, for Γ S ≤  Ud, the proximity induced electron pairing strongly amplifies the 
Abrikosov-Suhl peak12,13 (Fig. 1), simultaneously suppressing the QD magnetization (see Methods).

At first glance, such tendency seems to be rather counter-intuitive because Γ S supports the proximity induced 
electron pairing that should compete with screening of the magnetic impurity’s spin. We provide microscopic 
arguments explaining this intriguing result, based on three independent methods. Our study might stimulate and 
guide future experimental attempts to verify this theoretical prediction in the N-QD-S heterostructures [sche-
matically displayed in Fig. 1(a)], using e.g. self-assembled InAs quantum islands14, semiconducting quantum 
wires15,16 or carbon nanotubes17,18. Former measurements of the subgap differential conductance have already 
provided evidence for the Andreev/Shiba bound states19–21 and a tiny (but clear) signature of the zero-bias anom-
aly driven by the Kondo effect14,16,22,23. Its variation with respect to the ratio Γ S/Ud has not been investigated care-
fully enough, but this seems to be feasible.

Similar zero-bias anomalies driven by the superconducting proximity effect are nowadays intensively explored 
also in the quantum wires coupled to the s-wave superconductors, signaling the Majorana-type quasiparticles24–26. 
These exotic quasiparticles originate solely from the Andreev/Shiba states in the presence of the strong spin-orbit 
interaction and the Zeeman effect27. The present study might hence be useful for distinguishing the zero-bias 
enhancement due to the Kondo effect from the one driven by the Majorana-type quasiparticles.
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Results
In what follows we address the proximity induced electron pairing and study its feedback on the Kondo state, 
focusing on the deep subgap regime. First, we introduce the model and discuss its simplified version relevant 
for the deep subgap states. Next, we discuss the issue of singlet-doublet quantum phase transition in the limit of 
negligible coupling to the normal lead, Γ N →  0, emphasizing its implications for the Kondo-type correlations. We 
then determine the effective spin exchange potential, generalizing the Schrieffer-Wolff transformation1 for the 
proximized quantum dot, and confront the estimated Kondo temperature with the nonperturbative NRG data 
(showing excellent quantitative agreement over the region Γ S ≤  0.9 Ud). We also discuss the results obtained from 
the second-order perturbation theory (SOPT) with respect to the Coulomb potential, that provide an independ-
ent evidence for the Kondo temperature enhancement by increasing Γ S (in the doublet state). Finally, we discuss 
the experimentally measurable conductance for the subgap regime and give a summary of our results.

Microscopic model in the subgap regime.  For the description of the N-QD-S junction we use the 
Anderson impurity model28
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where β refers to the normal (β =  N) and superconducting (β =  S) electrodes, respectively. The operator σ
†

d̂
( )

 anni-
hilates (creates) an electron with spin σ and energy εd in the quantum dot, while Vkβ denotes the tunneling matrix 
elements. The repulsive Coulomb potential is denoted by Ud and =σ σ σ

†
^ ^ ^n d dd . Itinerant electrons of the metallic 
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( )  denotes the annihilation 

(creation) operator of a spin-σ electron with momentum k and energy ξkβ in the lead β, while Δ denotes the 
superconduct ing energ y gap.  It  is  convenient  to introduce the character ist ic  couplings 

π δ ω ξΓ = ∑ −β β βV2 ( )k k k
2 , assuming that they are constant within the subgap energy regime ω ≤ ∆.

Since we are interested in a relationship between the Andreev/Shiba quasiparticles and the Kondo state we can 
simplify the considerations by restricting ourselves to an equivalent Hamiltonian29
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relevant for the subgap regime in a weak coupling limit Γ S <  Δ. Effects due to the superconducting electrode are 
here played by the induced on-dot pairing gap Δd =  Γ S/2 9,11. This Hamiltonian (2) neglects the high-energy states 
existing outside the energy gap window ω ≥ ∆ (see Methods) that are irrelevant for the present context.

Subgap quasiparticles of the proximized quantum dot.  To understand the influence of electron pair-
ing on the Kondo effect, it is useful to recall basic aspects of the singlet-doublet quantum phase transition in the 
‘superconducting atomic limit’ Γ N →  0 9,30. Exact eigenstates of the proximized QD are then represented either by 
the spinful configurations σ  with eigenenergy εd, or the spinless (BCS-type) states
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Figure 1.  Schematic view of N-QD-S junction and the Kondo effect. (a) The energy spectrum in the spinful 
doublet configuration, where the QD Andreev bound states (driven by the coupling Γ S to superconducting 
reservoir) coexist with the zero-energy Abrikosov-Suhl peak, originating from the Coulomb potential Ud and 
the coupling Γ N to metallic lead. (b) Change of the width and height of the Abrikosov-Suhl resonance caused by 
the coupling Γ S.
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The single particle excitations, between the doublet and singlet configurations, give rise to the following quasipar-
ticle branches ± Ud/2 ±  Ed, where ε= + + ΓE U( /2) ( /2)d d d S

2 2 . Two energies ± (Ud/2 −  Ed) can be regarded 
as the low-energy excitations, whereas the other ones (shifted from them by Ud) represent the high-energy fea-
tures. In realistic systems (where Ud is typically much larger than Δ) the latter ones usually coincide with a con-
tinuum formed outside the subgap regime14–18,31.

Diagonal part of the single particle Green’s function (for its definition see Methods) is in the subgap regime 
given by11
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d d d d d  and we set 
the Boltzmann constant equal to unity, kB ≡  1. The missing amount of the spectral weight 1 −  α belongs to the 
high-energy states existing outside the superconductor gap. At zero temperature, the subgap weight changes 
abruptly from α =  0.5 (when Ed <  Ud/2) to α =  1 (when Ed >  Ud/2). At Ed =  Ud/2 the quasiparticle crossing is a 
signature of the quantum phase transition from the doublet σ  to the singlet configuration − 9,11,13.

For infinitesimally small coupling Γ N one can extend the atomic limit solution (7) by imposing the quasipar-
ticle broadening ω ω→ + Γ( )G G( ) i

N2
. Figure 2 shows the normalized spectral function ω ρ ω= ΓπA( ) ( )N d2

, 
with ρd(ω) ≡  − π−1 ImG11(ω), for the half-filled quantum dot, εd =  − Ud/2. On top of these curves we have added 
the Abrikosov-Suhl peak (at ω =  0) whose half width is given by the Kondo temperature, see Eq. (21). Upon 
increasing the ratio Γ S/Ud, the Andreev quasiparticle peaks move closer and they ultimately merge at the critical 
point Γ S =  Ud, and simultaneously the Abrikosov-Suhl peak gradually broadens all the way up to the QPT. For 
Γ S >  Ud, the Andreev peaks drift away from each other (see the dashed lines in Fig. 2) and the Kondo feature 
disappears for the reasons discussed in the next subsection.

Spin exchange interactions and Kondo temperature.  Adopting the Schrieffer and Wolff approach1 to 
the Hamiltonian (2) of the proximized quantum dot we can design the canonical transformation

=
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which perturbatively eliminates the hybridization term = ∑ +σ σ σ σ σ


† ⁎ †^ ^ ^ ^V V d c V c d( )N N N Nk k k k k, . To simplify the 
notation, we skip the subindex N that unambiguously refers to the metallic lead. The terms linear in VkN can be 
cancelled in the transformed Hamiltonian ∼H by choosing the operator Ŝ from the following constraint

= 
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Figure 2.  Subgap spectrum. The normalized spectral function ω ρ ω= ΓπA( ) ( )N d2
 of the half-filled quantum 

dot obtained from the superconducting atomic limit solution (using the quasiparticle broadening Γ N =  10−1 Γ S) 
superposed with the Abrikosov-Suhl peak whose half width TK is expressed by Eq. (21). The solid/dashed lines 
correspond to the doublet/singlet ground state configuration and the thick-red curve indicates the quantum 
phase transition at Γ S =  Ud.
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where = −  H H V0 . For the Hamiltonian (2) this can be satisfied with the anti-hermitian operator = −
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The second term of Eq. (10) explicitly differs from the standard operator used by Schrieffer and Wolff1. From the 
lengthy by straightforward algebra we find that the constraint (9) implies the following coefficients γν
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For Δd =  0, the coefficients γ αk2,  identically vanish and the other ones, given by Eqs (12 and 14), simplify to the 
standard expressions γ ξ ε= − −+ V U/( )d dk k k1,  and γ ξ ε= −− V /( )dk k k1,  of  the Schrief fer-Wolf f 
transformation1.
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we can recognize: the spin exchange term, the interaction between QD and itinerant electrons, the pair hopping 
term, and renormalization of the QD energy and the on-dot pairing. Since we focus on the screening effects, we 
study in detail only the effective spin-exchange term

∑= − ⋅

^ ^H J S S ,
(17)

exch d
k p

kp kp
,

where Ŝd describes the spin operator of the dot and Ŝkp refers to the spins of itinerant electrons in metallic lead. 
Other contributions are irrelevant for the Kondo physics.

Formal expression for the effective exchange potential

γ γ γ γ= − + −+ − + −J V V1
2

[( ) ( ) ] (18)k p k k p p p k, 1, 1, 1, 1,
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is analogous to the standard Schrieffer-Wolff result1, but here we have different coefficients γ ±k1,  expressed in 
Eqs (12 and 14). This important aspect generalizes the Schrieffer-Wolf potential1 and captures the effects induced 
by the on-dot pairing.

In particular, near the Fermi momentum the exchange potential (18) simplifies to
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d

d d d d
k k

k
,

2
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It is worthwhile to emphasize that this formula (19) precisely reproduces constraint for the quantum phase tran-
sition discussed in the previous section. To prove it, we remark that Jk k,F F
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which is identical to the QPT constraint =E U( /2)d d
2 2 originally derived in ref. 11.

To estimate the effective Kondo temperature in the case of spinful configuration (for Γ S <  Ud), we use the 
formula32,33, φ ρ ε= −

π
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, where ρ(εF) is the density of states at the Fermi level, D is the 
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η
ε ε

π
=

Γ 





+ + ∆
Γ





T

U U
U2

exp ( )
/

,
(21)

K
N d d d d d

N d

2

with η being a constant of the order of unity. Influence of the on-dot pairing on the Kondo temperature can be 
well illustrated considering the half-filled quantum dot case εd =  − Ud/2. The spin exchange potential (19) is then 
given by
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and for Δd =  0 it reproduces the standard Schrieffer-Wolff result1
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characteristic for the impurity hosted in the metallic reservoir. The relative change of Jk k,F F
 arising from the 

on-dot pairing is
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For the doublet phase (Γ S <  Ud) the exchange coupling is antiferromagnetic, whereas for the singlet state 
(Γ S <  Ud) it becomes ferromagnetic. In the latter case, however, such ferromagnetic interactions are ineffective 
because the spinless BCS singlet, − ↓↑u v0d d , cannot be screened.

The estimated Kondo temperature (21) increases versus Γ S, all the way to the critical point at Γ S =  Ud. Such 
tendency, indicated previously by the NRG data13, is solely caused by the quantum phase transition. In a vicin-
ity of the QPT the divergent exchange coupling (22) is a typical drawback of the perturbative scheme. Figure 3 
demonstrates that the formula (21) is reliable over the broad regime Γ S ≤  0.9 Ud. This straightforward conclusion 
can be practically used by experimentalists.

Equilibrium transport properties.  We now corroborate the analytical results with accurate numerical 
renormalization group calculations34,35. In NRG, the logarithmically-discretized conduction band is mapped onto 
a tight binding Hamiltonian with exponentially decaying hopping, ξ ∝ Λ−n

n/2, where Λ  is the discretization 
parameter and n site index. This Hamiltonian is diagonalized in an iterative fashion and its eigenspectrum is then 
used to calculate relevant expectation values and correlation functions. In our calculations, we assumed Λ  =  2 and 
kept Nk =  2048 states during iteration exploiting Abelian symmetry for the total spin zth component36. Moreover, 
to increase accuracy of the spectral data we averaged over Nz =  4 different discretizations37,38. We also assumed 
flat density of states, ρ =  1/2 W, with W the band half-width used as energy unit W ≡  1, Ud =  0.1, Γ N =  0.01 and 
zero temperature. In the absence of superconducting correlations, Γ S =  0, this yields the Kondo temperature, 
≈ −T 10K

0 5, obtained from the half width at half maximum (HWHM) of the dot spectral function ρd(ω) calculated 
by NRG.

Figure 3(a) presents the energy dependence of the normalized spectral function A(ω) of the correlated quan-
tum dot at half-filling for the model Hamiltonian (2) calculated for different values of Γ S. In the case of Γ S =  0, 
A(ω) exhibits Hubbard resonance for ω =  ± Ud/2 and the Abrikosov-Suhl peak at the Fermi energy, ω =  0. It is 
clearly visible that increasing Γ S leads to the broadening of the Abrikosov-Suhl peak. In Fig. 3(b) we compare the 
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relative change of the Kondo temperature obtained from the HWHM of A(ω) calculated by NRG (circles) and 
from the approximate formula (21) based on the generalized Schrieffer-Wolff canonical transformation (solid 
line). The numerical constant η was estimated to be η =  0.6. The agreement is indeed very good and small devi-
ations occur only close to Γ S =  Ud, but then the system is no longer in the local moment regime and the Kondo 
effect disappears.

The normalized spectral function of the half-filled quantum dot in both the doublet, Γ S <  Ud, and singlet 
region, Γ S >  Ud, is shown in Fig. 4. In the doublet region we clearly observe the zero-energy Abrikosov-Suhl peak, 
whose width gradually increases upon increasing Γ S. Simultaneously the Andreev peak (whose width is roughly 
proportional to Γ N) moves toward the gap center. In the singlet state, on the other hand, the Abrikosov-Suhl peak 
does no longer exist and the Andreev peaks gradually depart from each other for increasing Γ S. The same evolu-
tion of the Andreev and the Abrikosov-Suhl quasiparticle peaks is illustrated in Fig. 2, combining the supercon-
ducting atomic limit solution with the perturbative estimation of the Kondo temperature (21).

Broadening of the Abrikosov-Suhl peak upon approaching the doublet-singlet transition can be inde-
pendently supported by the second-order perturbative treatment of the Coulomb interaction term ↑ ↓^ ^U n nd d d . The 
first- and second-order contributions have been discussed in the context of Andreev39,40 and Josephson 
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Figure 3.  Kondo temperature. (a) The normalized spectral function A(ω) of the correlated quantum dot 
obtained by NRG for the model Hamiltonian (2) at half-filling for different values of Γ S, as indicated. Note the 
logarithmic scale for energies. (b) The Kondo temperature TK extracted from the half width at half maximum 
(HWHM) of the Abrikosov-Suhl peak (circles) and TK obtained from Eq. (21) with η =  0.6 (solid line). TK

0 
denotes the Kondo temperature in the case of Γ S =  0, ≈ −T 10K

0 5. The parameters are: Ud =  0.1 and Γ N =  0.01. 
All parameters are in units of band halfwidth W ≡  1.

Figure 4.  Changeover of the subgap spectrum. The normalized spectral function A(ω) of correlated quantum 
dot obtained by NRG calculations for ∆ Γ S plotted as a function of energy ω and Γ S. The Abrikosov-Suhl 
peak is present in the doublet region, Γ S <  Ud, while in the singlet region, Γ S >  Ud, the Abrikosov-Suhl peak no 
longer exists. The parameters are the same as in Fig. 3.
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spectroscopies41–43. Here we focus on the Kondo effect, studying its evolution near Γ S ~ Ud. Diagonal and 
off-diagonal parts of the self-energy can be expressed by40

∫∑ ω
π

ω
ω ω

ω= −
Γ
+ 〈 〉 −

Σ ′
− ′ +

′↓ ↓

−∞

∞

+

†
^ ^i U d d U

i
d( )

2
Im ( )

0
,

(25)
N

d
d

11

2
11
(2)

∫∑ ω
π

ω
ω ω
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Γ
+ +

Σ ′
− ′ +

′↓ ↑

−∞

∞

+
^ ^U d d U

i
d( )

2
Im ( )

0
,

(26)
S

d
d

12

2
12
(2)

with

∫∑ ω ω ω ρ ω ω ω ρ ω ω= − Π + ′ ′ + Π + ′ ′ ′
−∞

∞
+ − dIm ( ) [ ( ) ( ) ( ) ( )] ,

(27)
11(21)
(2)

1 22(21) 2 22(21)

∫ω π ρ ω ρ ω ω ρ ω ρ ω ω ωΠ = ′ − ′ − ′ − ′ ′.
−∞

∞
− + − + − + − + d( ) [ ( ) ( ) ( ) ( )]

(28)
1(2) 11

( )
22

( )
12

( )
21

( )

I n  e q u a t i o n s   ( 2 7  a n d  2 8 )  w e  h a v e  i n t r o d u c e d  ρ ω π ω ω= −± − ±G f( ) Im ( ) ( )ij ij
HF1 ,  w h e r e 

ω ω= + ±± −f T( ) [1 exp( / )] 1 denotes the particle/hole Fermi-Dirac distribution function and ωG ( )ij
HF  is the 

Green’s function obtained at the Hartree-Fock level = + ∑ +σ σ σ σ σ
 

† ⁎ †^ ^ ^ ^H H V d c V c d( )HF N N N N Nk k k k k,   
ε+ ∑ + 〈 〉 − ∆ − 〈 〉 + . .σ σ σ− ↓ ↑ ↑ ↓

† †
^ ^ ^ ^ ^ ^U n n U d d d d( ) [( ) h c ]d d d d d d . When calculating the convolutions (27,28) we 

have used the identities ω ωΣ = − Σ − ⁎( ) [ ( )]22 11  and ω ωΣ = Σ − ⁎( ) [ ( )]12 21 .
Figure 5 shows the spectral function A(ω) obtained from the numerical self-consistent solution of Eqs (25–

28). For comparison with the NRG results we focused on the half-filled quantum dot = .σn̂ 0 5d . In the weakly 
correlated case Ud ≤  Γ S (corresponding to the spinless BCS-type ground state) the subgap spectrum is character-
ized by two Andreev states (shown by the dashed-line curves). For Ud ~ Γ S, these Andreev states merge, forming 
a broad structure around the zero energy. In the strongly correlated case Ud ≥  Γ S (corresponding to the spinful 
doublet configuration) we observe appearance of the Kondo feature (at zero energy) that coexists with the 
Andreev states44. We also notice that the width of the zero-energy peak (i.e. 2TK) depends on the ratio Ud/Γ S and 
such tendency qualitatively agrees with our estimations based on the Schrieffer-Wolff transformation and with 
the nonperturbative NRG data.

Differential Andreev conductance.  We now analyze how the observed features reveal in the nonlinear 
response regime. For possible correspondence with the experimentally measurable quantities we consider the 
subgap Andreev current

∫ ω ω ω ω= − − ++ +I V e
h

d T f eV f eV( ) 2 ( )[ ( ) ( )], (29)A A

driven by the applied bias voltage V. The Andreev transmittance depends on the off-diagonal (anomalous) Green’s 
function ω ω= ΓT G( ) ( )A N

2
12

2. We have computed the differential conductance = ∂
∂

G V( )A
I V

V
( )A  determining 

the non-equilibrium transmittance by the technique described in Methods.
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Figure 5.  Subgap spectrum determined by the SOPT method. (a) The normalized spectral function A(ω) 
at half-filling and T =  0 obtained from the SOPT calculations for different values of the Coulomb correlation 
parameter and Γ S =  Γ N. (b) The same spectrum obtained for different ratios of Γ S/Γ N with Ud =  3Γ N.
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Figure 6 shows the qualitative changeover of the subgap conductance for representative values of Ud and Γ S, 
corresponding to doublet and singlet states. While approaching the QPT from the doublet side, we observe that 
the zero-bias Abrikosov-Suhl peak is gradually enhanced, and its width significantly broadens. This tendency is 
caused by the characteristic Kondo temperature, which increases with increasing Γ S/Ud. For Γ S >  Ud, however, the 
Kondo feature is completely absent (in agreement with NRG and Schrieffer-Wolff estimations). The magnitude of 
the subgap Andreev conductance approaches then the maximum value 4e2/h near the Andreev/Shiba states. We 
notice the quantitative difference between the subgap transport properties (shown in Fig. 6) and the electronic 
spectrum (displayed in Figs 4 and 5). Observability of the Kondo enhancement would be thus possible only close 
to the QPT on the doublet side.

Discussion
We have studied the influence of the electron pairing on the Kondo effect in the strongly correlated quantum dot 
coupled (by Γ N) to the metallic and (by Γ S) to superconducting reservoirs by three independent methods. The 
proximity induced on-dot pairing and the Coulomb repulsion Ud are responsible for the quantum phase tran-
sition between the (spinless) BCS-like singlet and the (spinful) doublet configurations, depending on the ratio 
of Γ S/Ud. Upon approaching this quantum critical point from the doublet side, one observes the enhancement 
of the Kondo temperature with increasing Γ S 13. We have provided the microscopic arguments supporting this 
behavior based on the generalized Schrieffer-Wolff canonical transformation. This perturbative treatment of the 
coupling to metallic lead revealed enhancement of the antiferromagnetic spin-exchange potential, responsible 
for the Abrikosov-Suhl resonance. We have compared the estimated Kondo temperature with the numerical 
renormalization group calculations, and found excellent agreement over the broad regime Γ S <  0.9 Ud. We have 
confirmed this tendency (for arbitrary Γ N) using the second-order perturbative treatment of the Coulomb inter-
action. Our analytical estimation of the Kondo temperature (21) can be quantitatively verified in experimental 
measurements of the differential Andreev conductance. We have shown, that the zero-bias enhancement of the 
subgap conductance (already reported14,16,22,23 for some fixed values of Γ S) would be significantly amplified with 
increasing the ratio Γ S/Ud, but only on the doublet side. Such behaviour is in stark contrast with the zero-bias 
anomaly caused by the Majorana quasiparticles due to the topologically non-trivial superconductivity.

Methods
The deep subgap regime |w| ≪ ▵.  When studying the proximity effect of the Anderson-type Hamiltonian 
(1) one has to consider the mixed particle and hole degrees of freedom. This can be done, by defining the matrix 
Green’s function τ τ τ τ′ = 〈〈Ψ Ψ ′ 〉〉

†
^ ^G ( , ) ( ); ( )d d  in the Nambu spinor representation, Ψ = ↑ ↓

† †
^ ^ ^d d( , )d , Ψ = Ψ

† †^ ^( )d d . 
Here we determine its diagonal and off-diagonal parts in the equilibrium case (which is also useful for description 
of the transport within the Landauer formalism). The Fourier transform of the Green’s function 
τ τ τ τ′ = − ′G G( , ) ( )d d  can be expressed by the Dyson equation

ω
ω ε

ω ε
ω=





−

+




− Σ .−G ( )

0
0 ( )

(30)
d

d
d

1

The self-energy ωΣ ( )d  accounts for the coupling of the quantum dot to external reservoirs and for the correla-
tion effects originating from the Coulomb repulsion Ud.

The quantum dot hybridization with the leads can be expressed analytically by ω ωΣ = ∑ β β β
= V g( ) ( )d

U
k k k

( 0)
,

2d , 
where gkβ(ω) are the (Nambu) Greens’ functions of itinerant electrons. In the wide-band limit this self-energy is 
given by the following explicit formula11,40
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Figure 6.  Andreev conductance. The bias voltage dependence of the differential conductance GA obtained 
from the SOPT calculations for the half-filled QD at T =  0. (a) The conductance GA for different values of 
the Coulomb potential Ud and Γ S =  Γ N. (b) The subgap conductance for different values of the coupling to 
superconducting lead Γ S and for Ud =  3Γ N. We notice that the zero-bias feature induced by the Kondo effect is 
present only for Γ S <  Ud (in the spinful doublet) and its width gradually broadens with increasing Γ S/Ud.
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Equation (31) describes: (i) the proximity induced on-dot pairing (via the term proportional to Γ S) and (ii) the 
broadening (finite life-time) effects. The latter come from the imaginary parts of self-energy (31) and depend 
either on both couplings Γ β=N,S (for energies ω ≥ ∆) or solely on Γ N (in the subgap regime ω < ∆).

In the subgap regime ω < ∆ the Green’s function of uncorrelated quantum dot acquires the BCS-type 
structure

ω
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ω

∆
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

S S 2 2
. The resulting spectrum consists of two in-gap peaks, known as 

the Andreev11,19 or Yu-Shiba-Rusinov20,21 quasiparticles. Their splitting is a measure of the pairing gap Δd induced 
in the quantum dot. Figure 7 displays the characteristic energy scales of the uncorrelated quantum dot.

For infinitesimally weak coupling Γ N =  0+ the in-gap states have a shape of Dirac delta functions (i.e. represent 
the long-lived quasiparticles). Otherwise, they acquire a finite broadening proportional to Γ N. In the absence of 
correlations (for Ud =  0) the quasiparticle energies EA,± can be determined by solving the following equation45,46
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In the strong coupling limit, Γ ∆S , we can notice that in-gap quasiparticles appear close to the supercon-
ductor gap edges ± ∆± EA, , whereas in the weak coupling limit, Γ ∆S , they approach the asymptotic val-

ues, ε± + Γ± E ( /2)A d S,
2 . For Γ N →  0, the latter case is known as the ‘superconducting atomic limit’. The 

self-energy (31) simplifies then to the static value

∑ ω = −
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i
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(34)d

N S

S N
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therefore the Hamiltonian (1) can be formally modeled by its fully equivalent form (2), describing the proximized 
quantum dot coupled to the metallic lead.

Influence of the correlation effects.  We note that the early studies of the nontrivial relationship 
between the Coulomb repulsion and the proximity induced electron pairing of the normal metal - quantum 
dot - superconductor (N-QD-S) junctions have adopted variety of the theoretical methods, such as: slave boson 
approach47,48, equation of motion49, noncrossing approximation50, iterative perturbation technique39, path inte-
gral formulation of the dynamical mean field approximation51, constrained slave boson method52, numerical 
renormalization group11–13,30, modified equation of motion45, functional renormalization group53, expansion 
around the superconducting atomic limit54, cotunneling treatment of the spinful dot55, numerical QMC simula-
tions56, selfconsistent perturbative treatment of the Coulomb repulsion40 and other9,46,57. Amongst them only the 
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Figure 7.  Andreev bound states of the uncorrelated QD. Spectral function A(ω) of the uncorrelated QD 
obtained for εd =  0, Γ N =  10−3 and Δ =  Γ S. The dashed line shows the reference spectrum in the absence of 
superconducting reservoir, Δ =  0. The in-gap states are separated by 2Δd.
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numerical renormalization group (NRG) calculations13 suggested the Kondo temperature to exponetially increase 
with increasing Γ S when approaching the quantum phase transition from the doublet side (Γ S ~ Ud).

The relationship between the proximity induced on-dot pairing and the screening effects can be better under-
stood by analyzing the superconducting order parameter ↓ ↑

^ ^d d  and the QD magnetization 
〈 〉 = 〈 − 〉↑ ↑ ↓ ↓

† †
^ ^ ^ ^ ^S d d d dd

z 1
2

. In Fig. 8 we show their dependence on the coupling Γ S for several Γ N/Ud ratios calculated 
by NRG. For finite superconducting energy gap a sign change of the order parameter signals the quantum phase 
transition13. However, in the case of infinite gap considered here, ↓ ↑

^ ^d d  only drops to zero at the transition 
point11,30. As clearly seen in the figure, the order parameter ↓ ↑

^ ^d d  increases from 0 to 1
2

 around Γ S ~ Ud [Fig. 8(a)] 
corresponding to the QPT. Its enhancement is accompanied by the suppression of the dot magnetization, which 
vanishes in the singlet phase, Γ S >  Ud, →Ŝ 0d

z
 [Fig. 8(b)]. This behavior comes from the well known fact, that 

the local magnetic susceptibility is inversely proportional to the Kondo temperature3. Such variation of the QD 
magnetization Ŝd

z
 resembles the analogous tendency for the magnetic ordering in heavy fermion com-

pounds58,59, where its suppression is driven by a competition between the local Kondo effect with the non-local 
RKKY interaction. In our case, the quantitative changeover of ↓ ↑

^ ^d d  and Ŝd
z

 indicate the quantum phase transi-
tion at Γ S ~ Ud. Moreover, it can be also seen that the transitions present in the above quantities become smeared 
with increasing the coupling to the normal lead Γ N.

Nonlinear charge transport in the subgap regime.  Under non-equilibrium conditions the Andreev 
transmittance ω ω= ΓT G( ) ( )A N

2
12

2 has to be determined using the lesser and greater self-energies40
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Figure 8.  Pairing amplitude and magnetization. (a) The superconducting order parameter ↓ ↑
^ ^d d  and (b) the 

magnetization Ŝd
z

 of the correlated quantum dot calculated by NRG for different couplings to normal lead Γ N, 
as indicated. The parameters are the same as in Fig. 3. In panel (b) a small external magnetic field B is applied to 
the system, B =  10−6.
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and ρ = Σ< > < >G GHF r HF a, , , 0 , , with GHF r a, ( ) denoting the respective retarded (advanced) Green’s function. The 
expectation values 〈 〉σ σ

†
^ ^d d  and ↓ ↑

^ ^d d  have been determined self-consistently from ∫ ω ω〈 〉 =σ σ π −∞

∞ <†
^ ^d d G d( )

i
1

2 11  and 

∫ ω ω=
π↓ ↑ −∞

∞ <^ ^d d G d( )
i

1
2 12 , where the lesser and greater Greens’ functions obey ω ω ω ω= Σ< > < >G G G( ) ( ) ( ) ( )r a, , , 

as discussed in ref. 40.
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